Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Review Article

Auxetic Polymer Foams: Production, Modeling and Applications

Author(s): Ouassim Hamdi and Denis Rodrigue*

Volume 4, Issue 3, 2021

Published on: 24 December, 2021

Page: [159 - 174] Pages: 16

DOI: 10.2174/2452271604666211130123921

Price: $65

Abstract

Auxetic materials have high potential due to their exceptional properties resulting from a negative Poisson’s ratio. Recently, several auxetic polymer-based materials have been developed. In fact, several applications are looking for a lightweight material (less material consumed in production and transport) while having high mechanical performances (impact absorption, rigidity, strength, resistance, etc.). So, a balance between density and toughness/strength is highly important, especially for military, sporting, and transport applications. So auxetic materials (especially foams) can provide high impact protection while limiting the material’s weight. This article presents a review of recent advances with a focus on auxetic polymers, with particular emphasis on the auxetic polymer foams in terms of their fabrication methods and processing conditions (depending on the nature of the cellular structure), the effect of the fabrication parameters on their final properties, as well as their models and potential applications.

Keywords: Polymers, foams, auxetic, production, characterization, modeling.

Graphical Abstract

[1]
Mendhe ShE, Kosta YP. Metamaterial properties and applications. Int J Inform Technol Knowledge Manag 2011; 4(1): 85-9.
[2]
Itoh T. Prospectus for metamaterials. Electron Lett 2004; 40.
[3]
Jelinek L, Machac J, Zehentner L. Metamaterials: A challenge for contemporary advanced technology. In: 17th International Conference Radioelektronika. 2007; pp. 1-12.
[4]
Lakes RS. Negative-poisson’s-ratio materials: auxetic solids. Annu Rev Mater Res 2017; 47: 63-81.
[http://dx.doi.org/10.1146/annurev-matsci-070616-124118]
[5]
Critchley R, Corni I, Wharton JA, Walsh FC, Wood RJK, Stokes KR. A review of the manufacture, mechanical properties and potential applications of auxetic foams. Phys Status Solidi 2013; 250(10): 1963-82.
[http://dx.doi.org/10.1002/pssb.201248550]
[6]
Evans KE, Alderson A. Auxetic materials: functional materials and structures from lateral thinking. Adv Mater 2000; 12(9): 617-28.
[http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3]
[7]
Lakes R. Foam structures with a negative Poisson’s ratio. Science 1987; 235(4792): 1038-40.
[http://dx.doi.org/10.1126/science.235.4792.1038] [PMID: 17782252]
[8]
Ballato A. Poisson’s ratios of auxetic and other technological materials. IEEE Trans Ultrason Ferroelectr Freq Control 2010; 57(1): 7-15.
[http://dx.doi.org/10.1109/TUFFC.2010.1372] [PMID: 20040420]
[9]
Cho H, Seo D, Kim DN. Mechanics of Auxetic Materials. In: Handbook of Mechanics of Materials Singapore Springer. 2019; pp. 733-57.
[http://dx.doi.org/10.1007/978-981-10-6884-3_25]
[10]
Chan N, Evans KE. Fabrication methods for auxetic foams. J Mater Sci 1997; 32: 5945-53.
[http://dx.doi.org/10.1023/A:1018606926094]
[11]
Shilko S, Konyok D. Digital and experimental study of closed cell auxetic foams. Calculation methods Sci Technol 2004; 10(2): 197-202.
[12]
Topolov VY, Bowen CR. Characteristics of the type 1-3 ferroelectric ceramic/polymer composite. Model Simul Mater Sci 2008; 16(1): 15007-12.
[13]
Evans KE, Donoghue JP, Alderson KL. The design, pairing and manufacture of carbon fiber laminates auxetic. J Compos Mater 2004; 38: 95-106.
[http://dx.doi.org/10.1177/0021998304038645]
[14]
Cicala G, Recca G, Oliveri L, Grube DJ, Scarpa F, Perikleous Y. Auxetic hexachiral truss core reinforced with twisted hemp yarns: out of aircraft shear properties. In: Ferreira AJM, editor. Proceeding of 16th International Conference on Composite Structures ICCS 16FEUP, Porto, 2011.
[15]
Nitin RK, James RC. Negative Poisson ratios in the crystalline SiO2 from the first principle calculations. Nature 1992; 358(6383): 222-4.
[http://dx.doi.org/10.1038/358222a0]
[16]
Yeganeh-Haeri A, Weidner DJ, Parise JB. Elasticity of a-cristobalite: silicon dioxide with a negative ratio of Poisson. Science 1992; 257(5070): 650-2.
[http://dx.doi.org/10.1126/science.257.5070.650] [PMID: 17740733]
[17]
Grima JN, Gatt R, Alderson A, Evans KE. An alternative explanation for the negative reports of Poisson in a-cristobalite. Mater Sci Eng A Struct 2006; 423(1-2): 219-24.
[http://dx.doi.org/10.1016/j.msea.2005.08.230]
[18]
Alderson A, Evans KE. Deformation mechanisms leading to auxetic behaviour in the α-cristobalite and α-quartz structures of both silica and germania. J Phys Condens Matter 2009; 21(2): 025401.
[http://dx.doi.org/10.1088/0953-8984/21/2/025401] [PMID: 21813974]
[19]
Love A. A treatise on the mathematical theory of elasticity. (4th ed ) New York Dover Publications. 1944.
[20]
Ledbetter H, Lei M. Monocrystal constant elastic orthotropic Y1Ba2Cu3O7: an estimate. J Mater Res 1991; 6(11): 2253-5.
[http://dx.doi.org/10.1557/JMR.1991.2253]
[21]
Evans KE, Nkansah MA, Hutchinson IJ, Rogers SC. Molecular network design. Nature 1991; 353: 124.
[http://dx.doi.org/10.1038/353124a0]
[22]
Ma P, Chang Y, Boakye A, Jiang G. Review on the knitted structures with auxetic effect. J Textil Inst 2016; 108(6): 1-15.
[23]
Carneiro VH, Meireles J, Puga H. Auxetic materials - A review. Mater Sci Pol 2013; 31: 561-71.
[http://dx.doi.org/10.2478/s13536-013-0140-6]
[24]
Yang W, Li ZM, Shi W, Xie BH, Yang MB. Review on auxetic materials. J Mater Sci 2004; 39: 3269-79.
[http://dx.doi.org/10.1023/B:JMSC.0000026928.93231.e0]
[25]
Naik S, Dandagwhal RD, Wani CN, Giri SK. A review on various aspects of auxetic materials. AIP Conf Proc 2019; 2105(1): 020004.
[http://dx.doi.org/10.1063/1.5100689]
[26]
Ren X, Das R, Tran Ph, Ngo TD, Xie XM. Auxetic metamaterials and structures: a review. Smart Mater Struct 2018; 27(2): 023001.
[http://dx.doi.org/10.1088/1361-665X/aaa61c]
[27]
Gibson LJ, Ashby MF, Schajer GS, Robertson CI. The mechanics of two dimensional cellular materials. Proc Lond Royal Soc 1782; 1982(382): 25-42.
[28]
Lee J, Choi JB, Choi K. Application of homogenization FEM analysis to regular and re-entrant honeycomb structures. J Mater Sci 1996; 31: 4105-10.
[http://dx.doi.org/10.1007/BF00352675]
[29]
Theocaris PS, Stavroulakis GE, Panagiotopoulos PD. Negative Poisson’s ratio in materials with a star-shaped microstructure. A numerical homogenization approach. Arch Appl Mech 1997; 67(4): 274-86.
[http://dx.doi.org/10.1007/s004190050117]
[30]
Lim TC. Constitutive relationship of a material with unconventional Poisson’s ratio. J Mater Sci Lett 2003; 22(24): 1783-6.
[http://dx.doi.org/10.1023/B:JMSL.0000005420.34383.d8]
[31]
Grima JN, Gatt R, Alderson A, Evans KE. On the potential of connected stars as auxetic systems. Mol Simul 2005; 31(13): 925-35.
[http://dx.doi.org/10.1080/08927020500401139]
[32]
Prall D, Lakes RS. Properties of a chiral honeycomb with a Poisson’s ratio of -1. Int J Mech Sci 1997; 39(3): 305-14.
[http://dx.doi.org/10.1016/S0020-7403(96)00025-2]
[33]
Spadoni A, Ruzzene M, Scarpa F. Global and local linear buckling behavior of a chiral cellular structure. Phys Status Solidi 2005; 242(3): 695-709.
[http://dx.doi.org/10.1002/pssb.200460387]
[34]
Bornengo D, Scarpa F, Remillat C. Evaluation of hexagonal chiral structure for morphing airfoil concept. Proc IME GJ Aero Eng 2005; 219(3): 185-92.
[http://dx.doi.org/10.1243/095441005X30216]
[35]
Ishibashi Y, Iwata MJ. A microscopic model of a negative poisson’s ratio in some crystals. J Phys Soc Jpn 2000; 69(8): 2702-3.
[http://dx.doi.org/10.1143/JPSJ.69.2702]
[36]
Vasiliev AA, Dimitriev SV, Ishibashi Y, Shinegari T. Elastic properties of a two-dimensional model of crystals containing particles with rotational degrees of freedom. Phys Rev 2002; 65: 094101.
[http://dx.doi.org/10.1103/PhysRevB.65.094101]
[37]
Grima JN, Alderson A, Evans KE. Auxetic behaviour from rotating rigid units. Phys Status Solidi 2005; 242(3): 561-75.
[http://dx.doi.org/10.1002/pssb.200460376]
[38]
Grima JN, Zammit V, Gatt R, Alderson A, Evans KE. Auxetic behaviour from rotating semi-rigid units. Phys Status Solidi 2007; 244(3): 866-82.
[http://dx.doi.org/10.1002/pssb.200572706]
[39]
Grima JN, Farrugia PS, Gatt R, Attard D. On the auxetic properties of rotating rhombi and parallelograms: A preliminary investigation. Phys Status Solidi 2008; 245(3): 521-9.
[http://dx.doi.org/10.1002/pssb.200777705]
[40]
Milton GW. Composite materials with Poisson’s ratios close to -1. J Mech Phys Solids 1992; 40(5): 1105-37.
[http://dx.doi.org/10.1016/0022-5096(92)90063-8]
[41]
Hine PJ, Duckett R. A.; Ward, I.M. Negative Poisson’s ratios in angle-ply laminates. J Mater Sci Lett 1997; 16: 541-4.
[http://dx.doi.org/10.1023/A:1018505503088]
[42]
Wojciechowski KW. Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Mol Phys 1987; 61(5): 1247-58.
[http://dx.doi.org/10.1080/00268978700101761]
[43]
Wojciechowski KW. Remarks on “Poisson Ratio beyond the limits of the elasticity theory”. J Phys Soc Jpn 2003; 72(7): 1819-20.
[http://dx.doi.org/10.1143/JPSJ.72.1819]
[44]
Wojciechowski KW. Non-chiral, molecular model of negative Poisson ratio in two dimensions. J Phys Math Gen 2003; 36(47): 11765-78.
[http://dx.doi.org/10.1088/0305-4470/36/47/005]
[45]
Wojciechowski KW, Tretiakov KV, Kowalik M. Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions. Phys Rev E Stat Nonlin Soft Matter Phys 2003; 67(3 Pt 2): 036121.
[http://dx.doi.org/10.1103/PhysRevE.67.036121] [PMID: 12689146]
[46]
He CB, Liu PW, Griffin AC. Toward negative poisson ratio polymers through molecular design. Macromolecules 1998; 31(9): 3145-7.
[http://dx.doi.org/10.1021/ma970787m]
[47]
He CB, Liu PW, McMullan PJ, Griffin AC. Toward molecular auxetics: Main chain liquid crystalline polymers consisting of laterally attached para-quaterphenyls. Phys Status Solidi 2005; 242(3): 576-84.
[http://dx.doi.org/10.1002/pssb.200460393]
[48]
Evans KE. Auxetic polymers: a new range of materials. Endeavour 1991; 15(4): 170-4.
[http://dx.doi.org/10.1016/0160-9327(91)90123-S]
[49]
Alderson A, Alderson KL. Auxetic materials. Proc Inst Mech Eng Part G J Aerosp Eng 2007; 221(4): 565-75.
[http://dx.doi.org/10.1243/09544100JAERO185]
[50]
Bhullar SK. Three decades of auxetic polymers: a review. e-Polymers 2015; 15(4): 205-15.
[51]
Gibson LJ, Ashby MF. Cellular solids: structure and properties Oxford Pergamon Press. 1988.
[52]
Pickles AP, Webber RS, Alderson KL, Neale PJ, Evans KE. The effect of the processing parameters on the fabrication of auxetic polyethylene Part I The effect of compaction conditions. J Mater Sci 1995; 30: 4059-68.
[http://dx.doi.org/10.1007/BF00360709]
[53]
Alderson KL, Kettle AP, Neale PJ, Pickles AP, Evans KE. The effect of the processing parameters on the fabrication of auxetic polyethylene Part II The effect of sintering temperature and time. J Mater Sci 1995; 30: 4069-75.
[http://dx.doi.org/10.1007/BF00360710]
[54]
Neale PJ, Pickles AP, Alderson KL, Evans KE. The effects of powder morphology on the processing of auxetic polyethylene part iii the effect of extrusion conditions. J Mater Sci 1995; 30: 4087-94.
[http://dx.doi.org/10.1007/BF00360712]
[55]
Alderson KL, Evans KE. The fabrication of micro-porous polyethylene having a negative poisson’s ratio. Polymer (Guildf) 1992; 33(20): 4435-8.
[http://dx.doi.org/10.1016/0032-3861(92)90294-7]
[56]
Pickles AP, Alderson KL, Evans KE. The effects of powder morphology on the processing of auxetic polypropylene (PP of negative Poisson’s ratio). Polym Eng Sci 1996; 36(5): 636-42.
[http://dx.doi.org/10.1002/pen.10451]
[57]
Alderson KL, Alderson A, Webber RS, Evans KE. Evidence for uniaxial drawing in the fibrillated microstructure of auxetic microporous polymers. J Mater Sci Lett 1998; 17: 1415-9.
[http://dx.doi.org/10.1023/A:1026409404057]
[58]
Ravirala N, Alderson KL, Davies PJ, Simkins DVR, Alderson A. Negative poisson’s ratio polyester fibers. Text Res J 2006; 76(7): 540-6.
[59]
Evans KE, Caddock BD. Core layers. WO 91/01186, 1991.
[60]
Evans KE. Design of doubly-curved sandwich panels with honeycomb cores. Compos Struct 1990; 17(2): 95.
[http://dx.doi.org/10.1016/0263-8223(91)90064-6]
[61]
Ali MN, Rehman IU. An Auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer; development and in vitro mechanical analysis. J Mater Sci Mater Med 2011; 22(11): 2573-81.
[http://dx.doi.org/10.1007/s10856-011-4436-y] [PMID: 21894537]
[62]
Alderson KL, Alderson A, Smart G, Simkins VR, Davies PJ. Auxetic polypropylene fibres: Part 1. Manufacture and characterization. Plast Rubber Compos 2002; 31(8): 344-9.
[http://dx.doi.org/10.1179/146580102225006495]
[63]
Ravirala N, Alderson A, Alderson KL, Davies PJ. Expanding the range of auxetic polymeric products using a novel melt-spinning route. Phys Status Solidi, B Basic Res 2005; 242(3): 653-64.
[http://dx.doi.org/10.1002/pssb.200460384]
[64]
Ravirala N, Alderson KL, Davies PJ, Simkins VR, Alderson A. Negative Poisson’s ratio polyester fibers. Text Res J 2006; 76(7): 540-6.
[http://dx.doi.org/10.1177/0040517506065255]
[65]
Liu YP, Hu H, Lam JK, Liu S. Negative Poisson’s ratio weft-knitted fabrics. Text Res J 2010; 80(9): 856-63.
[http://dx.doi.org/10.1177/0040517509349788]
[66]
Hu H, Wang ZY, Liu S. Development of auxetic fabrics using flat knitting technology. Text Res J 2011; 81(14): 1493-502.
[http://dx.doi.org/10.1177/0040517511404594]
[67]
Miller W, Hook PB, Smith CW, Wang X, Evans KE. The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Compos Sci Technol 2009; 69(5): 651-5.
[http://dx.doi.org/10.1016/j.compscitech.2008.12.016]
[68]
Ugbolue SC, Warner SB, Kim YK, Fan Q, Yang CL, Feng Y. The formation and performance of auxetic textiles, NTC Project F06-MD09. 2006.
[69]
Ugbolue SC, Warner SB, Kim YK, et al. The formation and performance of auxetic textiles, NTC Project F06-MD09. 2007.
[70]
Ugbolue SC, Kim YK, Warner SB, et al. The formation and performance of auxetic textiles. Part I: Theoretical and technical considerations. J Textil Inst 2010; 101(7): 660-7.
[http://dx.doi.org/10.1080/00405000902733790]
[71]
Domaschke S, Morel A, Fortunato G, Ehret AE. Random auxetics from buckling fibre networks. Nat Commun 2019; 10(1): 4863.
[http://dx.doi.org/10.1038/s41467-019-12757-7] [PMID: 31653833]
[72]
Notario B, Pinto J, Rodriguez-Perez MA. Nanoporous polymeric materials: A new class of materials with enhanced properties. Prog Mater Sci 2016; 78: 93-139.
[http://dx.doi.org/10.1016/j.pmatsci.2016.02.002]
[73]
Coccorullo I, Maio LD, Montesano S, Incarnato L. Theoretical and experimental study of foaming process with chain extended recycled PET. Express Polym Lett 2008; 3(2): 84-96.
[http://dx.doi.org/10.3144/expresspolymlett.2009.12]
[74]
Hamdi O, Mighri F, Rodrigue D. Piezoelectric cellular polymer films: Fabrication, properties and applications. AIMS Mater Sci 2018; 5(5): 845-69.
[http://dx.doi.org/10.3934/matersci.2018.5.845]
[75]
Hamdi O, Mighri F, Rodrigue D. Optimization of the cellular morphology of biaxially stretched thin polyethylene foams produced by extrusion film blowing. Cell Polym 2018; 37(4-6): 153-68.
[http://dx.doi.org/10.1177/0262489318797517]
[76]
Nofar M, Majithiya K, Kuboki T, Park CB. The foamability of low-melt strength linear polypropylene with nanoclay and coupling agent. J Cell Plast 2012; 48(3): 271-87.
[http://dx.doi.org/10.1177/0021955X12440271]
[77]
Suh KW, Park CP, Maurer M, et al. Lightweight cellular plastics. Adv Mater 2000; 12(23): 1779-89.
[http://dx.doi.org/10.1002/1521-4095(200012)12:23<1779::AID-ADMA1779>3.0.CO;2-3]
[78]
Mohebbi A, Mighri F, Ajji A, Rodrigue D. Cellular polymer ferroelectret: A review on their development and their piezoelectric properties. Adv Polym Technol 2018; 37(2): 468-83.
[http://dx.doi.org/10.1002/adv.21686]
[79]
Hamdi O, Mighri F, Rodrigue D. Piezoelectric properties improvement of polyethylene ferroelectrets using post-processing treatments. Polym Adv Technol 2018; 30(12): 1-9.
[80]
Hamdi O, Mighri F. Rodrigue, Piezoelectric polymer films: synthesis, applications, and modeling. In: Woodhead Publishing Series in Composites Science and Engineering, Polymer Nanocomposite-Based Smart Materials. Woodhead Publishing 2020; pp. 79-10.
[http://dx.doi.org/10.1016/B978-0-08-103013-4.00005-4]
[81]
Alderson A, Alderson K, Davies P, Smart G. Process for the preparation of auxetic foams. Patent 8277719, 2012.
[82]
Bianchi M, Scarpa F, Banse M, Smith CW. Novel generation of auxetic open cell foams for curved and arbitrary shapes. Acta Mater 2011; 59(2): 686-91.
[http://dx.doi.org/10.1016/j.actamat.2010.10.006]
[83]
Alderson K, Alderson A, Ravirala N, Simkins V, Davies P. Manufacture and characterisation of thin flat and curved auxetic foam sheets. Phys Status Solidi, B Basic Res 2012; 249(7): 1315-21.
[http://dx.doi.org/10.1002/pssb.201084215]
[84]
Martz EO, Lee T, Lakes RS, Goel VK, Park JB. Re-entrant transformation of methods in closed cell foams, adapted from cellular polymers. 1996; 15(4): 229-49.
[85]
Fan D, Li M, Qiu J, Xing H, Jiang Z, Tang T. Novel method for preparing auxetic foam from closed-cell polymer foam based on the steam penetration and condensation process. ACS Appl Mater Interfaces 2018; 10(26): 22669-77.
[http://dx.doi.org/10.1021/acsami.8b02332] [PMID: 29847911]
[86]
Choi JB, Lakes RS. Design of a fastener based on negative Poisson moss. Cell Polym 1991; 10(3): 205-12.
[87]
Egli E. Indentation of foamed plastic. J Cell Plast 1972; 8(5): 245.
[http://dx.doi.org/10.1177/0021955X7200800504]
[88]
Gibson LJ, Ashby MF. Structure and properties: Cellular solids (second edition). 2014.
[89]
Istrate OM, Chen B. Relative modulus-relative density relationships in low density polymer-clay nanocomposite foams. Soft Matter 2011; 7(5): 1840-8.
[http://dx.doi.org/10.1039/C0SM01052A]
[90]
Tuncer E. Numerical calculations of effective elastic properties of two cellular structures. J Phys D Appl Phys 2005; 38(3): 497-503.
[http://dx.doi.org/10.1088/0022-3727/38/3/023]
[91]
Tuncer E, Wegener M. Elastic properties of highly anisotropic thin poly(propylene) foams. Mater Lett 2004; 58(22-23): 2815-8.
[http://dx.doi.org/10.1016/j.matlet.2004.05.002]
[92]
Tita V, Caliri MF. Numerical simulation of anisotropic polymeric foams. Lat Am J Solids Struct 2012; 9(2): 259-79.
[http://dx.doi.org/10.1590/S1679-78252012000200005]
[93]
Hamdi O, Mighri F, Rodrigue D. Tensile properties of anisotropic foamed polyethylene films with ellipsoidal closed cells. Mech Mater 2021; 163: 104099.
[94]
Li T, Liu F, Wang L. Enhancing indentation and impact resistance in auxetic composite materials. Compos B Eng 2020; 198: 108229.
[http://dx.doi.org/10.1016/j.compositesb.2020.108229]
[95]
Lakes RS, Elms K. Indentability of conventional and negative Poisson’s Ratio foams. J Compos Mater 1993; 27(12): 1193-1202.
[http://dx.doi.org/10.1177/002199839302701203]
[96]
Choi JB, Lakes R. Non-linear properties of polymer cellular materials with a negative Poisson’s ratio. J Mater Sci 1992; 27: 4678-84.
[http://dx.doi.org/10.1007/BF01166005]
[97]
Choi JB, Lakes R. Non-linear properties of metallic cellular materials with a negative Poisson’s ratio. J Mater Sci 1992; 27: 5375.
[http://dx.doi.org/10.1007/BF02403846]
[98]
Duncan O, Bailly N, Allen T, Petit Y, Wagnac E, Alderson A. Effect of Compressive Strain Rate on Auxetic Foam. Appl Sci (Basel) 2021; 11(3): 1207.
[http://dx.doi.org/10.3390/app11031207]
[99]
Bezazi A, Scarpa F. Tensile fatigue of conventional and negative Poisson’s ratio open cell PU foams. Int J Fatigue 2009; 31(3): 488-4940.
[http://dx.doi.org/10.1016/j.ijfatigue.2008.05.005]
[100]
Moyers RE. Echo cancellation method and echo canceller implementing such a process. US-6108413, 1992.
[101]
Caddock BD, Evans KE. Negative Poisson ratios and strain-dependent mechanical properties in arterial prostheses. Biomaterials 1995; 16(14): 1109-15.
[http://dx.doi.org/10.1016/0142-9612(95)98908-W] [PMID: 8519933]
[102]
Yang W, Li ZM, Shi W, Xie BH, Yang MB. On auxetic materials. J Mater Sci 2004; 39(10): 3269-79.
[http://dx.doi.org/10.1023/B:JMSC.0000026928.93231.e0]
[103]
Evans KE, Alderson KL. Auxetic materials: the positive side of being negative. Eng Sci Educ J 2000; 9(4): 148-54.
[http://dx.doi.org/10.1049/esej:20000402]
[104]
Howell B, Prendergast P, Hansen L. Examination of acoustic behavior of negative Poisson’s ratio materials. Appl Acoust 1994; 43(2): 141-8.
[http://dx.doi.org/10.1016/0003-682X(94)90057-4]
[105]
Scarpa F, Ciffo LG, Yates JR. Dynamic properties of high structural integrity auxetic open cell foam. Smart Mater Struct 2004; 13(1): 49-56.
[http://dx.doi.org/10.1088/0964-1726/13/1/006]
[106]
Chekkal I, Bianchi M. Remillat, C.; Bécot, F.X.; Jaouen, L.; Scarpa, F. Vibro-acoustic properties of auxetic open cell foam: model and experimental results. Acta Acust United Acust 2010; 96(2): 266-74.
[http://dx.doi.org/10.3813/AAA.918276]
[107]
Alderson A, Rasburn J, Evans KE, Grima JN. Auxetic polymeric filters display enhanced de-fouling and pressure compensation properties. Membr Technol 2001; 2001(137): 6-8.
[http://dx.doi.org/10.1016/S0958-2118(01)80299-8]
[108]
Alderson A, Rasburn J, Evans KE. Mass transport properties of auxetic (negative Poisson’s ratio) foams. Phys Status Solidi, B Basic Res 2007; 244(3): 817-27.
[http://dx.doi.org/10.1002/pssb.200572701]
[109]
Jiang Y, Liu Z, Matsuhisa N, et al. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv Mater 2018; 30(12): e1706589.
[http://dx.doi.org/10.1002/adma.201706589] [PMID: 29380896]
[110]
Kelkar PU, Kim HS, Cho K-H, Kwak JY, Kang CY, Song HC. Cellular Auxetic Structures for Mechanical Metamaterials: A Review. Sensors (Basel) 2020; 20(11): 3132.
[http://dx.doi.org/10.3390/s20113132] [PMID: 32492946]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy