Mini-Review Article

运动与线粒体功能:重要性与推论-一个小型综述

卷 22, 期 9, 2022

发表于: 13 January, 2022

页: [755 - 760] 页: 6

弟呕挨: 10.2174/1566524021666211129110542

价格: $65

摘要

骨骼肌必须正确地产生和分配能量,才能完美地发挥功能。骨骼肌细胞中的线粒体形成巨大的网络来满足这一需求,它们的功能可能会随着运动而改善。在本综述中,我们讨论了运动诱导的线粒体适应、年龄相关的线粒体衰退、作为线粒体功能指标的生物标志物和运动干扰。

关键词: 骨骼肌,耐力训练,力量训练,线粒体活性,生物标志物,衰老。

Next »
[1]
Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 2012; 26(6): 711-23.
[http://dx.doi.org/10.1016/j.beem.2012.05.003] [PMID: 23168274]
[2]
Brand MD, Orr AL, Perevoshchikova IV, Quinlan CL. The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br J Dermatol 2013; 169(Suppl. 2): 1-8.
[http://dx.doi.org/10.1111/bjd.12208] [PMID: 23786614]
[3]
Hargreaves M. Skeletal muscle metabolism during exercise in humans. Clin Exp Pharmacol Physiol 2000; 27(3): 225-8.
[http://dx.doi.org/10.1046/j.1440-1681.2000.03225.x] [PMID: 10744352]
[4]
Diederichs F. From cycling between coupled reactions to the cross-bridge cycle: mechanical power output as an integral part of energy metabolism. Metabolites 2012; 2(4): 667-700.
[http://dx.doi.org/10.3390/metabo2040667] [PMID: 24957757]
[5]
Hagberg JM, Coyle EF, Baldwin KM, et al. The historical context and scientific legacy of John O. Holloszy. J Appl Physiol 2019; 127(2): 277-305.
[http://dx.doi.org/10.1152/japplphysiol.00669.2018] [PMID: 30730811]
[6]
Hood DA. Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 2001; 90(3): 1137-57.
[http://dx.doi.org/10.1152/jappl.2001.90.3.1137] [PMID: 11181630]
[7]
Drake JC, Wilson RJ, Yan Z. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. FASEB J 2016; 30(1): 13-22.
[http://dx.doi.org/10.1096/fj.15-276337] [PMID: 26370848]
[8]
Koves TR, Noland RC, Bates AL, Henes ST, Muoio DM, Cortright RN. Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism. Am J Physiol Cell Physiol 2005; 288(5): C1074-82.
[http://dx.doi.org/10.1152/ajpcell.00391.2004] [PMID: 15647392]
[9]
Ferreira R, Vitorino R, Alves RM, et al. Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle. Proteomics 2010; 10(17): 3142-54.
[http://dx.doi.org/10.1002/pmic.201000173] [PMID: 20665633]
[10]
Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH. Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 2006; 61(6): 534-40.
[http://dx.doi.org/10.1093/gerona/61.6.534] [PMID: 16799133]
[11]
Gan Z, Fu T, Kelly DP, Vega RB. Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res 2018; 28(10): 969-80.
[http://dx.doi.org/10.1038/s41422-018-0078-7] [PMID: 30108290]
[12]
Fan W, Evans R. PPARs and ERRs: Molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol 2015; 33: 49-54.
[http://dx.doi.org/10.1016/j.ceb.2014.11.002] [PMID: 25486445]
[13]
Chaube B, Malvi P, Singh SV, Mohammad N, Viollet B, Bhat MK. AMPK maintains energy homeostasis and survival in cancer cells via regulating p38/PGC-1α-mediated mitochondrial biogenesis. Cell Death Discov 2015; 1(1): 15063.
[http://dx.doi.org/10.1038/cddiscovery.2015.63] [PMID: 27551487]
[14]
Oliveira AN, Hood DA. Exercise is mitochondrial medicine for muscle. Sports Med Health Sci 2019; 1(1): 11-8.
[http://dx.doi.org/10.1016/j.smhs.2019.08.008]
[15]
Lee IH. Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp Mol Med 2019; 51(9): 1-11.
[http://dx.doi.org/10.1038/s12276-019-0302-7] [PMID: 31492861]
[16]
Vargas-Ortiz K, Pérez-Vázquez V, Macías-Cervantes MH. Exercise and sirtuins: A way to mitochondrial health in skeletal muscle. Int J Mol Sci 2019; 20(11): 2717.
[http://dx.doi.org/10.3390/ijms20112717] [PMID: 31163574]
[17]
Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol Endocrinol 2007; 21(8): 1745-55.
[http://dx.doi.org/10.1210/me.2007-0079] [PMID: 17456799]
[18]
Outeiro TF, Marques O, Kazantsev A. Therapeutic role of sirtuins in neurodegenerative disease. Biochim Biophys Acta 2008; 1782(6): 363-9.
[http://dx.doi.org/10.1016/j.bbadis.2008.02.010]
[19]
Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak Z. High intensity interval training and molecular adaptive response of skeletal muscle. Sports Med Health Sci 2019; 1(1): 24-32.
[http://dx.doi.org/10.1016/j.smhs.2019.08.003]
[20]
Huertas JR, Casuso RA, Agustín PH, Cogliati S. Stay fit, stay young: Mitochondria in movement: The role of exercise in the new mitochondrial paradigm. Oxid Med Cell Longev 2019; 20197058350
[http://dx.doi.org/10.1155/2019/7058350] [PMID: 31320983]
[21]
Andrade-Souza VA, Ghiarone T, Sansonio A, et al. Exercise twice-a-day potentiates markers of mitochondrial biogenesis in men. FASEB J 2020; 34(1): 1602-19.
[http://dx.doi.org/10.1096/fj.201901207RR] [PMID: 31914620]
[22]
He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise. Front Physiol 2016; 7: 486.
[http://dx.doi.org/10.3389/fphys.2016.00486] [PMID: 27872595]
[23]
Powers SK, Ji LL, Kavazis AN, Jackson MJ. Reactive oxygen species: Impact on skeletal muscle. Compr Physiol 2011; 1(2): 941-69.
[http://dx.doi.org/10.1002/cphy.c100054] [PMID: 23737208]
[24]
Groennebaek T, Vissing K. Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function. Front Physiol 2017; 8: 713.
[http://dx.doi.org/10.3389/fphys.2017.00713] [PMID: 28966596]
[25]
Farup J, de Paoli F, Bjerg K, Riis S, Ringgard S, Vissing K. Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand J Med Sci Sports 2015; 25(6): 754-63.
[http://dx.doi.org/10.1111/sms.12396] [PMID: 25603897]
[26]
Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol 1985; 2012(113 (1985)): 71-7.
[27]
Steele HE, Horvath R, Lyon JJ, Chinnery PF. Monitoring clinical progression with mitochondrial disease biomarkers. Brain 2017; 140(10): 2530-40.
[http://dx.doi.org/10.1093/brain/awx168] [PMID: 28969370]
[28]
Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS 2010; 5(6): 463-6.
[http://dx.doi.org/10.1097/COH.0b013e32833ed177] [PMID: 20978388]
[29]
Greggio C, Jha P, Kulkarni SS, et al. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab 2017; 25(2): 301-11.
[http://dx.doi.org/10.1016/j.cmet.2016.11.004] [PMID: 27916530]
[30]
Nielsen J, Gejl KD, Hey-Mogensen M, et al. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J Physiol 2017; 595(9): 2839-47.
[http://dx.doi.org/10.1113/JP273040] [PMID: 27696420]
[31]
Glancy B, Hartnell LM, Malide D, et al. Mitochondrial reticulum for cellular energy distribution in muscle. Nature 2015; 523(7562): 617-20.
[http://dx.doi.org/10.1038/nature14614] [PMID: 26223627]
[32]
Larsen S, Nielsen J, Hansen CN, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 2012; 590(14): 3349-60.
[http://dx.doi.org/10.1113/jphysiol.2012.230185] [PMID: 22586215]
[33]
Hughes AL, Hughes CE, Henderson KA, Yazvenko N, Gottschling DE. Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. eLife 2016; 5e13943
[http://dx.doi.org/10.7554/eLife.13943] [PMID: 27097106]
[34]
Vincow ES, Thomas RE, Merrihew GE, et al. Autophagy accounts for approximately one-third of mitochondrial protein turnover and is protein selective. Autophagy 2019; 15(9): 1592-605.
[http://dx.doi.org/10.1080/15548627.2019.1586258] [PMID: 30865561]
[35]
Groennebaek T, Nielsen J, Jespersen NR, et al. Utilization of biomarkers as predictors of skeletal muscle mitochondrial content after physiological intervention and in clinical settings. Am J Physiol Endocrinol Metab 2020; 318(6): E886-9.
[http://dx.doi.org/10.1152/ajpendo.00101.2020] [PMID: 32255679]
[36]
Finsterer J, Zarrouk-Mahjoub S. Biomarkers for detecting mitochondrial disorders. J Clin Med 2018; 7(2): 16.
[http://dx.doi.org/10.3390/jcm7020016] [PMID: 29385732]
[37]
Pitceathly RD, Morrow JM, Sinclair CD, et al. Extra-ocular muscle MRI in genetically-defined mitochondrial disease. Eur Radiol 2016; 26(1): 130-7.
[http://dx.doi.org/10.1007/s00330-015-3801-5] [PMID: 25994195]
[38]
Hall AM, Vilasi A, Garcia-Perez I, et al. The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney Int 2015; 87(3): 610-22.
[http://dx.doi.org/10.1038/ki.2014.297] [PMID: 25207879]
[39]
Tranchant C, Anheim M. Movement disorders in mitochondrial diseases. Rev Neurol (Paris) 2016; 172(8-9): 524-9.
[http://dx.doi.org/10.1016/j.neurol.2016.07.003] [PMID: 27476418]
[40]
Balasubramaniam S, Riley LG, Bratkovic D, et al. Unique presentation of cutis laxa with Leigh-like syndrome due to ECHS1 deficiency. J Inherit Metab Dis 2017; 40(5): 745-7.
[http://dx.doi.org/10.1007/s10545-017-0036-4] [PMID: 28409271]
[41]
Zhang Y, Oliveira AN, Hood DA. The intersection of exercise and aging on mitochondrial protein quality control. Exp Gerontol 2020; 131110824
[http://dx.doi.org/10.1016/j.exger.2019.110824] [PMID: 31911185]
[42]
Short KR, Bigelow ML, Kahl J, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 2005; 102(15): 5618-23.
[http://dx.doi.org/10.1073/pnas.0501559102] [PMID: 15800038]
[43]
Morgenstern M, Stiller SB, Lübbert P, et al. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep 2017; 19(13): 2836-52.
[http://dx.doi.org/10.1016/j.celrep.2017.06.014] [PMID: 28658629]
[44]
Wiedemann N, Pfanner N. Mitochondrial machineries for protein import and assembly. Annu Rev Biochem 2017; 86: 685-714.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014352] [PMID: 28301740]
[45]
Callegari S, Dennerlein S. Sensing the stress: A role for the UPRmt and UPRam in the quality control of mitochondria. Front Cell Dev Biol 2018; 6: 31.
[http://dx.doi.org/10.3389/fcell.2018.00031] [PMID: 29644217]
[46]
Robinson MM, Dasari S, Konopka AR, et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab 2017; 25(3): 581-92.
[http://dx.doi.org/10.1016/j.cmet.2017.02.009] [PMID: 28273480]
[47]
Joseph A-M, Ljubicic V, Adhihetty PJ, Hood DA. Biogenesis of the mitochondrial Tom40 channel in skeletal muscle from aged animals and its adaptability to chronic contractile activity. Am J Physiol Cell Physiol 2010; 298(6): C1308-14.
[http://dx.doi.org/10.1152/ajpcell.00644.2008] [PMID: 20107041]
[48]
Zhang Y, Iqbal S, O’Leary MF, et al. Altered mitochondrial morphology and defective protein import reveal novel roles for Bax and/or Bak in skeletal muscle. Am J Physiol Cell Physiol 2013; 305(5): C502-11.
[http://dx.doi.org/10.1152/ajpcell.00058.2013] [PMID: 23784543]
[49]
Higuchi-Sanabria R, Frankino PA, Paul JW III, Tronnes SU, Dillin A. A futile battle? Protein quality control and the stress of aging. Dev Cell 2018; 44(2): 139-63.
[http://dx.doi.org/10.1016/j.devcel.2017.12.020] [PMID: 29401418]
[50]
Vainshtein A, Desjardins EM, Armani A, Sandri M, Hood DA. PGC-1α modulates denervation-induced mitophagy in skeletal muscle. Skelet Muscle 2015; 5(1): 1-17.
[http://dx.doi.org/10.1186/s13395-015-0033-y] [PMID: 25664165]
[51]
Chen CCW, Erlich AT, Crilly MJ, Hood DA. Parkin is required for exercise-induced mitophagy in muscle: Impact of aging. Am J Physiol Endocrinol Metab 2018; 315(3): E404-15.
[http://dx.doi.org/10.1152/ajpendo.00391.2017] [PMID: 29812989]
[52]
Ma CL, Ma XT, Wang JJ, Liu H, Chen YF, Yang Y. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav Brain Res 2017; 317: 332-9.
[http://dx.doi.org/10.1016/j.bbr.2016.09.067] [PMID: 27702635]
[53]
Ma Q. Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health. Neurosci Bull 2008; 24(4): 265-70.
[http://dx.doi.org/10.1007/s12264-008-0402-1] [PMID: 18668156]
[54]
Oliveira RF, Paiva KM, da Rocha GS, et al. Neurobiological effects of forced swim exercise on the rodent hippocampus: A systematic review. Acta Neurobiol Exp (Warsz) 2021; 81(1): 58-68.
[http://dx.doi.org/10.21307/ane-2021-007] [PMID: 33949162]
[55]
Nunes AC, Duarte RB, Sousa TB, dos Santos JR, Freire MA, Costa MS. Expression of the immediate-early gene egr-1 and substance P in the spinal cord following locomotor training in adult rats. Brain Res 2010; 1345: 125-36.
[http://dx.doi.org/10.1016/j.brainres.2010.05.041] [PMID: 20546710]
[56]
Herzig S, Martinou JC. Mitochondrial dynamics: To be in good shape to survive. Curr Mol Med 2008; 8(2): 131-7.
[http://dx.doi.org/10.2174/156652408783769625] [PMID: 18336293]
[57]
Faas MM, de Vos P. Mitochondrial function in immune cells in health and disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10)165845
[http://dx.doi.org/10.1016/j.bbadis.2020.165845] [PMID: 32473386]
[58]
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity Cell 2006; 124(4): 783-801.
[http://dx.doi.org/10.1016/j.cell.2006.02.015] [PMID: 16497588]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy