Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Mini-Review Article

Advanced Nanoparticular Approaches to Combat Alzheimer's Disease

Author(s): Rahul Shah and Sankha Bhattacharya*

Volume 9, Issue 5, 2021

Published on: 23 December, 2021

Page: [308 - 316] Pages: 9

DOI: 10.2174/2211738509666211123091913

Price: $65

Abstract

Abstract: Alzheimer's disease (AD) is a neurological disease that affects many of the world's rapidly ageing population. In the etiology of Alzheimer’s disease (AD), the involvement of amyloid β (Aβ) plaque accumulation and oxidative stress in the brain have important roles. Various drugs have been proposed to prevent and treat AD, but delivering these therapeutic agents to the brain is difficult. Over the last decade, nanoparticle-mediated drug delivery represents one promising strategy to increase the CNS penetration of several therapeutic moieties successfully. Different nanocarriers are being investigated to treat and diagnose AD. NTDDS (nanotechnology-based drug delivery systems) can be used in various methods to improve patient compliance and treatment outcomes. However, literature analysis revealed that clinical activities, such as NTDDS application in Alzheimer's disease research lag behind despite extensive research. This review gives an account of the BBB and discusses the literature on some drugs, which are successfully encapsulated as nanoparticles for a future therapeutic approach. It also emphasizes the current clinical studies for Alzheimer's disease therapy.

Keywords: Alzheimer's disease, nanoparticles, blood-brain barrier, drug delivery, nanotechnology-based drug delivery systems, cyclin-dependent kinase 5.

Graphical Abstract

[1]
Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011; 377(9770): 1019-31.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[2]
Soria Lopez JA, González HM, Léger GC. Alzheimer’s disease. Handb Clin Neurol 2019; 167: 231-55.
[http://dx.doi.org/10.1016/B978-0-12-804766-8.00013-3] [PMID: 31753135]
[3]
Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018; 25(1): 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[4]
Alshweiat A, Ambrus R, Csoka I. Intranasal nanoparticulate systems as alternative route of drug delivery. Curr Med Chem 2019; 26(35): 6459-92.
[http://dx.doi.org/10.2174/0929867326666190827151741] [PMID: 31453778]
[5]
Bondi MW, Edmonds EC, Salmon DP. Alzheimer’s disease: past, present, and future. J Int Neuropsychol Soc 2017; 23(9-10): 818-31.
[http://dx.doi.org/10.1017/S135561771700100X] [PMID: 29198280]
[6]
Atri A. The Alzheimer’s disease clinical spectrum: diagnosis and management. Med Clin North Am 2019; 103(2): 263-93.
[http://dx.doi.org/10.1016/j.mcna.2018.10.009] [PMID: 30704681]
[7]
Weller J, Budson A. Current understanding of Alzheimer's disease diagnosis and treatment. F1000Res 2018; 7: F1000.
[http://dx.doi.org/10.12688/f1000research.14506.1]
[8]
Su H, Wang Y, Liu S, et al. Emerging transporter-targeted nanoparticulate drug delivery systems. Acta Pharm Sin B 2019; 9(1): 49-58.
[http://dx.doi.org/10.1016/j.apsb.2018.10.005] [PMID: 30766777]
[9]
Mathur P, Rawal S, Patel B, Patel MM. Oral delivery of anticancer agents using nanoparticulate drug delivery system. Curr Drug Metab 2019; 20(14): 1132-40.
[http://dx.doi.org/10.2174/1389200220666191007154017] [PMID: 31589119]
[10]
Pircalabioru GG, Chifiriuc MC. Nanoparticulate drug-delivery systems for fighting microbial biofilms: from bench to bedside. Future Microbiol 2020; 15: 679-98.
[http://dx.doi.org/10.2217/fmb-2019-0251] [PMID: 32495694]
[11]
Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B 2018; 8(1): 34-50.
[http://dx.doi.org/10.1016/j.apsb.2017.11.005] [PMID: 29872621]
[12]
Purohit TJ, Hanning SM, Wu Z. Advances in rectal drug delivery systems. Pharm Dev Technol 2018; 23(10): 942-52.
[http://dx.doi.org/10.1080/10837450.2018.1484766] [PMID: 29888992]
[13]
Li Q, Weng J, Wong SN, Thomas Lee WY, Chow SF. Nanoparticulate drug delivery to the retina. Mol Pharm 2021; 18(2): 506-21.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00224] [PMID: 32501716]
[14]
Hua S. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. Front Pharmacol 2019; 10: 1328.
[http://dx.doi.org/10.3389/fphar.2019.01328]
[15]
Islam N, Richard D. Inhaled micro/nanoparticulate anticancer drug formulations: an emerging targeted drug delivery strategy for lung cancers. Curr Cancer Drug Targets 2019; 19(3): 162-78.
[http://dx.doi.org/10.2174/1568009618666180525083451] [PMID: 29793407]
[16]
Uppal S, Italiya KS, Chitkara D, Mittal A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: an emerging paradigm for effective therapy. Acta Biomater 2018; 81: 20-42.
[http://dx.doi.org/10.1016/j.actbio.2018.09.049] [PMID: 30268916]
[17]
Esquerda-Canals G, Montoliu-Gaya L, Güell-Bosch J, Villegas S. Mouse models of Alzheimer’s disease. J Alzheimers Dis 2017; 57(4): 1171-83.
[http://dx.doi.org/10.3233/JAD-170045] [PMID: 28304309]
[18]
Breijyeh Z, Karaman R. Comprehensive review on alzheimer's disease: causes and treatment. Molecules 2020; 25(24): 5789.
[http://dx.doi.org/10.3390/molecules25245789]
[19]
Mantzavinos V, Alexiou A. Biomarkers for alzheimer’s disease diagnosis. Curr Alzheimer Res 2017; 14(11): 1149-54.
[http://dx.doi.org/10.2174/1567205014666170203125942] [PMID: 28164766]
[20]
Zhang H, Zheng Y. β amyloid hypothesis in Alzheimer’s disease:pathogenesis,prevention,and management. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2019; 41(5): 702-8.
[http://dx.doi.org/10.3881/j.issn.1000-503X.10875] [PMID: 31699204]
[21]
Briggs R, Kennelly SP, O’Neill D. Drug treatments in Alzheimer’s disease. Clin Med (Lond) 2016; 16(3): 247-53.
[http://dx.doi.org/10.7861/clinmedicine.16-3-247] [PMID: 27251914]
[22]
Chu LW. Alzheimer’s disease: early diagnosis and treatment. Hong Kong Med J 2012; 18(3): 228-37.
[PMID: 22665688]
[23]
Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 2010; 9(7): 702-16. [published correction appears in Lancet Neurol. 2011 Jun;10(6):501].
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[24]
Eratne D, Loi SM, Farrand S, Kelso W, Velakoulis D, Looi JC. Alzheimer’s disease: clinical update on epidemiology, pathophysiology and diagnosis. Australas Psychiatry 2018; 26(4): 347-57.
[http://dx.doi.org/10.1177/1039856218762308] [PMID: 29614878]
[25]
Tan CC, Yu JT, Tan L. Biomarkers for preclinical Alzheimer’s disease. J Alzheimers Dis 2014; 42(4): 1051-69.
[http://dx.doi.org/10.3233/JAD-140843] [PMID: 25024325]
[26]
Hane FT, Robinson M, Lee BY, Bai O, Leonenko Z, Albert MS. Recent progress in Alzheimer’s disease research, part 3: diagnosis and treatment. J Alzheimers Dis 2017; 57(3): 645-65.
[http://dx.doi.org/10.3233/JAD-160907] [PMID: 28269772]
[27]
Serý O, Povová J, Míšek I, Pešák L, Janout V. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathol 2013; 51(1): 1-9.
[http://dx.doi.org/10.5114/fn.2013.34190] [PMID: 23553131]
[28]
Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 2009; 11(2): 111-28.
[http://dx.doi.org/10.31887/DCNS.2009.11.2/cqiu] [PMID: 19585947]
[29]
Atkinson SP. Alzheimer’s disease: a special collection. Stem Cells Transl Med 2017; 6(11): 1951-5.
[http://dx.doi.org/10.1002/sctm.12217] [PMID: 28949098]
[30]
Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 2012; 11(11): 1006-12.
[http://dx.doi.org/10.1016/S1474-4422(12)70191-6] [PMID: 23079557]
[31]
Whitwell JL. Alzheimer’s disease neuroimaging. Curr Opin Neurol 2018; 31(4): 396-404.
[http://dx.doi.org/10.1097/WCO.0000000000000570] [PMID: 29762152]
[32]
Reitz C. Genetic diagnosis and prognosis of Alzheimer’s disease: challenges and opportunities. Expert Rev Mol Diagn 2015; 15(3): 339-48.
[http://dx.doi.org/10.1586/14737159.2015.1002469] [PMID: 25634383]
[33]
Robinson M, Lee BY, Hane FT. Recent progress in alzheimer’s disease research, part 2: genetics and epidemiology. J Alzheimers Dis 2017; 57(2): 317-30. [published correction appears in J Alzheimers Dis 2018; 61(1):459].
[http://dx.doi.org/10.3233/JAD-161149] [PMID: 28211812]
[34]
Broom GM, Shaw IC, Rucklidge JJ. The ketogenic diet as a potential treatment and prevention strategy for Alzheimer’s disease. Nutrition 2019; 60: 118-21.
[http://dx.doi.org/10.1016/j.nut.2018.10.003] [PMID: 30554068]
[35]
Sun BL, Li WW, Zhu C, et al. Clinical research on alzheimer’s disease: progress and perspectives. Neurosci Bull 2018; 34(6): 1111-8.
[http://dx.doi.org/10.1007/s12264-018-0249-z] [PMID: 29956105]
[36]
Khalsa DS. Stress, meditation, and alzheimer’s disease prevention: where the evidence stands. J Alzheimers Dis 2015; 48(1): 1-12.
[http://dx.doi.org/10.3233/JAD-142766] [PMID: 26445019]
[37]
Fessel J. Alzheimer’s disease combination treatment. Neurobiol Aging 2018; 63: 165.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.10.022] [PMID: 29173836]
[38]
Ozben T, Ozben S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin Biochem 2019; 72: 87-9.
[http://dx.doi.org/10.1016/j.clinbiochem.2019.04.001] [PMID: 30954437]
[39]
Karlawish J, Jack CR Jr, Rocca WA, Snyder HM, Carrillo MC. Alzheimer’s disease: the next frontier-Special Report 2017. Alzheimers Dement 2017; 13(4): 374-80.
[http://dx.doi.org/10.1016/j.jalz.2017.02.006] [PMID: 28314660]
[40]
Button EB, Robert J, Caffrey TM, Fan J, Zhao W, Wellington CL. HDL from an Alzheimer’s disease perspective. Curr Opin Lipidol 2019; 30(3): 224-34.
[http://dx.doi.org/10.1097/MOL.0000000000000604] [PMID: 30946049]
[41]
Sadrameli M, Bathini P, Alberi L. Linking mechanisms of periodontitis to Alzheimer’s disease. Curr Opin Neurol 2020; 33(2): 230-8.
[http://dx.doi.org/10.1097/WCO.0000000000000797] [PMID: 32097126]
[42]
Stoccoro A, Coppedè F. Role of epigenetics in Alzheimer’s disease pathogenesis. Neurodegener Dis Manag 2018; 8(3): 181-93.
[http://dx.doi.org/10.2217/nmt-2018-0004] [PMID: 29888987]
[43]
Kozin SA, Makarov AA. The convergence of Alzheimer’s disease pathogenesis concepts. Mol Biol (Mosk) 2019; 53(6): 1020-8.
[http://dx.doi.org/10.1134/S0026898419060107] [PMID: 31876280]
[44]
Shea TB, While I. While I still remember: 30 years of Alzheimer’s disease research. J Alzheimers Dis 2018; 62(3): 1049-57.
[http://dx.doi.org/10.3233/JAD-170724] [PMID: 29226872]
[45]
Gaur S, Agnihotri R. Alzheimer’s disease and chronic periodontitis: is there an association? Geriatr Gerontol Int 2015; 15(4): 391-404.
[http://dx.doi.org/10.1111/ggi.12425] [PMID: 25511390]
[46]
The Need for Early Detection and Treatment in Alzheimer’s Disease. EBioMedicine 2016; 9: 1-2.
[http://dx.doi.org/10.1016/j.ebiom.2016.07.001] [PMID: 27412262]
[47]
Zhang Z, Song L, Guo J. The application of pre-clinical animal models to optimise nanoparticulate drug delivery for hepatocellular carcinoma. Pharm Nanotechnol 2018; 6(4): 221-31.
[http://dx.doi.org/10.2174/2211738506666181001121533] [PMID: 30277174]
[48]
Jain KK. Role of nanobiotechnology in drug delivery. Methods Mol Biol 2020; 2059: 55-73.
[http://dx.doi.org/10.1007/978-1-4939-9798-5_2] [PMID: 31435915]
[49]
Elmaleh DR, Farlow MR, Conti PS, Tompkins RG, Kundakovic L, Tanzi RE. Developing effective Alzheimer’s disease therapies: clinical experience and future directions. J Alzheimers Dis 2019; 71(3): 715-32.
[http://dx.doi.org/10.3233/JAD-190507] [PMID: 31476157]
[50]
Wolinsky D, Drake K, Bostwick J. Diagnosis and management of neuropsychiatric symptoms in alzheimer's disease. Curr Psychiatry Rep 2018; 20(12): 117.
[http://dx.doi.org/10.1007/s11920-018-0978-8]
[51]
Toepper M. Dissociating normal aging from Alzheimer’s disease: a view from cognitive neuroscience. J Alzheimers Dis 2017; 57(2): 331-52.
[http://dx.doi.org/10.3233/JAD-161099] [PMID: 28269778]
[52]
Kalli E. Nutritional lipidomics in Alzheimer’s disease. Adv Exp Med Biol 2020; 1195: 95-104.
[http://dx.doi.org/10.1007/978-3-030-32633-3_14] [PMID: 32468464]
[53]
Haapasalo A, Pikkarainen M, Soininen H. Alzheimer’s disease: a report from the 7th Kuopio Alzheimer symposium. Neurodegener Dis Manag 2015; 5(5): 379-82.
[http://dx.doi.org/10.2217/nmt.15.31] [PMID: 26477468]
[54]
Boccardi V, Ruggiero C, Patriti A, Marano L. Diagnostic assessment and management of dysphagia in patients with Alzheimer’s disease. J Alzheimers Dis 2016; 50(4): 947-55.
[http://dx.doi.org/10.3233/JAD-150931] [PMID: 26836016]
[55]
Powell G, Ziso B, Larner AJ. The overlap between epilepsy and Alzheimer’s disease and the consequences for treatment. Expert Rev Neurother 2019; 19(7): 653-61.
[http://dx.doi.org/10.1080/14737175.2019.1629289] [PMID: 31238746]
[56]
Penner G, Lecocq S, Chopin A, et al. Blood-based diagnostics of Alzheimer’s disease. Expert Rev Mol Diagn 2019; 19(7): 613-21.
[http://dx.doi.org/10.1080/14737159.2019.1626719] [PMID: 31177871]
[57]
Frölich L. Alzheimer’s disease - the ‘microbial hypothesis’ from a clinical and neuroimaging perspective. Psychiatry Res Neuroimaging 2020; 306: 111181.
[http://dx.doi.org/10.1016/j.pscychresns.2020.111181] [PMID: 32919870]
[58]
Shin BK, Kang S, Kim DS, Park S. Intermittent fasting protects against the deterioration of cognitive function, energy metabolism and dyslipidemia in Alzheimer’s disease-induced estrogen deficient rats. Exp Biol Med (Maywood) 2018; 243(4): 334-43.
[http://dx.doi.org/10.1177/1535370217751610] [PMID: 29307281]
[59]
Van Stavern GP. Current opinion neurology: visual pathway biomarkers in Alzheimer’s disease. Curr Opin Neurol 2020; 33(1): 79-86.
[http://dx.doi.org/10.1097/WCO.0000000000000788] [PMID: 31809334]
[60]
Hamano T, Hayashi K, Shirafuji N, Nakamoto Y. The implications of autophagy in Alzheimer’s Disease. Curr Alzheimer Res 2018; 15(14): 1283-96.
[http://dx.doi.org/10.2174/1567205015666181004143432] [PMID: 30289076]
[61]
Nisticò R, Peineau S. Alzheimer’s disease: understanding homeostasis deregulation to foster development of effective therapies. Pharmacol Res 2019; 139: 467-8.
[http://dx.doi.org/10.1016/j.phrs.2018.12.011] [PMID: 30553822]
[62]
Ewers M. Reserve in Alzheimer’s disease: update on the concept, functional mechanisms and sex differences. Curr Opin Psychiatry 2020; 33(2): 178-84.
[http://dx.doi.org/10.1097/YCO.0000000000000574] [PMID: 31789678]
[63]
Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Curr Neuropharmacol 2020; 18(11): 1106-25.
[http://dx.doi.org/10.2174/1570159X18666200528142429] [PMID: 32484110]
[64]
Isaev NK, Stelmashook EV, Genrikhs EE, Oborina MV, Kapkaeva MR, Skulachev VP. Alzheimer’s disease: an exacerbation of senile phenoptosis. Biochemistry (Mosc) 2015; 80(12): 1578-81.
[http://dx.doi.org/10.1134/S0006297915120056] [PMID: 26638682]
[65]
Depypere H, Vierin A, Weyers S, Sieben A. Alzheimer’s disease, apolipoprotein E and hormone replacement therapy. Maturitas 2016; 94: 98-105.
[http://dx.doi.org/10.1016/j.maturitas.2016.09.009] [PMID: 27823753]
[66]
Edgar JYC, Wang H. Introduction for design of nanoparticle based drug delivery systems. Curr Pharm Des 2017; 23(14): 2108-12.
[http://dx.doi.org/10.2174/1381612822666161025154003] [PMID: 27784242]
[67]
Liddelow SA. Modern approaches to investigating non-neuronal aspects of Alzheimer’s disease. FASEB J 2019; 33(2): 1528-35.
[http://dx.doi.org/10.1096/fj.201802592] [PMID: 30703873]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy