Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

MR Brain Screening using Optimization Techniques - A Survey

Author(s): D. Chitradevi* and S. Prabha

Volume 19, Issue 2, 2023

Published on: 28 March, 2022

Article ID: e261121198344 Pages: 10

DOI: 10.2174/1573405617666211126154101

Price: $65

Abstract

Background: Alzheimer’s disease (AD) is associated with Dementia, and it is also a memory syndrome in the brain. It affects the brain tissues and causes major changes in day-to-day activities. Aging is a major cause of Alzheimer’s disease. AD is characterized by two pathological hallmarks, Amyloid β protein and neurofibrillary tangles of hyperphosphorylated tau protein. The imaging hallmarks for Alzheimer’s disease are swelling, shrinkage of brain tissues due to cell loss, and atrophy in the brain due to protein dissemination. Based on the survey, 60% to 80% of dementia patients belong to Alzheimer’s disease.

Introduction: AD is now becoming an important brain disease. The goal of AD pathology is to cause changes/damage in brain tissues. Alzheimer’s disease is thought to begin 20 years or more before symptoms appear, with tiny changes in the brain that are undetectable to the person affected. The changes in a person’s brain after a few years are noticeable through symptoms such as language difficulties and memory loss. Neurons in different parts of the brain have detected symptoms such as cognitive impairments and learning disabilities. In this case, neuroimaging tools are necessary to identify the development of pathology which relates to the clinical symptoms.

Methods: Several approaches have been tried during the last two decades for brain screening to analyse AD using pre-processing, segmentation, and classification. Different individuals, such as Grey Wolf optimization, Lion Optimization, Ant Lion Optimization, etc., have been attempted in the proposed study. Similarly, hybrid optimization techniques are also attempted to segment the brain sub-regions, which helps in identifying the biomarkers to analyse AD.

Conclusion: This study discusses a review of neuroimaging technologies for diagnosing Alzheimer’s disease, as well as the discovery of hallmarks for the disease and the methodologies for finding hallmarks from brain images to evaluate AD. According to the literature review, most of the techniques predicted higher accuracy (more than 90%), which is beneficial for assessing and screening neurodegenerative disease, particularly Alzheimer’s disease.

Keywords: Alzheimer’s disease, biomarkers, classification, magnetic resonance imaging (MRI), optimization techniques, segmentation.

Graphical Abstract

[1]
Alzheimer’s diagnosis and treatment. Available from: https://www.alzdiscovery.org/alzheimers-disease/diagnosis-treatment
[2]
2020 Alzheimer’s disease facts and figures. Alzheimers Dement 2020. [Online ahead of print]
[http://dx.doi.org/10.1002/alz.12068] [PMID: 32157811]
[3]
Alzheimer’s Association 2020 facts and figures report. Alzheimer’s Association 2020.
[4]
Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. Lancet Neurol 2013; 12(4): 357-67.
[http://dx.doi.org/10.1016/S1474-4422(13)70044-9] [PMID: 23477989]
[5]
Sato C, Barthélemy NR, Mawuenyega KG, et al. Tau kinetics in neurons and the human central nervous system. Neuron 2018; 97(6): 1284-1298.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.02.015] [PMID: 29566794]
[6]
Hanseeuw BJ, Betensky RA, Jacobs HIL, et al. Association of amyloid and tau with cognition in preclinical Alzheimer disease: A longitudinal study. JAMA Neurol 2019; 76(8): 915-24.
[http://dx.doi.org/10.1001/jamaneurol.2019.1424] [PMID: 31157827]
[7]
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[8]
Harrington CR. The molecular pathology of Alzheimer’s disease. Neuroimaging Clin N Am 2012; 22(1): 11-22.
[http://dx.doi.org/10.1016/j.nic.2011.11.003]
[9]
Association A. Alzheimer’s disease facts and figures includes a special report on Alzheimer’s detection in the primary care setting. Connecting Patients and Physicians 2019; 15(3): 31-40.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[10]
Alzheimer’s Association. 2014 Alzheimer’s disease facts and figures. Alzheimers Dem J Alzheimers Dement 2014; 10(2): 47-92.
[http://dx.doi.org/10.1016/j.jalz.2014.02.001]
[11]
Whitwell JL, Dickson DW, Murray ME, et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: A case-control study. Lancet Neurol 2012; 11(10): 868-77.
[http://dx.doi.org/10.1016/S1474-4422(12)70200-4] [PMID: 22951070]
[12]
Janocko NJ, Brodersen KA, Soto-Ortolaza AI, et al. Neuropathologically defined subtypes of Alzheimer’s disease differ significantly from neurofibrillary tangle-predominant dementia. Acta Neuropathol 2012; 124(5): 681-92.
[http://dx.doi.org/10.1007/s00401-012-1044-y] [PMID: 22968369]
[13]
Rémy F, Vayssière N, Saint-Aubert L, Barbeau E, Pariente J. White matter disruption at the prodromal stage of Alzheimer’s disease: Relationships with hippocampal atrophy and episodic memory performance. Neuroimage Clin 2015; 7: 482-92.
[http://dx.doi.org/10.1016/j.nicl.2015.01.014] [PMID: 25685715]
[14]
Richard E, Schmand BA, Eikelenboom P, Van Gool WA. MRI and cerebrospinal fluid biomarkers for predicting progression to Alzheimer’s disease in patients with mild cognitive impairment: A diagnostic accuracy study. BMJ Open 2013; 3(6): 1-8.
[http://dx.doi.org/10.1136/bmjopen-2012-002541] [PMID: 23794572]
[15]
Zamrini E, De Santi S, Tolar M. Imaging is superior to cognitive testing for early diagnosis of Alzheimer’s disease. Neurobiol Aging 2004; 25(5): 685-91.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.02.009] [PMID: 15172748]
[16]
Soucy JP, Bartha R, Bocti C, et al. Clinical applications of neuroimaging in patients with Alzheimer’s disease: A review from the Fourth Canadian Consensus Conference on the Diagnosis and Treatment of Dementia 2012. Alzheimers Res Ther 2013; 5 (Suppl. 1): S3.
[http://dx.doi.org/10.1186/alzrt199] [PMID: 24565260]
[17]
Wright A. Brain scanning techniques. CT: MRI; 2010, fMRI, PET, SPECT, DTI, DOT). Cerebra Positively Different 2010; 1: 1-14.
[18]
Johnson KA, Fox NC, Sperling RA, Klunk WE. Brain imaging in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2(4): a006213.
[http://dx.doi.org/10.1101/cshperspect.a006213] [PMID: 22474610]
[19]
Márquez F, Yassa MA. Neuroimaging biomarkers for Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 21.
[http://dx.doi.org/10.1186/s13024-019-0325-5] [PMID: 31174557]
[20]
Jack CR Jr, Lowe VJ, Weigand SD, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: Implications for sequence of pathological events in Alzheimer’s disease. Brain 2009; 132(Pt 5): 1355-65.
[http://dx.doi.org/10.1093/brain/awp062] [PMID: 19339253]
[21]
Cavedo E, Lista S, Khachaturian Z, et al. The road ahead to cure Alzheimer’s disease: Development of biological markers and neuroimaging methods for prevention trials across all stages and target populations. J Prev Alzheimers Dis 2014; 1(3): 181-202.
[http://dx.doi.org/10.14283/jpad.2014.32] [PMID: 26478889]
[22]
Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 2010; 6(2): 67-77.
[http://dx.doi.org/10.1038/nrneurol.2009.215] [PMID: 20139996]
[23]
Park M, Moon WJ. Structural MR imaging in the diagnosis of Alzheimer’s disease and other neurodegenerative dementia: Current imaging approach and future perspectives. Korean J Radiol 2016; 17(6): 827-45.
[http://dx.doi.org/10.3348/kjr.2016.17.6.827] [PMID: 27833399]
[24]
McEvoy LK, Brewer JB. Quantitative structural MRI for early detection of Alzheimer’s disease. Expert Rev Neurother 2010; 10(11): 1675-88.
[http://dx.doi.org/10.1586/ern.10.162] [PMID: 20977326]
[25]
Chou YY, Leporé N, Saharan P, et al. Ventricular maps in 804 ADNI subjects: Correlations with CSF biomarkers and clinical decline. Neurobiol Aging 2010; 31(8): 1386-400.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.001] [PMID: 20620663]
[26]
Ganzetti M, Wenderoth N, Mantini D. Mapping pathological changes in brain structure by combining T1- and T2-weighted MR imaging data. Neuroradiology 2015; 57(9): 917-28.
[http://dx.doi.org/10.1007/s00234-015-1550-4] [PMID: 26104102]
[27]
Zhou Y, Tan C, Wen D, Sun H, Han W, Xu Y. The biomarkers for identifying preclinical Alzheimer’s disease via structural and functional magnetic resonance imaging. Front Aging Neurosci 2016; 8: 92.
[http://dx.doi.org/10.3389/fnagi.2016.00092] [PMID: 27199739]
[28]
Varghese T, Sheelakumari R, James JS, Mathuranath P. A review of neuroimaging biomarkers of Alzheimer’s disease. Neurol Asia 2013; 18(3): 239-48.
[PMID: 25431627]
[29]
Risacher SL, Saykin AJ. Neuroimaging biomarkers of neurodegenerative diseases and dementia. Semin Neurol 2013; 33(4): 386-416.
[http://dx.doi.org/10.1055/s-0033-1359312] [PMID: 24234359]
[30]
Sharma N, Singh AN. Exploring biomarkers for Alzheimer’s disease. J Clin Diagn Res 2016; 10(7): KE01-6.
[http://dx.doi.org/10.7860/JCDR/2016/18828.8166] [PMID: 27630867]
[31]
Davatzikos C, Resnick SM. Degenerative age changes in white matter connectivity visualized in vivo using magnetic resonance imaging. Cereb Cortex 2002; 12(7): 767-71.
[http://dx.doi.org/10.1093/cercor/12.7.767] [PMID: 12050088]
[32]
Kälin AM, Park MTM, Chakravarty MM, et al. Subcortical shape changes, hippocampal atrophy and cortical thinning in future Alzheimer’s disease patients. Front Aging Neurosci 2017; 9: 38.
[http://dx.doi.org/10.3389/fnagi.2017.00038] [PMID: 28326033]
[33]
Duara R, Loewenstein DA, Potter E, et al. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology 2008; 71(24): 1986-92.
[http://dx.doi.org/10.1212/01.wnl.0000336925.79704.9f] [PMID: 19064880]
[34]
Ledig C, Schuh A, Guerrero R, Heckemann RA, Rueckert D. Structural brain imaging in Alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database. Sci Rep 2018; 8(1): 11258.
[http://dx.doi.org/10.1038/s41598-018-29295-9] [PMID: 30050078]
[35]
Holland D, Brewer JB, Hagler DJ, Fennema-Notestine C, Dale AM. Subregional neuroanatomical change as a biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA 2009; 106(49): 20954-9.
[http://dx.doi.org/10.1073/pnas.0906053106] [PMID: 19996185]
[36]
Chitradevi D, Prabha S, Sankaran KS. Brain hemisphere analysis using genetic algorithm and fuzzy clustering in Alzheimer disease. Proceedings of the 2018 IEEE International Conference on Communication and Signal Processing (ICCSP); 2018 April 3-5; Chennai, Inida. Manhattan, New York: IEEE, 2018.
[http://dx.doi.org/10.1109/ICCSP.2018.8524378]
[37]
Leung KK, Clarkson MJ, Bartlett JW, et al. Robust atrophy rate measurement in Alzheimer’s disease using multi-site serial MRI: Tissue-specific intensity normalization and parameter selection. Neuroimage 2010; 50(2): 516-23.
[http://dx.doi.org/10.1016/j.neuroimage.2009.12.059] [PMID: 20034579]
[38]
Vadmal V, Junno G, Badve C, Huang W, Waite KA, Barnholtz-Sloan JS. MRI image analysis methods and applications: An algorithmic perspective using brain tumors as an exemplar. Neurooncol Adv 2020; 2(1): vdaa049.
[http://dx.doi.org/10.1093/noajnl/vdaa049]
[39]
Dawant BM, Zijdenbos AP, Margolin RA. Correction of intensity variations in MR images for computer-aided tissue classification. IEEE Trans Med Imaging 1993; 12(4): 770-81.
[http://dx.doi.org/10.1109/42.251128] [PMID: 18218473]
[40]
Wells WM, Grimson WL, Kikinis R, Jolesz FA. Adaptive segmentation of MRI data. IEEE Trans Med Imaging 1996; 15(4): 429-42.
[http://dx.doi.org/10.1109/42.511747] [PMID: 18215925]
[41]
Pham DL, Prince JL. An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit Lett 1999; 20(1): 57-68.
[http://dx.doi.org/10.1016/S0167-8655(98)00121-4]
[42]
Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 2002; 21(3): 193-9.
[http://dx.doi.org/10.1109/42.996338] [PMID: 11989844]
[43]
García-Sebastián M, Isabel González A, Graña M. An adaptive field rule for non-parametric MRI intensity inhomogeneity estimation algorithm. Neurocomputing 2009; 72(16-18): 3556-69.
[http://dx.doi.org/10.1016/j.neucom.2008.12.034]
[44]
García-Sebastián M, Fernández E, Graña M, Torrealdea FJ. A parametric gradient descent MRI intensity inhomogeneity correction algorithm. Pattern Recognit Lett 2007; 28(13): 1657-66.
[http://dx.doi.org/10.1016/j.patrec.2007.04.016]
[45]
Likar B, Viergever MA, Pernuš F. Retrospective correction of MR intensity inhomogeneity by information minimization. IEEE Trans Med Imaging 2001; 20(12): 1398-410.
[http://dx.doi.org/10.1109/42.974934] [PMID: 11811839]
[46]
Shattuck DW, Leahy RM. Automated graph-based analysis and correction of cortical volume topology. IEEE Trans Med Imaging 2001; 20(11): 1167-77.
[http://dx.doi.org/10.1109/42.963819] [PMID: 11700742]
[47]
Arnold JB, Liow JS, Schaper KA, et al. Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects. Neuroimage 2001; 13(5): 931-43.
[http://dx.doi.org/10.1006/nimg.2001.0756] [PMID: 11304088]
[48]
Fennema-Notestine C, Ozyurt IB, Clark CP, et al. Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: Effects of diagnosis, bias correction, and slice location. Hum Brain Mapp 2006; 27(2): 99-113.
[http://dx.doi.org/10.1002/hbm.20161] [PMID: 15986433]
[49]
Vovk U, Pernuš F, Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 2007; 26(3): 405-21.
[http://dx.doi.org/10.1109/TMI.2006.891486] [PMID: 17354645]
[50]
Bader C, Cyrille C, Jadwiga Z, et al. Estimation of the lateral ventricles volumes from a 2D image and its relationship with cerebrospinal fluid flow. BioMed Res Int 2013; 215989: 1-9.
[http://dx.doi.org/10.1155/2013/215989]
[51]
Kong Z, Luo J, Xu S, Li T. Automatical and accurate segmentation of cerebral tissues in fMRI dataset with combination of image processing and deep learning. Opt Biophotonics Low-Resour Settings 2018; IV: 10485.
[http://dx.doi.org/10.1117/12.2293050]
[52]
Leung KK, Barnes J, Modat M, et al. Brain MAPS: An automated, accurate and robust brain extraction technique using a template library. Neuroimage 2011; 55(3): 1091-108.
[http://dx.doi.org/10.1016/j.neuroimage.2010.12.067] [PMID: 21195780]
[53]
Beare R, Chen J, Adamson CL, et al. Brain extraction using the watershed transform from markers. Front Neuroinform 2013; 7(32): 1-15.
[http://dx.doi.org/10.3389/fninf.2013.00032]
[54]
a) Wu J, Chung ACS. A novel framework for segmentation of deep brain structures based on Markov dependence tree. NeuroImage 2009; 46(4): 1027-36.
[http://dx.doi.org/10.1016/j.neuroimage.2009.03.010]
[55]
Liu Q, Liu Z, Yong S, Jia K, Razmjooy N. Computer-aided breast cancer diagnosis based on image segmentation and interval analysis. Automatika (Zagreb) 2019; 61(3): 496-506.
[http://dx.doi.org/10.1080/00051144.2020.1785784]
[56]
Estrela VV. Why Software-Defined Radio (SDR) matters in healthcare? Med Technol J 2018; 3(3): 421-9.
[57]
Estrela VV, Monteiro ACB, França RP, Iano Y, Razmjooy N. Health 4.0: Applications, management, technologies and review. Med Technol J 2019; 2(4): 262-76.
[http://dx.doi.org/10.26415/2572-004X-vol2iss4p262-276]
[58]
Razmjooy N, Estrela VV, Loschi HJ. Entropy-based breast cancer detection in digital mammograms using world cup optimization algorithm. Int J Swarm Intell Res 2021; 11(3): 1-18.
[http://dx.doi.org/10.4018/IJSIR.2020070101]
[59]
Prabha S, Anandh KR, Sujatha CM, Ramakrishnan S. Total variation based edge enhancement for level set segmentation and asymmetry analysis in breast thermograms. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC; 2014 August 26-30; Chicago, IL, USA. Manhattan: IEEE.
[http://dx.doi.org/10.1109/EMBC.2014.6945102]
[60]
Prabha S. Thermal imaging techniques for breast screening - A Survey. Curr Med Imaging 2020; 16(7): 855-62.
[61]
Babalola KO, Patenaude B, Aljabar P, et al. An evaluation of four automatic methods of segmenting the subcortical structures in the brain. Neuroimage 2009; 47(4): 1435-47.
[http://dx.doi.org/10.1016/j.neuroimage.2009.05.029] [PMID: 19463960]
[62]
Traynor CR, Barker GJ, Crum WR, Williams SCR, Richardson MP. Segmentation of the thalamus in MRI based on T1 and T2. Neuroimage 2011; 56(3): 939-50.
[http://dx.doi.org/10.1016/j.neuroimage.2011.01.083] [PMID: 21310246]
[63]
Worth AJ, Makris N, Patti MR, et al. Precise segmentation of the lateral ventricles and caudate nucleus in MR brain images using anatomically driven histograms. IEEE Trans Med Imaging 1998; 17(2): 303-10.
[http://dx.doi.org/10.1109/42.700743] [PMID: 9688163]
[64]
Coupé P, Manjón JV, Fonov V, Pruessner J, Robles M, Collins DL. Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. Neuroimage 2011; 54(2): 940-54.
[http://dx.doi.org/10.1016/j.neuroimage.2010.09.018] [PMID: 20851199]
[65]
Ramezani M, Bahmanyar D, Razmjooy N. A new improved model of marine predator algorithm for optimization problems. Arab J Sci Eng 2021; 46: 8803-26.
[66]
Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry 1984; 141(11): 1356-64.
[http://dx.doi.org/10.1176/ajp.141.11.1356] [PMID: 6496779]
[67]
Kazemi K, Noorizadeh N. Quantitative comparison of SPM, FSL, and BrainSuite for brain MR image segmentation. J Biomed Phys Eng 2014; 4(1): 13-26.
[PMID: 25505764]
[68]
Rincón M, Díaz-López E, Alfaro F, et al. Semiautomatic segmentation of the medial temporal lobe anatomical structures. In: Ferrández JM, Álvarez Sánchez JR, de la Paz F, Toledo FJ, Eds. New Challenges on Bioinspired Applications Lecture Notes in Computer Science. Berlin, Heidelberg: Springer 2011.
[http://dx.doi.org/10.1007/978-3-642-21326-7_4]
[69]
Despotović I, Goossens B, Philips W. MRI segmentation of the human brain: Challenges, methods, and applications. Comput Math Methods Med 2015; 2015: 450341.
[http://dx.doi.org/10.1155/2015/450341] [PMID: 25945121]
[70]
Zaitoun NM, Aqel MJ. Survey on image segmentation techniques. Procedia Comput Sci 2015; 65: 797-806.
[http://dx.doi.org/10.1016/j.procs.2015.09.027]
[71]
Elazab A, Wang C, Jia F, Wu J, Li G, Hu Q. Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel based fuzzy C -means clustering. Comput Math Methods Med 2015; 2015: 485495.
[http://dx.doi.org/10.1155/2015/485495] [PMID: 26793269]
[72]
Kaganami HG, Beiji Z. Region-based segmentation versus edge detection. IIH-MSP 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing; 2009 September 12-14; Kyoto, Japan. Manhattan: IEEE 2009.
[http://dx.doi.org/10.1109/IIH-MSP.2009.13]
[73]
Chitradevi D, Prabha S. Evaluation of symmetry plane using genetic algorithm. Proceedings of the 3rd International Conference on Biosignals, Images and Instrumentation, ICBSII; 2017 March 16-18; Chennai, India. Manhattan: IEEE 2017.
[http://dx.doi.org/10.1109/ICBSII.2017.8082280]
[74]
Sathees P, Manoharan SC. Proposal of index to estimate breast similarities in thermograms using fuzzy C means and anisotropic diffusion filter based fuzzy C means clustering. Infrared Phys Technol 2018; 93: 316-25.
[75]
Al-Shaikhli SDS, Yang MY, Rosenhahn B. Multi-region labeling and segmentation using a graph topology prior and atlas information in brain images. Comput Med Imaging Graph 2014; 38(8): 725-34.
[http://dx.doi.org/10.1016/j.compmedimag.2014.06.008] [PMID: 24998760]
[76]
Fu X, Liu T, Xiong Z, Smaill BH, Stiles MK, Zhao J. Segmentation of histological images and fibrosis identification with a convolutional neural network. Comput Biol Med 2018; 98: 147-58.
[http://dx.doi.org/10.1016/j.compbiomed.2018.05.015] [PMID: 29793096]
[77]
Bhandari AK, Singh VK, Kumar A, Singh GK. Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Syst Appl 2014; 41(7): 3538-60.
[http://dx.doi.org/10.1016/j.eswa.2013.10.059]
[78]
Bao X, Jia H, Lang C. A novel hybrid Harris hawks optimization for color image multilevel thresholding segmentation. IEEE Access 2019; 7: 76529-46.
[http://dx.doi.org/10.1109/ACCESS.2019.2921545]
[79]
Jac Fredo AR, Abilash RS, Kumar CS. Segmentation and analysis of damages in composite images using multi-level threshold methods and geometrical features. Measurement 2017; 100: 270-8.
[http://dx.doi.org/10.1016/j.measurement.2017.01.002]
[80]
Holland JH. Genetic algorithms. Sci Am Scientific American 1992; 267(1): 66-72.
[http://dx.doi.org/10.1038/scientificamerican0792-66]
[81]
Ebenhart Kennedy R. Particle swarm optimization. Proceeding IEEE Inter Conference on Neural Networks; 1995 November 27-December 1; Perth, WA, Australia. Manhattan: IEEE 2002.
[http://dx.doi.org/10.1109/ICNN.1995.488968]
[82]
Ait-Aoudia S, Guerrout EH, Mahiou R. Medical image segmentation using particle swarm optimization. Proceedings of the international conference on information visualization; 2014 July 16-18; Paris, France. Manhattan: IEEE 2014.
[http://dx.doi.org/10.1109/IV.2014.68]
[83]
Yu M, Anant NE, Saudagar A, Udpa L. Genetic algorithm approach to image segmentation using morphological operations. IEEE Trans Image Process 1998; 3: 775-9.
[84]
Kumari RS, Varghese T, Kesavadas C, Singh NA, Mathuranath PS. A genetic algorithm optimized artificial neural network for the segmentation of MR images in frontotemporal dementia. Lect Notes Comput Sci 2013; 268-76.
[http://dx.doi.org/10.1007/978-3-319-03756-1_24]
[85]
Phulpagar BD, Kulkarni SS. Image segmentation using genetic algorithm for four gray classes. IEEE International Conference on Energy, Automation and Signal; 2011 December 28-30; Bhubaneswar, India. Manhattan: IEEE 2012.
[http://dx.doi.org/10.1109/ICEAS.2011.6147093]
[86]
Yang XS. Optimization and metaheuristic algorithms in engineering. Metaheuristics Water Geotech Transp Eng 2013; 1-23.
[http://dx.doi.org/10.1016/B978-0-12-398296-4.00001-5]
[87]
Taherdangkoo M, Bagheri MH, Yazdi M, Andriole KP. An effective method for segmentation of MR brain images using the ant colony optimization algorithm. J Digit Imaging 2013; 26(6): 1116-23.
[http://dx.doi.org/10.1007/s10278-013-9596-5] [PMID: 23563793]
[88]
Yang XS, Deb S. Cuckoo search via Lévy flights. Proceedings World Congress on Nature and Biologically Inspired Computing, NABIC. 1-6.
[http://dx.doi.org/10.1109/NABIC.2009.5393690]
[89]
Suresh S, Lal S. An efficient cuckoo search algorithm based multilevel thresholding for segmentation of satellite images using different objective functions. Expert Syst Appl 2016; 58(1): 184-209.
[http://dx.doi.org/10.1016/j.eswa.2016.03.032]
[90]
Yang XS. A new metaheuristic bat-inspired algorithm. Stud Comp Intell 2010; 1: 65-74.
[http://dx.doi.org/10.1007/978-3-642-12538-6_6]
[91]
Pham TX, Siarry P, Oulhadj H. An improved particle swarm optimization algorithm for MRI image segmentation. 13th Biennal International Conference on Artificial Evolution. 1: 277-84.
[92]
Cao X, Miao J, Xiao Y. Medical image segmentation of improved genetic algorithm research based on dictionary learning. World J Eng Technol 2017; 05(1): 90-6.
[http://dx.doi.org/10.4236/wjet.2017.51008]
[93]
Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl Base Syst 2015; 89: 228-49.
[http://dx.doi.org/10.1016/j.knosys.2015.07.006]
[94]
Mirjalili S. The ant lion optimizer. Adv Eng Softw 2015; 83: 80-98.
[http://dx.doi.org/10.1016/j.advengsoft.2015.01.010]
[95]
Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw 2016; 95: 51-67.
[http://dx.doi.org/10.1016/j.advengsoft.2016.01.008]
[96]
Yazdani M, Jolai F. Lion Optimization Algorithm (LOA): A nature inspired metaheuristic algorithm. J Comput Des Eng 2016; 3(1): 24-36.
[http://dx.doi.org/10.1016/j.jcde.2015.06.003]
[97]
Tian T, Liu C, Guo Q, Yuan Y, Li W, Yan Q. An improved ant lion optimization algorithm and its application in hydraulic turbine governing system parameter identification. Energies 2018; 11(1): 95-110.
[http://dx.doi.org/10.3390/en11010095]
[98]
Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 2016; 27(4): 1053-73.
[http://dx.doi.org/10.1007/s00521-015-1920-1]
[99]
Muangkote N, Sunat K, Chiewchanwattana S. Multilevel thresholding for satellite image segmentation with moth-flame based optimization. 13th International Joint Conference on Computer Science and Software Engineering, JCSSE, 2016 July 13-15; Khon Kaen, Thailand.
[http://dx.doi.org/10.1109/JCSSE.2016.7748919]
[100]
Khorram B, Yazdi M. A new optimized thresholding method using ant colony algorithm for MR brain image segmentation. J Digit Imaging 2019; 32(1): 162-74.
[http://dx.doi.org/10.1007/s10278-018-0111-x] [PMID: 30091112]
[101]
Kotte S, Pullakura RK, Injeti SK. Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization. Measurement 2018; 130: 340-61.
[http://dx.doi.org/10.1016/j.measurement.2018.08.007]
[102]
Jia H, Ma J, Song W. Multilevel thresholding segmentation for color image using modified moth-flame optimization. IEEE Access 2019; 7(1): 44097-134.
[http://dx.doi.org/10.1109/ACCESS.2019.2908718]
[103]
Muro C, Escobedo R, Spector L, Coppinger RP. Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav Processes 2011; 88(3): 192-7.
[http://dx.doi.org/10.1016/j.beproc.2011.09.006] [PMID: 21963347]
[104]
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw 2014; 69: 46-61.
[http://dx.doi.org/10.1016/j.advengsoft.2013.12.007]
[105]
Chitradevi D, Prabha S. Analysis of brain sub regions using optimization techniques and deep learning method in Alzheimer disease. Appl Soft Comput J 2020; 86
[http://dx.doi.org/10.1016/j.asoc.2019.105857]
[106]
Chitradevi D, Prabha S, Prabhu AD. Diagnosis of Alzheimer disease in MR brain images using optimization techniques. Neural Comput Appl 2021; 33(1): 223-37.
[http://dx.doi.org/10.1007/s00521-020-04984-7]
[107]
Lazli L, Boukadoum M. Improvement of CSF, WM and GM tissue segmentation by hybrid fuzzy - possibilistic clustering model based on genetic optimization case study on brain tissues of patients with Alzheimer’s disease. Int J Netw Distrib Comput 2018; 6(2): 63-77.
[http://dx.doi.org/10.2991/ijndc.2018.6.2.2]
[108]
Farnad B, Jafarian A, Baleanu D. A new hybrid algorithm for continuous optimization problem. Appl Math Model 2018; 55: 652-73.
[http://dx.doi.org/10.1016/j.apm.2017.10.001]
[109]
Singh N, Hachimi H. A new hybrid whale optimizer algorithm with mean strategy of grey wolf optimizer for global optimization. Math Comp Appl 2018; 23(1): 1-14.
[http://dx.doi.org/10.3390/mca23010014]
[110]
Trivedi IN, Jangir P, Kumar A, Jangir N, Totlani R. A novel hybrid PSO-WOA algorithm for global numerical functions optimization. Adv Intell Syst Comput 2018; 1: 53-60.
[http://dx.doi.org/10.1007/978-981-10-3773-3_6]
[111]
Sun G, Zhang A, Yao Y, Wang Z. A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding. Appl Soft Comput J 2016; 46: 703-30.
[http://dx.doi.org/10.1016/j.asoc.2016.01.054]
[112]
Kharrat A, Mahmoud N. Feature selection based on hybrid optimization for magnetic resonance imaging brain tumor classification and segmentation. Appl Med Inform 2019; 41: 9-23.
[113]
Vishnuvarthanan A, Rajasekaran MP, Govindaraj V, Zhang Y, Thiyagarajan A. An automated hybrid approach using clustering and nature inspired optimization technique for improved tumor and tissue segmentation in magnetic resonance brain images. Appl Soft Comput J 2017; 57: 399-426.
[http://dx.doi.org/10.1016/j.asoc.2017.04.023]
[114]
Zhang Z, Ding S, Jia W. A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems. Eng Appl Artif Intell 2019; 85: 254-68.
[http://dx.doi.org/10.1016/j.engappai.2019.06.017]
[115]
Martinez-Soltero EG, Hernandez-Barragan J. Robot navigation based on differential evolution. IFAC-PapersOnLine 2018; 51(13): 350-4.
[http://dx.doi.org/10.1016/j.ifacol.2018.07.303]
[116]
Guo Q, Tang L. Modelling and discrete differential evolution algorithm for order rescheduling problem in steel industry. Comput Ind Eng 2019; 130: 586-96.
[http://dx.doi.org/10.1016/j.cie.2019.03.011]
[117]
Alsmadi MK. MRI brain segmentation using a hybrid artificial bee colony algorithm with Fuzzy-C mean algorithm. J Appl Sci 2014; 15(1): 100-9.
[http://dx.doi.org/10.3923/jas.2015.100.109]
[118]
Jo T, Nho K, Saykin AJ. Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci 2019; 11: 220.
[http://dx.doi.org/10.3389/fnagi.2019.00220] [PMID: 31481890]
[119]
Kruthika KR, Rajeswari, Maheshappa HD. Multistage classifier based approach for Alzheimer’s disease prediction and retrieval. Inform Med Unlocked 2019; 14: 34-42.
[http://dx.doi.org/10.1016/j.imu.2018.12.003]
[120]
Kruthika AR, Hassan NMH, Abdul Seoud RA, Nassef TM. Automatic machine learning classification of alzheimer disease based on selected slices from 3D magnetic resonance imagining. Int J Biomed Sci Eng 2016; 4(6): 50-4.
[http://dx.doi.org/10.11648/j.ijbse.20160406.11]
[121]
Plis SM, Hjelm DR, Salakhutdinov R, et al. Deep learning for neuroimaging: A validation study. Front Neurosci 2014; 8: 229.
[http://dx.doi.org/10.3389/fnins.2014.00229] [PMID: 25191215]
[122]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436-44.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[123]
Mohsen H, El-Dahshan E-SA, El-Horbaty E-SM, Salem A-BM. Classification using deep learning neural networks for brain tumors. Future Comput Inform J 2018; 3(1): 68-71.
[http://dx.doi.org/10.1016/j.fcij.2017.12.001]
[124]
Ganotra R, Dora S, Gupta S. Identifying brain regions contributing to Alzheimer’s disease using self regulating particle swarm optimization. Int J Imaging Syst Technol 2021; 31(1): 106-17.
[http://dx.doi.org/10.1002/ima.22458]
[125]
Toshkhujaev S, Lee KH, Choi KY, et al. Classification of Alzheimer’s disease and mild cognitive impairment based on cortical and subcortical features from MRI T1 brain images utilizing four different types of datasets. J Healthc Eng 2020; 2020: 3743171.
[http://dx.doi.org/10.1155/2020/3743171] [PMID: 32952988]
[126]
Zhang Y, Dong Z, Phillips P, et al. Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front Comput Neurosci 2015; 9: 66.
[http://dx.doi.org/10.3389/fncom.2015.00066] [PMID: 26082713]
[127]
Patil RB, Piyush R, Ramakrishnan S. Identification of brain white matter regions for diagnosis of Alzheimer using diffusion tensor imaging. Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2013 July 3-7; Osaka, Japan.
[http://dx.doi.org/10.1109/EMBC.2013.6611052]
[128]
Shao J, Myers N, Yang Q, et al. Prediction of Alzheimer’s disease using individual structural connectivity networks. Neurobiol Aging 2012; 33(12): 2756-65.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.01.017] [PMID: 22405045]
[129]
Patil RB, Ramakrishnan S. Analysis of sub-anatomic diffusion tensor imaging indices in white matter regions of Alzheimer with MMSE score. Comput Methods Programs Biomed 2014; 117(1): 13-9.
[http://dx.doi.org/10.1016/j.cmpb.2014.06.004] [PMID: 24986110]
[130]
Schouten TM, Koini M, Vos F, et al. Individual classification of Alzheimer’s disease with diffusion magnetic resonance imaging. Neuroimage 2017; 152: 476-81.
[http://dx.doi.org/10.1016/j.neuroimage.2017.03.025] [PMID: 28315741]
[131]
Feng F, Wang P, Zhao K, et al. Radiomic features of hippocampal subregions in Alzheimer’s disease and amnestic mild cognitive impairment. Front Aging Neurosci 2018; 10: 290.
[http://dx.doi.org/10.3389/fnagi.2018.00290] [PMID: 30319396]
[132]
Nir TM, Villalon-Reina JE, Prasad G, et al. Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer’s disease. Neurobiol Aging 2015; 36 (Suppl. 1): S132-40.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.05.037] [PMID: 25444597]
[133]
Demirhan A, Nir TM, Zavaliangos-Petropulu A, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI). Feature selection improves the accuracy of classifying Alzheimer disease using diffusion tensor images. 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI); 2015 April 16-19; Brooklyn, NY, USA.
[http://dx.doi.org/10.1109/ISBI.2015.7163832]
[134]
Ebadi A, Dalboni da Rocha JL, Nagaraju DB, et al. Ensemble classification of Alzheimer’s disease and mild cognitive impairment based on complex graph measures from diffusion tensor images. Front Neurosci 2017; 11: 56.
[http://dx.doi.org/10.3389/fnins.2017.00056] [PMID: 28293162]
[135]
Rondina JM, Ferreira LK, de Souza Duran FL, et al. Selecting the most relevant brain regions to discriminate Alzheimer’s disease patients from healthy controls using multiple kernel learning: A comparison across functional and structural imaging modalities and atlases. Neuroimage Clin 2017; 17: 628-41.
[http://dx.doi.org/10.1016/j.nicl.2017.10.026] [PMID: 29234599]
[136]
Cai S, Huang K, Kang Y, Jiang Y, von Deneen KM, Huang L. Potential biomarkers for distinguishing people with Alzheimer’s disease from cognitively intact elderly based on the rich-club hierarchical structure of white matter networks. Neurosci Res 2019; 144: 56-66.
[http://dx.doi.org/10.1016/j.neures.2018.07.005] [PMID: 30107205]
[137]
Maggipinto T, Bellotti R, Amoroso N, et al. DTI measurements for Alzheimer's classification. Phys Med Biol 2017; 62: 2361-75.
[138]
Chitradevi D, Prabha S. Analysis of Alzheimer Disease using Optimization Techniques. 2020 6th International Conference on Bio Signals, Images, and Instrumentation, ICBSII; 2020 February 27-28; Chennai, India.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy