Review Article

A Revisit to Etiopathogenesis and Therapeutic Strategies in Alzheimer’s Disease

Author(s): Manish Kumar* and Nitin Bansal*

Volume 23, Issue 5, 2022

Published on: 08 December, 2021

Page: [486 - 512] Pages: 27

DOI: 10.2174/1389450122666211118125233

Price: $65

Abstract

Dementia is a cluster of brain abnormalities that trigger progressive memory deficits and other cognitive abilities such as skills, language, or executive function. Alzheimer’s disease (AD) is the foremost type of age-associated dementia that involves progressive neurodegeneration accompanied by profound cognitive deficits in advanced stages that severely hamper social or occupational abilities with or without the involvement of any other psychiatric condition. The last two decades witnessed a sharp increase (~123%) in mortality due to AD type dementia, typically owing to a very low disclosure rate (~45%) and hence, the prophylactic, as well as the therapeutic cure of AD, has been a huge challenge. Although understanding of AD pathogenesis has witnessed a remarkable growth (e.g., tauopathy, oxidative stress, lipid transport, glucose uptake, apoptosis, synaptic dysfunction, inflammation, and immune system), still a dearth of an effective therapeutic agent in the management of AD prompts the quest for newer pharmacological targets in the purview of its growing epidemiological status. Most of the current therapeutic strategies focus on modulation of a single target, e.g., inhibition of acetylcholinesterase, glutamate excitotoxicity (memantine), or nootropics (piracetam), even though AD is a multifaceted neurological disorder. There is an impedance urgency to find not only symptomatic but effective disease-modifying therapies. The present review focuses on the risk / protective factors and pathogenic mechanisms involved in AD. In addition to the existing symptomatic therapeutic approach, a diverse array of possible targets linked to pathogenic cascades have been re-investigated to envisage the pharmacotherapeutic strategies in AD.

Keywords: Alzheimer’s disease, oxidative stress, inflammation, risk factors, neurofibrillary tangles, neuropathogenesis, diagnosis, acetylcholine.

Graphical Abstract

[1]
Hippius H, Neundörfer G. The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 2003; 5(1): 101-8.
[http://dx.doi.org/10.31887/DCNS.2003.5.1/hhippius] [PMID: 22034141]
[2]
Šimić G, Babić Leko M, Wray S, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 2016; 6(1): 6.
[http://dx.doi.org/10.3390/biom6010006] [PMID: 26751493]
[3]
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006; 112(4): 389-404.
[http://dx.doi.org/10.1007/s00401-006-0127-z] [PMID: 16906426]
[4]
Squire LR. The legacy of patient H.M. for neuroscience. Neuron 2009; 61(1): 6-9.
[http://dx.doi.org/10.1016/j.neuron.2008.12.023] [PMID: 19146808]
[5]
Fletcher PC, Henson RNA. Frontal lobes and human memory: insights from functional neuroimaging. Brain 2001; 124(Pt 5): 849-81.
[http://dx.doi.org/10.1093/brain/124.5.849] [PMID: 11335690]
[6]
Baddeley AD, Bressi S, Della Sala S, Logie R, Spinnler H. The decline of working memory in Alzheimer’s disease. A longitudinal study. Brain 1991; 114(Pt 6): 2521-42.
[http://dx.doi.org/10.1093/brain/114.6.2521] [PMID: 1782529]
[7]
Squire LR, Zola SM. Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci USA 1996; 93(24): 13515-22.
[http://dx.doi.org/10.1073/pnas.93.24.13515] [PMID: 8942965]
[8]
Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 2004; 44(1): 181-93.
[http://dx.doi.org/10.1016/j.neuron.2004.09.010] [PMID: 15450169]
[9]
Nichols E, Szoeke CEI, Vollset SE, Abbasi N, Abd-Allah F, Abdela JG. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(1): 88-106.
[http://dx.doi.org/10.1016/S1474-4422(18)30403-4] [PMID: 30497964]
[10]
James BD, Bennett DA. Causes and patterns of dementia: An update in the era of redefining Alzheimer’s disease. Annu Rev Public Health 2019; 40: 65-84.
[http://dx.doi.org/10.1146/annurev-publhealth-040218-043758] [PMID: 30642228]
[11]
Montenegro JMF, Villarini B, Angelopoulou A, Kapetanios E, Garcia-Rodriguez J, Argyriou V. A Survey of Alzheimer’s disease early diagnosis methods for cognitive assessment. Sensors (Switzerland) 2020; 20(24): 1-23.
[http://dx.doi.org/10.3390/s20247292]
[12]
McCollum L, Karlawish J. Cognitive Impairment evaluation and management. Med Clin North Am 2020; 104(5): 807-25.
[http://dx.doi.org/10.1016/j.mcna.2020.06.007] [PMID: 32773047]
[13]
Defina PA, Moser RS, Glenn M, Lichtenstein JD, Fellus J. Alzheimer’s disease clinical and research update for health care practitioners. J Aging Res 2013; 2013: 207178.
[http://dx.doi.org/10.1155/2013/207178] [PMID: 24083026]
[14]
Stage EC Jr, Svaldi D, Phillips M, et al. Neurodegenerative changes in early- and late-onset cognitive impairment with and without brain amyloidosis. Alzheimers Res Ther 2020; 12(1): 93.
[http://dx.doi.org/10.1186/s13195-020-00647-w] [PMID: 32758274]
[15]
Frota NAF, Nitrini R, Damasceno BP, et al. Criteria for the diagnosis of Alzheimer’s disease: recommendations of the scientific department of cognitive neurology and aging of the brazilian academy of neurology. Dement Neuropsychol 2011; 5(3): 146-52.
[http://dx.doi.org/10.1590/S1980-57642011DN05030002] [PMID: 29213739]
[16]
Cece Y, Shifu X. Are the revised diagnostic criteria for Alzheimer’s disease useful in low- and middle-income countries? Shanghai Jingshen Yixue 2015; 27(2): 119-23.
[http://dx.doi.org/10.11919/j.issn.1002-0829.215001] [PMID: 26120262]
[17]
Solomon A, Mangialasche F, Richard E, et al. Advances in the prevention of Alzheimer’s disease and dementia. J Intern Med 2014; 275(3): 229-50.
[http://dx.doi.org/10.1111/joim.12178] [PMID: 24605807]
[18]
Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[19]
Alves L, Correia ASA, Miguel R, Alegria P, Bugalho P. Alzheimer’s disease: a clinical practice-oriented review. Front Neurol 2012; 3: 63.
[http://dx.doi.org/10.3389/fneur.2012.00063] [PMID: 22529838]
[20]
Lopez OL, McDade E, Riverol M, Becker JT. Evolution of the diagnostic criteria for degenerative and cognitive disorders. Curr Opin Neurol 2011; 24(6): 532-41.
[http://dx.doi.org/10.1097/WCO.0b013e32834cd45b] [PMID: 22071334]
[21]
Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 2016; 12(6): 733-48.
[http://dx.doi.org/10.1016/j.jalz.2016.01.012] [PMID: 27016693]
[22]
Bosco P, Guéant-Rodríguez RM, Anello G, et al. Allele epsilon 4 of APOE is a stronger predictor of Alzheimer risk in Sicily than in continental South Italy. Neurosci Lett 2005; 388(3): 168-72.
[http://dx.doi.org/10.1016/j.neulet.2005.06.056] [PMID: 16040191]
[23]
Imtiaz B, Tolppanen AM, Kivipelto M, Soininen H. Future directions in Alzheimer’s disease from risk factors to prevention. Biochem Pharmacol 2014; 88(4): 661-70.
[http://dx.doi.org/10.1016/j.bcp.2014.01.003] [PMID: 24418410]
[24]
Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 2011; 10(9): 819-28.
[http://dx.doi.org/10.1016/S1474-4422(11)70072-2] [PMID: 21775213]
[25]
Toledo JB, Toledo E, Weiner MW, et al. Cardiovascular risk factors, cortisol, and amyloid-β deposition in Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement 2012; 8(6): 483-9.
[http://dx.doi.org/10.1016/j.jalz.2011.08.008] [PMID: 23102118]
[26]
Degen C, Toro P, Schönknecht P, Sattler C, Schröder J. Diabetes mellitus Type II and cognitive capacity in healthy aging, mild cognitive impairment and Alzheimer’s disease. Psychiatry Res 2016; 240: 42-6.
[http://dx.doi.org/10.1016/j.psychres.2016.04.009] [PMID: 27082868]
[27]
Durazzo TC, Mattsson N, Weiner MW. Smoking and increased Alzheimer’s disease risk: a review of potential mechanisms. Alzheimers Dement 2014; 10(3)(Suppl.): S122-45.
[http://dx.doi.org/10.1016/j.jalz.2014.04.009] [PMID: 24924665]
[28]
Nourhashémi F, Gillette-Guyonnet S, Andrieu S, et al. Alzheimer disease: protective factors. Am J Clin Nutr 2000; 71(2): 643S-9S.
[http://dx.doi.org/10.1093/ajcn/71.2.643s] [PMID: 10681273]
[29]
Stozická Z, Žilka N, Novák M. Risk and protective factors for sporadic Alzheimer’s disease. Acta Virol 2007; 51(4): 205-22.
[PMID: 18197729]
[30]
Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88(4): 640-51.
[http://dx.doi.org/10.1016/j.bcp.2013.12.024] [PMID: 24398425]
[31]
Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol 2011; 7(3): 137-52.
[http://dx.doi.org/10.1038/nrneurol.2011.2] [PMID: 21304480]
[32]
Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 2009; 11(2): 111-28.
[http://dx.doi.org/10.31887/DCNS.2009.11.2/cqiu] [PMID: 19585947]
[33]
Russ TC, Batty GD, Hearnshaw GF, Fenton C, Starr JM. Geographical variation in dementia: systematic review with meta-analysis. Int J Epidemiol 2012; 41(4): 1012-32.
[http://dx.doi.org/10.1093/ije/dys103] [PMID: 22798662]
[34]
Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: Role of inflammation triggers and cytokines. Front Immunol 2018; 9: 586.
[http://dx.doi.org/10.3389/fimmu.2018.00586] [PMID: 29686666]
[35]
Xia X, Jiang Q, McDermott J, Han JJ. Aging and Alzheimer’s disease: Comparison and associations from molecular to system level. Aging Cell 2018; 17(5): e12802.
[http://dx.doi.org/10.1111/acel.12802] [PMID: 29963744]
[36]
Steele JW, Fan E, Kelahmetoglu Y, Tian Y, Bustos V. Modulation of autophagy as a therapeutic target for Alzheimer’s disease. Postdoc J. a J. Postdoc J 2013; 1(2): 21-34.
[PMID: 28286801]
[37]
Ferreira-Marques M, Aveleira CA, Carmo-Silva S, Botelho M, Pereira de Almeida L, Cavadas C. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation. Aging 2016; 8(7): 1470-84.
[http://dx.doi.org/10.18632/aging.100996] [PMID: 27441412]
[38]
Kellar D, Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol 2020; 19(9): 758-66.
[http://dx.doi.org/10.1016/S1474-4422(20)30231-3] [PMID: 32730766]
[39]
Caspersen CJ, Thomas GD, Boseman LA, Beckles GLA, Albright AL. Aging, diabetes, and the public health system in the United States. Am J Public Health 2012; 102(8): 1482-97.
[http://dx.doi.org/10.2105/AJPH.2011.300616] [PMID: 22698044]
[40]
Baluchnejadmojarad T, Kiasalari Z, Afshin-Majd S, Ghasemi Z, Roghani M. S-allyl cysteine ameliorates cognitive deficits in streptozotocin-diabetic rats via suppression of oxidative stress, inflammation, and acetylcholinesterase. Eur J Pharmacol 2017; 794: 69-76.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.033] [PMID: 27887948]
[41]
Tyagi A, Mirita C, Taher N, et al. Metabolic syndrome exacerbates amyloid pathology in a comorbid Alzheimer’s mouse model. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10): 165849.
[http://dx.doi.org/10.1016/j.bbadis.2020.165849] [PMID: 32485218]
[42]
Chapman CD, Schiöth HB, Grillo CA, Benedict C. Intranasal insulin in Alzheimer’s disease: Food for thought. Neuropharmacology 2018; 136(B): 196-201.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.037]
[43]
Stanley M, Macauley SL, Caesar EE, et al. The effects of peripheral and central high insulin on brain insulin signaling and amyloid-β in young and old APP/PS1 mice. J Neurosci 2016; 36(46): 11704-15.
[http://dx.doi.org/10.1523/JNEUROSCI.2119-16.2016] [PMID: 27852778]
[44]
Li X, Song D, Leng SX. Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin Interv Aging 2015; 10: 549-60.
[http://dx.doi.org/10.2147/CIA.S74042] [PMID: 25792818]
[45]
Benedict C, Grillo CA. Insulin resistance as a therapeutic target in the treatment of Alzheimer’s disease: A state-of-the-art review. Front Neurosci 2018; 12: 215.
[http://dx.doi.org/10.3389/fnins.2018.00215] [PMID: 29743868]
[46]
Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB. Diabetes mellitus and Alzheimer’s disease: shared pathology and treatment? Br J Clin Pharmacol 2011; 71(3): 365-76.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03830.x] [PMID: 21284695]
[47]
Royea J, Hamel E. Brain angiotensin II and angiotensin IV receptors as potential Alzheimer’s disease therapeutic targets. Geroscience 2020; 42(5): 1237-56.
[http://dx.doi.org/10.1007/s11357-020-00231-y] [PMID: 32700176]
[48]
Kehoe PG. The coming of age of the angiotensin hypothesis in Alzheimer’s disease: Progress toward disease prevention and treatment? J Alzheimers Dis 2018; 62(3): 1443-66.
[http://dx.doi.org/10.3233/JAD-171119] [PMID: 29562545]
[49]
AbdAlla S, Langer A, Fu X, Quitterer U. ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer’s disease. Int J Mol Sci 2013; 14(8): 16917-42.
[http://dx.doi.org/10.3390/ijms140816917] [PMID: 23959119]
[50]
Qiu WWQ, Lai A, Mon T, et al. Angiotensin converting enzyme inhibitors and Alzheimer disease in the presence of the apolipoprotein E4 allele. Am J Geriatr Psychiatry 2014; 22(2): 177-85.
[http://dx.doi.org/10.1016/j.jagp.2012.08.017] [PMID: 23567418]
[51]
Chou CL, Yeh HI. The role of the renin-angiotensin system in amyloid metabolism of Alzheimer’s disease. Zhonghua Minguo Xinzangxue Hui Zazhi 2014; 30(2): 114-8.
[PMID: 27122777]
[52]
Gebre AK, Altaye BM, Atey TM, Tuem KB, Berhe DF. Targeting renin-angiotensin system against Alzheimer’s disease. Front Pharmacol 2018; 9: 440.
[http://dx.doi.org/10.3389/fphar.2018.00440] [PMID: 29760662]
[53]
Sleegers K, den Heijer T, van Dijk EJ, et al. ACE gene is associated with Alzheimer’s disease and atrophy of hippocampus and amygdala. Neurobiol Aging 2005; 26(8): 1153-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.09.011] [PMID: 15917098]
[54]
Ko Y, Chye SM. Lifestyle intervention to prevent Alzheimer’s disease. Rev Neurosci 2020; 31(8): 817-24.
[http://dx.doi.org/10.1515/revneuro-2020-0072] [PMID: 32804681]
[55]
Sjögren M, Mielke M, Gustafson D, Zandi P, Skoog I. Cholesterol and Alzheimer’s disease-is there a relation? Mech Ageing Dev 2006; 127(2): 138-47.
[http://dx.doi.org/10.1016/j.mad.2005.09.020] [PMID: 16332384]
[56]
Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol 2009; 29(4): 431-8.
[http://dx.doi.org/10.1161/ATVBAHA.108.179564] [PMID: 19299327]
[57]
Lee JW, Choi EA, Kim YS, et al. Statin exposure and the risk of dementia in individuals with hypercholesterolaemia. J Intern Med 2020; 288(6): 689-98.
[http://dx.doi.org/10.1111/joim.13134] [PMID: 32583471]
[58]
Samant NP, Gupta GL. Novel therapeutic strategies for Alzheimer’s disease targeting brain cholesterol homeostasis. Eur J Neurosci 2021; 53(2): 673-86.
[http://dx.doi.org/10.1111/ejn.14949] [PMID: 32852876]
[59]
Shinohara M, Sato N, Shimamura M, et al. Possible modification of Alzheimer’s disease by statins in midlife: interactions with genetic and non-genetic risk factors. Front Aging Neurosci 2014; 6: 71.
[http://dx.doi.org/10.3389/fnagi.2014.00071] [PMID: 24795626]
[60]
Shepardson NE, Shankar GM, Selkoe DJ. Cholesterol level and statin use in Alzheimer disease: I. Review of epidemiological and preclinical studies. Arch Neurol 2011; 68(10): 1239-44.
[http://dx.doi.org/10.1001/archneurol.2011.203] [PMID: 21987540]
[61]
Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer’s disease. Int J Mol Sci 2020; 21(4): 1505.
[http://dx.doi.org/10.3390/ijms21041505] [PMID: 32098382]
[62]
Giri M, Zhang M, Lü Y. Genes associated with Alzheimer’s disease: an overview and current status. Clin Interv Aging 2016; 11: 665-81.
[http://dx.doi.org/10.2147/CIA.S105769] [PMID: 27274215]
[63]
Michikawa M. Cholesterol paradox: is high total or low HDL cholesterol level a risk for Alzheimer’s disease? J Neurosci Res 2003; 72(2): 141-6.
[http://dx.doi.org/10.1002/jnr.10585] [PMID: 12671988]
[64]
Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. Cholesterol metabolism and transport in the pathogenesis of Alzheimer’s disease. J Neurochem 2009; 111(6): 1275-308.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06408.x] [PMID: 20050287]
[65]
Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron 2009; 63(3): 287-303.
[http://dx.doi.org/10.1016/j.neuron.2009.06.026] [PMID: 19679070]
[66]
Durazzo TC, Fryer SL, Rothlind JC, et al. Measures of learning, memory and processing speed accurately predict smoking status in short-term abstinent treatment-seeking alcohol-dependent individuals. Alcohol Alcohol 2010; 45(6): 507-13.
[http://dx.doi.org/10.1093/alcalc/agq057] [PMID: 20923865]
[67]
Azizian A, Monterosso J, O’Neill J, London ED. Magnetic resonance imaging studies of cigarette smoking. Handb Exp Pharmacol 2009; 192(192): 113-43.
[http://dx.doi.org/10.1007/978-3-540-69248-5_5] [PMID: 19184648]
[68]
Almeida OP, Garrido GJ, Lautenschlager NT, Hulse GK, Jamrozik K, Flicker L. Smoking is associated with reduced cortical regional gray matter density in brain regions associated with incipient Alzheimer disease. Am J Geriatr Psychiatry 2008; 16(1): 92-8.
[http://dx.doi.org/10.1097/JGP.0b013e318157cad2] [PMID: 18165464]
[69]
Durazzo TC, Meyerhoff DJ, Nixon SJ. Chronic cigarette smoking: implications for neurocognition and brain neurobiology. Int J Environ Res Public Health 2010; 7(10): 3760-91.
[http://dx.doi.org/10.3390/ijerph7103760] [PMID: 21139859]
[70]
Wallin C, Sholts SB, Österlund N, et al. Alzheimer’s disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Sci Rep 2017; 7(1): 14423.
[http://dx.doi.org/10.1038/s41598-017-13759-5] [PMID: 29089568]
[71]
Barr J, Sharma CS, Sarkar S, et al. Nicotine induces oxidative stress and activates nuclear transcription factor kappa B in rat mesencephalic cells. Mol Cell Biochem 2007; 297(1-2): 93-9.
[http://dx.doi.org/10.1007/s11010-006-9333-1] [PMID: 17021677]
[72]
Kim JW, Byun MS, Yi D, et al. Association of moderate alcohol intake with in vivo amyloid-beta deposition in human brain: A cross-sectional study. PLoS Med 2020; 17(2): e1003022.
[http://dx.doi.org/10.1371/journal.pmed.1003022] [PMID: 32097439]
[73]
Piazza-Gardner AK, Gaffud TJB, Barry AE. The impact of alcohol on Alzheimer’s disease: a systematic review. Aging Ment Health 2013; 17(2): 133-46.
[http://dx.doi.org/10.1080/13607863.2012.742488] [PMID: 23171229]
[74]
Venkataraman A, Kalk N, Sewell G, Ritchie CW, Lingford-Hughes A. Alcohol and Alzheimer’s disease-Does alcohol dependence contribute to beta-amyloid deposition, neuroinflammation and neurodegeneration in Alzheimer’s disease? Alcohol Alcohol 2017; 52(2): 151-8.
[http://dx.doi.org/10.1093/alcalc/agw092] [PMID: 27915236]
[75]
Schwarzinger M, Pollock BG, Hasan OSM, et al. Contribution of alcohol use disorders to the burden of dementia in France 2008-13: a nationwide retrospective cohort study. Lancet Public Health 2018; 3(3): e124-32.
[http://dx.doi.org/10.1016/S2468-2667(18)30022-7] [PMID: 29475810]
[76]
Pascual M, Baliño P, Aragón CMG, Guerri C. Cytokines and chemokines as biomarkers of ethanol-induced neuroinflammation and anxiety-related behavior: role of TLR4 and TLR2. Neuropharmacology 2015; 89: 352-9.
[http://dx.doi.org/10.1016/j.neuropharm.2014.10.014] [PMID: 25446779]
[77]
Caruso A, Nicoletti F, Mango D, Saidi A, Orlando R, Scaccianoce S. Stress as risk factor for Alzheimer’s disease. Pharmacol Res 2018; 132: 130-4.
[http://dx.doi.org/10.1016/j.phrs.2018.04.017] [PMID: 29689315]
[78]
Vaz M, Silvestre S. Alzheimer’s disease: Recent treatment strategies. Eur J Pharmacol 2020; 887: 173554.
[http://dx.doi.org/10.1016/j.ejphar.2020.173554] [PMID: 32941929]
[79]
Solfrizzi V, Panza F, Frisardi V, et al. Diet and Alzheimer’s disease risk factors or prevention: the current evidence. Expert Rev Neurother 2011; 11(5): 677-708.
[http://dx.doi.org/10.1586/ern.11.56] [PMID: 21539488]
[80]
Hill E, Clifton P, Goodwill AM, Dennerstein L, Campbell S, Szoeke C. Dietary patterns and β-amyloid deposition in aging Australian women. Alzheimers Dement (N Y) 2018; 4: 535-41.
[http://dx.doi.org/10.1016/j.trci.2018.09.007] [PMID: 30386818]
[81]
Abate G, Marziano M, Rungratanawanich W, Memo M, Uberti D. Nutrition and AGE-ing: Focusing on Alzheimer’s disease. Oxid Med Cell Longev 2017; 2017: 7039816.
[http://dx.doi.org/10.1155/2017/7039816] [PMID: 28168012]
[82]
Cutuli D. Functional and structural benefits induced by omega-3 polyunsaturated fatty acids during aging. Curr Neuropharmacol 2017; 15(4): 534-42.
[http://dx.doi.org/10.2174/1570159X14666160614091311] [PMID: 27306037]
[83]
Morris MC. Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 2016; 1367(1): 31-7.
[http://dx.doi.org/10.1111/nyas.13047] [PMID: 27116239]
[84]
Ríos JA, Cisternas P, Arrese M, Barja S, Inestrosa NC. Is Alzheimer’s disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol 2014; 121: 125-46.
[http://dx.doi.org/10.1016/j.pneurobio.2014.07.004] [PMID: 25084549]
[85]
Beilharz JE, Maniam J, Morris MJ. Diet-induced cognitive deficits: The role of fat and sugar, potential mechanisms and nutritional interventions. Nutrients 2015; 7(8): 6719-38.
[http://dx.doi.org/10.3390/nu7085307] [PMID: 26274972]
[86]
Zheng Y, Zhang W, Pendleton E, et al. Improved insulin sensitivity by calorie restriction is associated with reduction of ERK and p70S6K activities in the liver of obese Zucker rats. J Endocrinol 2009; 203(3): 337-47.
[http://dx.doi.org/10.1677/JOE-09-0181] [PMID: 19801385]
[87]
Blagosklonny MV. Calorie restriction: decelerating mTOR-driven aging from cells to organisms (including humans). Cell Cycle 2010; 9(4): 683-8.
[http://dx.doi.org/10.4161/cc.9.4.10766] [PMID: 20139716]
[88]
Morris MS. Homocysteine and Alzheimer’s disease. Lancet Neurol 2003; 2(7): 425-8.
[http://dx.doi.org/10.1016/S1474-4422(03)00438-1] [PMID: 12849121]
[89]
Perna AF, Ingrosso D, De Santo NG. Homocysteine and oxidative stress. Amino Acids 2003; 25(3-4): 409-17.
[http://dx.doi.org/10.1007/s00726-003-0026-8] [PMID: 14661100]
[90]
Fuso A, Nicolia V, Cavallaro RA, et al. B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-β deposition in mice. Mol Cell Neurosci 2008; 37(4): 731-46.
[http://dx.doi.org/10.1016/j.mcn.2007.12.018] [PMID: 18243734]
[91]
Sontag E, Nunbhakdi-Craig V, Sontag JM, et al. Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation. J Neurosci 2007; 27(11): 2751-9.
[http://dx.doi.org/10.1523/JNEUROSCI.3316-06.2007] [PMID: 17360897]
[92]
Zhuo JM, Wang H, Praticò D. Is hyperhomocysteinemia an Alzheimer’s disease (AD) risk factor, an AD marker, or neither? Trends Pharmacol Sci 2011; 32(9): 562-71.
[http://dx.doi.org/10.1016/j.tips.2011.05.003] [PMID: 21684021]
[93]
Troen AM, Shea-Budgell M, Shukitt-Hale B, Smith DE, Selhub J, Rosenberg IH. B-vitamin deficiency causes hyperhomocysteinemia and vascular cognitive impairment in mice. Proc Natl Acad Sci USA 2008; 105(34): 12474-9.
[http://dx.doi.org/10.1073/pnas.0805350105] [PMID: 18711131]
[94]
Kumar M, Tyagi N, Moshal KS, et al. GABAA receptor agonist mitigates homocysteine-induced cerebrovascular remodeling in knockout mice. Brain Res 2008; 1221: 147-53.
[http://dx.doi.org/10.1016/j.brainres.2008.04.021] [PMID: 18547546]
[95]
Kim HJ, Cho HK, Kwon YH. Synergistic induction of ER stress by homocysteine and β-amyloid in SH-SY5Y cells. J Nutr Biochem 2008; 19(11): 754-61.
[http://dx.doi.org/10.1016/j.jnutbio.2007.09.009] [PMID: 18430556]
[96]
Kruman II, Kumaravel TS, Lohani A, et al. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 2002; 22(5): 1752-62.
[http://dx.doi.org/10.1523/JNEUROSCI.22-05-01752.2002] [PMID: 11880504]
[97]
Lipton SA, Kim WK, Choi YB, et al. Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 1997; 94(11): 5923-8.
[http://dx.doi.org/10.1073/pnas.94.11.5923] [PMID: 9159176]
[98]
Zhang X-X, Tian Y, Wang Z-T, Ma Y-H, Tan L, Yu J-T. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. J Prev Alzheimers Dis 2021; 8(3): 313-21.
[http://dx.doi.org/10.14283/jpad.2021.15] [PMID: 34101789]
[99]
Gatz M, Svedberg P, Pedersen NL, Mortimer JA, Berg S, Johansson B. Education and the risk of Alzheimer’s disease: findings from the study of dementia in Swedish twins. J Gerontol B Psychol Sci Soc Sci 2001; 56(5): 292-300.
[http://dx.doi.org/10.1093/geronb/56.5.P292] [PMID: 11522804]
[100]
Leser N, Wagner S. The effects of acute social isolation on long-term social recognition memory. Neurobiol Learn Mem 2015; 124: 97-103.
[http://dx.doi.org/10.1016/j.nlm.2015.07.002] [PMID: 26169536]
[101]
Hsiao YH, Chen PS, Chen SH, Gean PW. The involvement of Cdk5 activator p35 in social isolation-triggered onset of early Alzheimer’s disease-related cognitive deficit in the transgenic mice. Neuropsychopharmacology 2011; 36(9): 1848-58.
[http://dx.doi.org/10.1038/npp.2011.69] [PMID: 21544067]
[102]
Hsiao YH, Chang CH, Gean PW. Impact of social relationships on Alzheimer’s memory impairment: mechanistic studies. J Biomed Sci 2018; 25(1): 3.
[http://dx.doi.org/10.1186/s12929-018-0404-x] [PMID: 29325565]
[103]
Mielke MM. Sex and gender differences in Alzheimer disease dementia. Psychiatr Times 2018; 35(11): 14-7.
[PMID: 30820070]
[104]
Andrew MK, Tierney MC. The puzzle of sex, gender and Alzheimer’s disease: Why are women more often affected than men? Women’s Health (Lond) 2018; 14: 1745506518817995.
[http://dx.doi.org/10.1177/1745506518817995]
[105]
Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. Alzheimer’s Disease Cooperative Study. JAMA 2000; 283(8): 1007-15.
[http://dx.doi.org/10.1001/jama.283.8.1007] [PMID: 10697060]
[106]
Brinton RD. Impact of estrogen therapy on Alzheimer’s disease: a fork in the road? CNS Drugs 2004; 18(7): 405-22.
[http://dx.doi.org/10.2165/00023210-200418070-00001] [PMID: 15139797]
[107]
Sullivan JM, Vander Zwaag R, Hughes JP, et al. Estrogen replacement and coronary artery disease. Effect on survival in postmenopausal women. Arch Intern Med 1990; 150(12): 2557-62.
[http://dx.doi.org/10.1001/archinte.1990.00390230101014] [PMID: 2244772]
[108]
Woolley CS, McEwen BS. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci 1992; 12(7): 2549-54.
[http://dx.doi.org/10.1523/JNEUROSCI.12-07-02549.1992] [PMID: 1613547]
[109]
Woolley CS, McEwen BS. Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol 1993; 336(2): 293-306.
[http://dx.doi.org/10.1002/cne.903360210] [PMID: 8245220]
[110]
Singh M, Meyer EM, Millard WJ, Simpkins JW. Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female Sprague-Dawley rats. Brain Res 1994; 644(2): 305-12.
[http://dx.doi.org/10.1016/0006-8993(94)91694-2] [PMID: 8050041]
[111]
Singh M, Meyer EM, Simpkins JW. The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats. Endocrinology 1995; 136(5): 2320-4.
[http://dx.doi.org/10.1210/endo.136.5.7720680] [PMID: 7720680]
[112]
Birge SJ. The role of estrogen in the treatment of Alzheimer’s disease. Neurology 1997; 48(5)(Suppl. 7): S36-41.
[http://dx.doi.org/10.1212/WNL.48.5_Suppl_7.36S] [PMID: 9153165]
[113]
Rebeck GW. The role of APOE on lipid homeostasis and inflammation in normal brains. J Lipid Res 2017; 58(8): 1493-9.
[http://dx.doi.org/10.1194/jlr.R075408] [PMID: 28258087]
[114]
Imbimbo BP, Solfrizzi V, Panza F. Are NSAIDs useful to treat Alzheimer’s disease or mild cognitive impairment? Front Aging Neurosci 2010; 2: 19.
[http://dx.doi.org/10.3389/fnagi.2010.00019] [PMID: 20725517]
[115]
Avramovich Y, Amit T, Youdim MBH. Non-steroidal anti-inflammatory drugs stimulate secretion of non-amyloidogenic precursor protein. J Biol Chem 2002; 277(35): 31466-73.
[http://dx.doi.org/10.1074/jbc.M201308200] [PMID: 12070143]
[116]
Richter H, Ambrée O, Lewejohann L, et al. Wheel-running in a transgenic mouse model of Alzheimer’s disease: protection or symptom? Behav Brain Res 2008; 190(1): 74-84.
[http://dx.doi.org/10.1016/j.bbr.2008.02.005] [PMID: 18342378]
[117]
Zhao G, Liu HL, Zhang H, Tong XJ. Treadmill exercise enhances synaptic plasticity, but does not alter β-amyloid deposition in hippocampi of aged APP/PS1 transgenic mice. Neuroscience 2015; 298: 357-66.
[http://dx.doi.org/10.1016/j.neuroscience.2015.04.038] [PMID: 25917310]
[118]
Flicker L. Modifiable lifestyle risk factors for Alzheimer’s disease. J Alzheimers Dis 2010; 20(3): 803-11.
[http://dx.doi.org/10.3233/JAD-2010-091624] [PMID: 20182016]
[119]
Singh N, Chhillar N, Banerjee B, Bala K, Basu M, Mustafa M. Organochlorine pesticide levels and risk of Alzheimer’s disease in north Indian population. Hum Exp Toxicol 2013; 32(1): 24-30.
[http://dx.doi.org/10.1177/0960327112456315] [PMID: 22899726]
[120]
Salazar JG, Ribes D, Cabré M, Domingo JL, Sanchez-Santed F, Colomina MT. Amyloid β peptide levels increase in brain of AβPP Swedish mice after exposure to chlorpyrifos. Curr Alzheimer Res 2011; 8(7): 732-40.
[http://dx.doi.org/10.2174/156720511797633197] [PMID: 21592053]
[121]
Singh NK, Banerjee BD, Bala K, Basu M, Chhillar N. Polymorphism in cytochrome P450 2D6, glutathione S-transferases Pi 1 genes, and organochlorine pesticides in Alzheimer disease: A case-control study in north Indian population. J Geriatr Psychiatry Neurol 2014; 27(2): 119-27.
[http://dx.doi.org/10.1177/0891988714522698] [PMID: 24584466]
[122]
Mander BA, Winer JR, Walker MP. Sleep and human aging. Neuron 2017; 94(1): 19-36.
[http://dx.doi.org/10.1016/j.neuron.2017.02.004] [PMID: 28384471]
[123]
Lo JC, Groeger JA, Cheng GH, Dijk DJ, Chee MWL. Self-reported sleep duration and cognitive performance in older adults: a systematic review and meta-analysis. Sleep Med 2016; 17: 87-98.
[http://dx.doi.org/10.1016/j.sleep.2015.08.021] [PMID: 26847980]
[124]
Ohayon MM. Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med Rev 2002; 6(2): 97-111.
[http://dx.doi.org/10.1053/smrv.2002.0186] [PMID: 12531146]
[125]
Irwin MR, Vitiello MV. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol 2019; 18(3): 296-306.
[http://dx.doi.org/10.1016/S1474-4422(18)30450-2] [PMID: 30661858]
[126]
Lee H, Xie L, Yu M, et al. The effect of body posture on brain glymphatic transport. J Neurosci 2015; 35(31): 11034-44.
[http://dx.doi.org/10.1523/JNEUROSCI.1625-15.2015] [PMID: 26245965]
[127]
Irwin MR, Olmstead R, Carroll JE. Sleep disturbance, sleep duration, and inflammation: A systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry 2016; 80(1): 40-52.
[http://dx.doi.org/10.1016/j.biopsych.2015.05.014] [PMID: 26140821]
[128]
Carroll JE, Cole SW, Seeman TE, et al. Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. Brain Behav Immun 2016; 51: 223-9.
[http://dx.doi.org/10.1016/j.bbi.2015.08.024] [PMID: 26336034]
[129]
Van Erum J, Van Dam D, De Deyn PP. Sleep and Alzheimer’s disease: A pivotal role for the suprachiasmatic nucleus. Sleep Med Rev 2018; 40: 17-27.
[http://dx.doi.org/10.1016/j.smrv.2017.07.005] [PMID: 29102282]
[130]
Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res 2012; 7(5): 376-85.
[http://dx.doi.org/10.1146/annurev.pharmtox.36.1.83] [PMID: 25774178]
[131]
Guo LL, Guan ZZ, Huang Y, Wang YL, Shi JS. The neurotoxicity of β-amyloid peptide toward rat brain is associated with enhanced oxidative stress, inflammation and apoptosis, all of which can be attenuated by scutellarin. Exp Toxicol Pathol 2013; 65(5): 579-84.
[http://dx.doi.org/10.1016/j.etp.2012.05.003] [PMID: 22739358]
[132]
Jeong DU, Oh JH, Lee JE, et al. Basal forebrain cholinergic deficits reduce glucose metabolism and function of cholinergic and GABAergic systems in the cingulate cortex. Yonsei Med J 2016; 57(1): 165-72.
[http://dx.doi.org/10.3349/ymj.2016.57.1.165] [PMID: 26632397]
[133]
Dief AE, Kamha ES, Baraka AM, Elshorbagy AK. Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: a potential role for cyclic AMP protein kinase. Neurotoxicology 2014; 42: 76-82.
[http://dx.doi.org/10.1016/j.neuro.2014.04.003] [PMID: 24769037]
[134]
Yang Y, Jiang G, Zhang P, Fan J. Programmed cell death and its role in inflammation. Mil Med Res 2015; 2: 12.
[http://dx.doi.org/10.1186/s40779-015-0039-0] [PMID: 26045969]
[135]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[136]
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82(4): 239-59.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[137]
Olmos G, Lladó J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014; 2014: 861231.
[http://dx.doi.org/10.1155/2014/861231] [PMID: 24966471]
[138]
Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 2013; 36(10): 587-97.
[http://dx.doi.org/10.1016/j.tins.2013.07.001] [PMID: 23968694]
[139]
Johnson KA, Fox NC, Sperling RA, Klunk WE. Brain imaging in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2(4): a006213.
[http://dx.doi.org/10.1101/cshperspect.a006213] [PMID: 22474610]
[140]
Csernansky JG, Wang L, Swank J, et al. Preclinical detection of Alzheimer’s disease: hippocampal shape and volume predict dementia onset in the elderly. Neuroimage 2005; 25(3): 783-92.
[http://dx.doi.org/10.1016/j.neuroimage.2004.12.036] [PMID: 15808979]
[141]
Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 2012; 76(1): 116-29.
[http://dx.doi.org/10.1016/j.neuron.2012.08.036] [PMID: 23040810]
[142]
Mesulam MM. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J Comp Neurol 2013; 521(18): 4124-44.
[http://dx.doi.org/10.1002/cne.23415] [PMID: 23852922]
[143]
Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 1999; 22(6): 273-80.
[http://dx.doi.org/10.1016/S0166-2236(98)01361-7] [PMID: 10354606]
[144]
Ballinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 2016; 91(6): 1199-218.
[http://dx.doi.org/10.1016/j.neuron.2016.09.006] [PMID: 27657448]
[145]
Terry AV Jr, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 2003; 306(3): 821-7.
[http://dx.doi.org/10.1124/jpet.102.041616] [PMID: 12805474]
[146]
Svoboda J, Popelikova A, Stuchlik A. Drugs interfering with muscarinic acetylcholine receptors and their effects on place navigation. Front Psychiatry 2017; 8: 215.
[http://dx.doi.org/10.3389/fpsyt.2017.00215] [PMID: 29170645]
[147]
Decker MW, McGaugh JL. The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse 1991; 7(2): 151-68.
[http://dx.doi.org/10.1002/syn.890070209] [PMID: 1672782]
[148]
Davis KL, Mohs RC, Marin D, et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 1999; 281(15): 1401-6.
[http://dx.doi.org/10.1001/jama.281.15.1401] [PMID: 10217056]
[149]
Slotkin TA, Seidler FJ, Crain BJ, Bell JM, Bissette G, Nemeroff CB. Regulatory changes in presynaptic cholinergic function assessed in rapid autopsy material from patients with Alzheimer disease: implications for etiology and therapy. Proc Natl Acad Sci USA 1990; 87(7): 2452-5.
[http://dx.doi.org/10.1073/pnas.87.7.2452] [PMID: 2320567]
[150]
Mufson EJ, Kroin JS, Sendera TJ, Sobreviela T. Distribution and retrograde transport of trophic factors in the central nervous system: functional implications for the treatment of neurodegenerative diseases. Prog Neurobiol 1999; 57(4): 451-84.
[http://dx.doi.org/10.1016/S0301-0082(98)00059-8] [PMID: 10080385]
[151]
Casu MA, Wong TP, De Koninck Y, Ribeiro-da-Silva A, Cuello AC. Aging causes a preferential loss of cholinergic innervation of characterized neocortical pyramidal neurons. Cereb Cortex 2002; 12(3): 329-37.
[http://dx.doi.org/10.1093/cercor/12.3.329] [PMID: 11839606]
[152]
Gibson GE, Peterson C. Aging decreases oxidative metabolism and the release and synthesis of acetylcholine. J Neurochem 1981; 37(4): 978-84.
[http://dx.doi.org/10.1111/j.1471-4159.1981.tb04484.x] [PMID: 7320734]
[153]
Fisher A, Brandeis R, Bar-Ner RHN, et al. AF150(S) and AF267B: M1 muscarinic agonists as innovative therapies for Alzheimer’s disease. J Mol Neurosci 2002; 19(1-2): 145-53.
[http://dx.doi.org/10.1007/s12031-002-0025-3] [PMID: 12212772]
[154]
Genis I, Fisher A, Michaelson DM. Site-specific dephosphorylation of tau of apolipoprotein E-deficient and control mice by M1 muscarinic agonist treatment. J Neurochem 1999; 72(1): 206-13.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0720206.x] [PMID: 9886071]
[155]
Jonnala RR, Terry AV Jr, Buccafusco JJ. Nicotine increases the expression of high affinity nerve growth factor receptors in both in vitro and in vivo. Life Sci 2002; 70(13): 1543-54.
[http://dx.doi.org/10.1016/S0024-3205(01)01529-6] [PMID: 11895105]
[156]
Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 2009; 30(4): 379-87.
[http://dx.doi.org/10.1038/aps.2009.24] [PMID: 19343058]
[157]
Geerts H, Grossberg GT. Pharmacology of acetylcholinesterase inhibitors and N-methyl-D-aspartate receptors for combination therapy in the treatment of Alzheimer’s disease. J Clin Pharmacol 2006; 46(7)(Suppl. 1): 8S-16S.
[http://dx.doi.org/10.1177/0091270006288734] [PMID: 16809810]
[158]
Lin H, Vicini S, Hsu FC, et al. Axonal α7 nicotinic ACh receptors modulate presynaptic NMDA receptor expression and structural plasticity of glutamatergic presynaptic boutons. Proc Natl Acad Sci USA 2010; 107(38): 16661-6.
[http://dx.doi.org/10.1073/pnas.1007397107] [PMID: 20817852]
[159]
Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular pathogenesis of alzheimer’s disease: an update. Ann Neurosci 2017; 24(1): 46-54.
[http://dx.doi.org/10.1159/000464422] [PMID: 28588356]
[160]
Colombres M, Sagal JP, Inestrosa NC. An overview of the current and novel drugs for Alzheimer’s disease with particular reference to anti-cholinesterase compounds. Curr Pharm Des 2004; 10(25): 3121-30.
[http://dx.doi.org/10.2174/1381612043383359] [PMID: 15544502]
[161]
Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev 2018; 6(6): CD001190.
[http://dx.doi.org/10.1002/14651858.CD001190.pub3] [PMID: 29923184]
[162]
Massoud F, Gauthier S. Update on the pharmacological treatment of Alzheimer’s disease. Curr Neuropharmacol 2010; 8(1): 69-80.
[http://dx.doi.org/10.2174/157015910790909520] [PMID: 20808547]
[163]
Yang G, Wang Y, Tian J, Liu JP. Huperzine A for Alzheimer’s disease: a systematic review and meta-analysis of randomized clinical trials. PLoS One 2013; 8(9): e74916.
[http://dx.doi.org/10.1371/journal.pone.0074916] [PMID: 24086396]
[164]
Messer WS Jr. Cholinergic agonists and the treatment of Alzheimer’s disease. Curr Top Med Chem 2002; 2(4): 353-8.
[http://dx.doi.org/10.2174/1568026024607553] [PMID: 11966459]
[165]
Kumar A, Singh A, Ekavali . A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 2015; 67(2): 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[166]
van Marum RJ. Update on the use of memantine in Alzheimer’s disease. Neuropsychiatr Dis Treat 2009; 5: 237-47.
[http://dx.doi.org/10.2147/NDT.S4048] [PMID: 19557118]
[167]
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[168]
Rogers J, Morrison JH. Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer’s disease. J Neurosci 1985; 5(10): 2801-8.
[http://dx.doi.org/10.1523/JNEUROSCI.05-10-02801.1985] [PMID: 4045553]
[169]
Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001; 81(2): 741-66.
[http://dx.doi.org/10.1152/physrev.2001.81.2.741] [PMID: 11274343]
[170]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[171]
Yang LB, Lindholm K, Yan R, et al. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 2003; 9(1): 3-4.
[http://dx.doi.org/10.1038/nm0103-3] [PMID: 12514700]
[172]
Schmechel DE, Saunders AM, Strittmatter WJ, et al. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci USA 1993; 90(20): 9649-53.
[http://dx.doi.org/10.1073/pnas.90.20.9649] [PMID: 8415756]
[173]
Akama KT, Albanese C, Pestell RG, Van Eldik LJ. Amyloid β-peptide stimulates nitric oxide production in astrocytes through an NFkappaB-dependent mechanism. Proc Natl Acad Sci USA 1998; 95(10): 5795-800.
[http://dx.doi.org/10.1073/pnas.95.10.5795] [PMID: 9576964]
[174]
Hensley K, Carney JM, Mattson MP, et al. A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci USA 1994; 91(8): 3270-4.
[http://dx.doi.org/10.1073/pnas.91.8.3270] [PMID: 8159737]
[175]
Sayre LM, Perry G, Harris PLR, Liu Y, Schubert KA, Smith MA. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 2000; 74(1): 270-9.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0740270.x] [PMID: 10617129]
[176]
Yan SD, Bierhaus A, Nawroth PP, Stern DM. RAGE and Alzheimer’s disease: a progression factor for amyloid-β-induced cellular perturbation? J Alzheimers Dis 2009; 16(4): 833-43.
[http://dx.doi.org/10.3233/JAD-2009-1030] [PMID: 19387116]
[177]
Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 2008; 14(2): 45-53.
[http://dx.doi.org/10.1016/j.molmed.2007.12.002] [PMID: 18218341]
[178]
Maruyama M, Higuchi M, Takaki Y, et al. Cerebrospinal fluid neprilysin is reduced in prodromal Alzheimer’s disease. Ann Neurol 2005; 57(6): 832-42.
[http://dx.doi.org/10.1002/ana.20494] [PMID: 15929037]
[179]
Murphy MP, LeVine H III. Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis 2010; 19(1): 311-23.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[180]
Doody RS, Raman R, Farlow M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 2013; 369(4): 341-50.
[http://dx.doi.org/10.1056/NEJMoa1210951] [PMID: 23883379]
[181]
Ross J, Sharma S, Winston J, et al. CHF5074 reduces biomarkers of neuroinflammation in patients with mild cognitive impairment: a 12-week, double-blind, placebo-controlled study. Curr Alzheimer Res 2013; 10(7): 742-53.
[http://dx.doi.org/10.2174/13892037113149990144] [PMID: 23968157]
[182]
Folch J, Ettcheto M, Petrov D, et al. Review of the advances in treatment for Alzheimer disease: Strategies for combating β-amyloid protein. Neurol 2018; 33(1): 47-58.
[http://dx.doi.org/10.1016/j.nrleng.2015.03.019]
[183]
Aisen PS, Gauthier S, Ferris SH, et al. Tramiprosate in mild-to-moderate Alzheimer’s disease - a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch Med Sci 2011; 7(1): 102-11.
[http://dx.doi.org/10.5114/aoms.2011.20612] [PMID: 22291741]
[184]
Galasko D, Bell J, Mancuso JY, et al. Clinical trial of an inhibitor of RAGE-Aβ interactions in Alzheimer disease. Neurology 2014; 82(17): 1536-42.
[http://dx.doi.org/10.1212/WNL.0000000000000364] [PMID: 24696507]
[185]
Wiessner C, Wiederhold KH, Tissot AC, et al. The second-generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J Neurosci 2011; 31(25): 9323-31.
[http://dx.doi.org/10.1523/JNEUROSCI.0293-11.2011] [PMID: 21697382]
[186]
Folch J, Petrov D, Ettcheto M, et al. Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plast 2016; 2016: 8501693.
[http://dx.doi.org/10.1155/2016/8501693] [PMID: 26881137]
[187]
Cárdenas-Aguayo MdelC, Gómez-Virgilio L, DeRosa S, Meraz-Ríos MA. The role of tau oligomers in the onset of Alzheimer’s disease neuropathology. ACS Chem Neurosci 2014; 5(12): 1178-91.
[http://dx.doi.org/10.1021/cn500148z] [PMID: 25268947]
[188]
Iqbal K, Liu F, Gong CX. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 2016; 12(1): 15-27.
[http://dx.doi.org/10.1038/nrneurol.2015.225] [PMID: 26635213]
[189]
Iqbal K, Liu F, Gong C-X, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 2010; 7(8): 656-64.
[http://dx.doi.org/10.2174/156720510793611592] [PMID: 20678074]
[190]
Mandelkow EM, Mandelkow E. Tau in Alzheimer’s disease. Trends Cell Biol 1998; 8(11): 425-7.
[http://dx.doi.org/10.1016/S0962-8924(98)01368-3] [PMID: 9854307]
[191]
Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA 1994; 91(12): 5562-6.
[http://dx.doi.org/10.1073/pnas.91.12.5562] [PMID: 8202528]
[192]
Liazoghli D, Perreault S, Micheva KD, Desjardins M, Leclerc N. Fragmentation of the Golgi apparatus induced by the overexpression of wild-type and mutant human tau forms in neurons. Am J Pathol 2005; 166(5): 1499-514.
[http://dx.doi.org/10.1016/S0002-9440(10)62366-8] [PMID: 15855649]
[193]
del Ser T, Steinwachs KC, Gertz HJ, et al. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. J Alzheimers Dis 2013; 33(1): 205-15.
[http://dx.doi.org/10.3233/JAD-2012-120805] [PMID: 22936007]
[194]
Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology 2014; 76(Pt A): 27-50.
[http://dx.doi.org/10.1016/j.neuropharm.2013.07.004]
[195]
Engel T, Goñi-Oliver P, Lucas JJ, Avila J, Hernández F. Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 2006; 99(6): 1445-55.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04139.x] [PMID: 17059563]
[196]
Bulic B, Pickhardt M, Mandelkow E. Progress and developments in tau aggregation inhibitors for Alzheimer disease. J Med Chem 2013; 56(11): 4135-55.
[http://dx.doi.org/10.1021/jm3017317] [PMID: 23484434]
[197]
Ma QL, Zuo X, Yang F, et al. Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J Biol Chem 2013; 288(6): 4056-65.
[http://dx.doi.org/10.1074/jbc.M112.393751] [PMID: 23264626]
[198]
Boutajangout A, Wisniewski T. Tau-based therapeutic approaches for Alzheimer’s disease - a mini-review. Gerontology 2014; 60(5): 381-5.
[http://dx.doi.org/10.1159/000358875] [PMID: 24732638]
[199]
Sies H. Oxidative stress: from basic research to clinical application. Am J Med 1991; 91(3C)(Suppl. 3): 31S-8S.
[http://dx.doi.org/10.1016/0002-9343(91)90281-2] [PMID: 1928209]
[200]
Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012; 2012: 646354.
[http://dx.doi.org/10.1155/2012/646354] [PMID: 21977319]
[201]
Pocernich CB, Butterfield DA. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta 2012; 1822(5): 625-30.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.003] [PMID: 22015471]
[202]
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep 2016; 4(5): 519-22. [Review
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[203]
Galasko D, Montine TJ. Biomarkers of oxidative damage and inflammation in Alzheimer’s disease. Biomarkers Med 2010; 4(1): 27-36.
[http://dx.doi.org/10.2217/bmm.09.89] [PMID: 20383271]
[204]
Frijhoff J, Winyard PG, Zarkovic N, et al. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal 2015; 23(14): 1144-70.
[http://dx.doi.org/10.1089/ars.2015.6317] [PMID: 26415143]
[205]
Bradley-Whitman MA, Lovell MA. Biomarkers of lipid peroxidation in Alzheimer disease (AD): an update. Arch Toxicol 2015; 89(7): 1035-44.
[http://dx.doi.org/10.1007/s00204-015-1517-6] [PMID: 25895140]
[206]
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014; 2014: 360438.
[http://dx.doi.org/10.1155/2014/360438] [PMID: 24999379]
[207]
Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 2014; 1842(8): 1240-7.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.015] [PMID: 24189435]
[208]
Feng Y, Wang X. Antioxidant therapies for Alzheimer’s disease. Oxid Med Cell Longev 2012; 2012: 472932.
[http://dx.doi.org/10.1155/2012/472932] [PMID: 22888398]
[209]
Aliev G, Obrenovich ME, Reddy VP, et al. Antioxidant therapy in Alzheimer’s disease: theory and practice. Mini Rev Med Chem 2008; 8(13): 1395-406.
[http://dx.doi.org/10.2174/138955708786369582] [PMID: 18991755]
[210]
Mecocci P, Polidori MC. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim Biophys Acta 2012; 1822(5): 631-8.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.006] [PMID: 22019723]
[211]
Khandelwal PJ, Herman AM, Moussa CEH. Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol 2011; 238(1-2): 1-11.
[http://dx.doi.org/10.1016/j.jneuroim.2011.07.002] [PMID: 21820744]
[212]
Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10(11): 1387-94.
[http://dx.doi.org/10.1038/nn1997] [PMID: 17965659]
[213]
Cuello AC. Early and late CNS inflammation in Alzheimer’s disease: Two extremes of a continuum? Trends Pharmacol Sci 2017; 38(11): 956-66.
[http://dx.doi.org/10.1016/j.tips.2017.07.005] [PMID: 28867259]
[214]
Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 2004; 173(6): 3916-24.
[http://dx.doi.org/10.4049/jimmunol.173.6.3916] [PMID: 15356140]
[215]
Colton C, Wilcock DM. Assessing activation states in microglia. CNS Neurol Disord Drug Targets 2010; 9(2): 174-91.
[http://dx.doi.org/10.2174/187152710791012053] [PMID: 20205642]
[216]
Van Eldik LJ, Carrillo MC, Cole PE, et al. The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimers Dement (N Y) 2016; 2(2): 99-109.
[http://dx.doi.org/10.1016/j.trci.2016.05.001] [PMID: 29067297]
[217]
Aikawa T, Holm ML, Kanekiyo T. ABCA7 and pathogenic pathways of Alzheimer’s disease. Brain Sci 2018; 8(2): 27.
[http://dx.doi.org/10.3390/brainsci8020027] [PMID: 29401741]
[218]
Ho L, Pieroni C, Winger D, Purohit DP, Aisen PS, Pasinetti GM. Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer’s disease. J Neurosci Res 1999; 57(3): 295-303.https://doi.org/https://doi.org/10.1002/(SICI)1097-4547(19990801)57:3<295:AID-JNR1>3.0.CO;2-0
[http://dx.doi.org/10.1002/(SICI)1097-4547(19990801)57:3<295::AID-JNR1>3.0.CO;2-0] [PMID: 10412020]
[219]
Lim GP, Yang F, Chu T, et al. Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiol Aging 2001; 22(6): 983-91.
[http://dx.doi.org/10.1016/S0197-4580(01)00299-8] [PMID: 11755007]
[220]
Lichtenstein MP, Carriba P, Masgrau R, Pujol A, Galea E. Staging anti-inflammatory therapy in Alzheimer’s disease. Front Aging Neurosci 2010; 2: 142.
[http://dx.doi.org/10.3389/fnagi.2010.00142] [PMID: 21152343]
[221]
Aisen PS. Evaluation of selective COX-2 inhibitors for the treatment of Alzheimer’s disease. J Pain Symptom Manage 2002; 23(4)(Suppl.): S35-40.
[http://dx.doi.org/10.1016/S0885-3924(02)00374-3] [PMID: 11992749]
[222]
Chang R, Yee K-L, Sumbria RK. Tumor necrosis factor α Inhibition for Alzheimer’s Disease. J Cent Nerv Syst Dis 2017; 9: 1179573517709278.
[http://dx.doi.org/10.1177/1179573517709278] [PMID: 28579870]
[223]
Dinarello CA, Simon A, van der Meer JWM. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 2012; 11(8): 633-52.
[http://dx.doi.org/10.1038/nrd3800] [PMID: 22850787]
[224]
Federici S, Martini A, Gattorno M. The central role of anti-IL-1 blockade in the treatment of monogenic and multi-factorial autoinflammatory diseases. Front Immunol 2013; 4: 351.
[http://dx.doi.org/10.3389/fimmu.2013.00351] [PMID: 24198817]
[225]
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014; 6(10): a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[226]
Seo EJ, Fischer N, Efferth T. Phytochemicals as inhibitors of NF-κB for treatment of Alzheimer’s disease. Pharmacol Res 2018; 129: 262-73.
[http://dx.doi.org/10.1016/j.phrs.2017.11.030] [PMID: 29179999]
[227]
Miller SC, Huang R, Sakamuru S, et al. Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem Pharmacol 2010; 79(9): 1272-80.
[http://dx.doi.org/10.1016/j.bcp.2009.12.021] [PMID: 20067776]
[228]
Ramadass V, Vaiyapuri T, Tergaonkar V. Small molecule Nf-Kb pathway inhibitors in clinic. Int J Mol Sci 2020; 21(14): 1-43.
[http://dx.doi.org/10.3390/ijms21145164] [PMID: 32708302]
[229]
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 2018; 4: 575-90.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[230]
Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000; 21(3): 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[231]
Akhurst RJ. Targeting TGF-β signaling for therapeutic gain. Cold Spring Harb Perspect Biol 2017; 9(10): a022301.
[http://dx.doi.org/10.1101/cshperspect.a022301] [PMID: 28246179]
[232]
Carpanini SM, Torvell M, Morgan BP. Therapeutic inhibition of the complement system in diseases of the central nervous system. Front Immunol 2019; 10: 362.
[http://dx.doi.org/10.3389/fimmu.2019.00362] [PMID: 30886620]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy