Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Review on Methods Used to Determine Antioxidant Activity of Origanum majorana

Author(s): Gyanendra Narayan Mohapatra, Bimala Tripathy*, B.V.V. Ravi Kumar, Bimalendu Chowdhury and Rajaram Das

Volume 18, Issue 2, 2022

Published on: 17 January, 2022

Page: [181 - 192] Pages: 12

DOI: 10.2174/1573401317666211110104812

Price: $65

Abstract

Background: The presence of free radicals in the human body is harmful, which may induce many diseases like cardiovascular, diabetes, cancer, inflammation, neurodegenerative disorder, atherosclerosis, cataract, etc. Antioxidants can balance the effect of free radicals. Antioxidant- rich herbs have been identified for the preparation of drugs that can be administered to neutralize the free radicals. In the present context, the selected medicinal plant is “Origanum majorana” (Family- Lamiaceae) widely known as Marwa in the Indian sub-continent. As the medical professionals show their desire towards composite or lateral treatment, the application of drugs with herbal origin has gained its importance.

Objective: This review presents various in vitro and in vivo methods used in the antioxidant activity study of O. majorana and highlights its efficacy in reducing the oxidative stress.

Methods: Many reliable sources like Research gate, PubMed, Science Direct, Google scholar, Wiley online library, and books have been referred to collect all information regarding the antioxidant activity of the selected plant.

Results: Several methods have been used to determine the antioxidant activity of O. majorana, such as superoxide radical scavenging, ferric ion reducing antioxidant potency, thiobarbituric acid reactive substances, hydrogen peroxide scavenging, hydroxyl radical scavenging, lipid peroxidation inhibition, etc. The selected plant contains many phytoconstituents such as gallic acid, ferulic acid, apigenin, catechin, rutin, quercetin, luteolin, linolenic acid, β-sitosterol, and essential oils, which may be responsible for antioxidant activity.

Conclusion: The review article provides information for investigating and developing new antioxidant methods and major phytoconstituents from O. majorana for better therapy of oxidative stress-mediated complications.

Keywords: Origanum majorana, antioxidants, free radicals, phytoconstituents, in vitro, in vivo methods.

Graphical Abstract

[1]
Halliwell B. Antioxidants and human disease: A general introduction. Nutr Rev 1997; 55(1 PT 2): S44-9.
[http://dx.doi.org/10.1111/j.1753-4887.1997.tb06100.x] [PMID: 9155225]
[2]
Arora A, Sairam R, Srivastava G. Oxidative stress and antioxidative system in plants. Curr Sci 2002; 82: 1227-38.
[3]
Whitaker SH, Pierce JD. Oxygen free radicals and the disease process. Nurse Pract 2003; 28(8): 53-4.
[http://dx.doi.org/10.1097/00006205-200308000-00027] [PMID: 12902941]
[4]
Møller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 2007; 58: 459-81.
[http://dx.doi.org/10.1146/annurev.arplant.58.032806.103946] [PMID: 17288534]
[5]
Dhull S, Kaur P, Purewal S. Phytochemical analysis, phenolic compounds, condensed tannin content and antioxidant potential in Marwa (Origanum majorana) seed extracts. Resour Eff Technol 2016; 2(4): 168-74.
[http://dx.doi.org/10.1016/j.reffit.2016.09.003]
[6]
Vági E, Rapavi E, Hadolin M, et al. Phenolic and triterpenoid antioxidants from Origanum majorana L. herb and extracts obtained with different solvents. J Agric Food Chem 2005; 53(1): 17-21.
[http://dx.doi.org/10.1021/jf048777p] [PMID: 15631502]
[7]
Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000; 5(5): 415-8.
[http://dx.doi.org/10.1023/A:1009616228304] [PMID: 11256882]
[8]
Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 2001; 40(8): 959-75.
[http://dx.doi.org/10.1016/S0028-3908(01)00019-3] [PMID: 11406187]
[9]
Radicals F. Free Radical Damage - 22 Diseases Caused By Free Radicals - Ecosh Life. Ecosh Life 2020. Available from: https://ecosh.com/free-radical-damage-22-diseases-caused-by-free-radicals/[Accessed on: 24 December 2020].
[10]
Halliwell B, Murcia MA, Chirico S, Aruoma OI. Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit Rev Food Sci Nutr 1995; 35(1-2): 7-20.
[http://dx.doi.org/10.1080/10408399509527682] [PMID: 7748482]
[11]
Nimse S, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances 2015; 5(35): 27986-8006.
[http://dx.doi.org/10.1039/C4RA13315C]
[12]
Kumar S, Pandey A. Free radicals: Health implications and their mitigation by herbals. Br J Med Med Res 2015; 7(6): 438-57.
[http://dx.doi.org/10.9734/BJMMR/2015/16284]
[13]
Pandey AK, Mishra AK, Mishra A, Kumar S, Chandra A. Therapeutic potential o f C. zeylanicum extracts: An antifungal and antioxidant perspective. Int J Biol Med Res 2010; 1: 228-33.
[14]
Farms N. What are antioxidants? Norm's Farms 2020. Available from: https://normsfarms.com/blogs/elderberry-and-your-health/what-are-antioxidants [cited: 24 December 2020].
[15]
Chakraborty P, Kumar S, Dutta D, Gupta V. Role of antioxidants in common health disease. Res J Pharm Technol 2009; 2: 238-44.
[16]
Halliwell B. Free radicals and antioxidants - quo vadis? Trends Pharmacol Sci 2011; 32(3): 125-30.
[http://dx.doi.org/10.1016/j.tips.2010.12.002] [PMID: 21216018]
[17]
Chaturvedi S, Sharma PK, Garg VK, Bansal M. Role of nutraceuticals in health promotion. Int J Pharm Tech Res 2011; 3(1): 442-8.
[18]
Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009; 7(1): 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[19]
Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 2002; 7(9): 405-10.
[http://dx.doi.org/10.1016/S1360-1385(02)02312-9] [PMID: 12234732]
[20]
Foyer CH, Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 2003; 119: 355-64.
[http://dx.doi.org/10.1034/j.1399-3054.2003.00223.x]
[21]
Bannister JV, Bannister WH, Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem 1987; 22(2): 111-80.
[http://dx.doi.org/10.3109/10409238709083738] [PMID: 3315461]
[22]
Cao X, Antonyuk SV, Seetharaman SV, et al. Structures of the G85R variant of SOD1 in familial amyotrophic lateral sclerosis. J Biol Chem 2008; 283(23): 16169-77.
[http://dx.doi.org/10.1074/jbc.M801522200] [PMID: 18378676]
[23]
Liou W, Chang L-Y, Geuze HJ, Strous GJ, Crapo JD, Slot JW. Distribution of CuZn superoxide dismutase in rat liver. Free Radic Biol Med 1993; 14(2): 201-7.
[http://dx.doi.org/10.1016/0891-5849(93)90011-I] [PMID: 8425722]
[24]
Kirkman HN, Galiano S, Gaetani GF. The function of catalase-bound NADPH. J Biol Chem 1987; 262(2): 660-6.
[http://dx.doi.org/10.1016/S0021-9258(19)75835-9] [PMID: 3805001]
[25]
Schwentker A, Vodovotz Y, Weller R, Billiar TR. Nitric oxide and wound repair: Role of cytokines? Nitric Oxide 2002; 7(1): 1-10.
[http://dx.doi.org/10.1016/S1089-8603(02)00002-2] [PMID: 12175813]
[26]
Kaisoon O, Siriamornpun S, Weerapreeyakul N, Meeso N. Phenolic compounds and antioxidant activities of edible flowers from Thailand. J Funct Foods 2011; 3(2): 88-99.
[http://dx.doi.org/10.1016/j.jff.2011.03.002]
[27]
Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol 2005; 45: 51-88.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095857] [PMID: 15822171]
[28]
Lee J, Koo N, Min DB. In, Reactive oxygen species, aging and antioxidative nutraceuticals. Compr Rev Food Sci Food Saf 2004; 3(1): 21-33.
[http://dx.doi.org/10.1111/j.1541-4337.2004.tb00058.x] [PMID: 33430557]
[29]
Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 2006; 141(2): 391-6.
[http://dx.doi.org/10.1104/pp.106.082040] [PMID: 16760493]
[30]
Shigeoka S, Ishikawa T, Tamoi M, et al. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 2002; 53(372): 1305-19.
[http://dx.doi.org/10.1093/jexbot/53.372.1305] [PMID: 11997377]
[31]
Padayatty SJ, Katz A, Wang Y, et al. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. J Am Coll Nutr 2003; 22(1): 18-35.
[http://dx.doi.org/10.1080/07315724.2003.10719272] [PMID: 12569111]
[32]
Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med 2007; 43(1): 4-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.024] [PMID: 17561088]
[33]
Herrera E, Barbas C, Vitamin E. Action, metabolism and perspectives. J Physiol Biochem 2001; 57: 43-56.
[http://dx.doi.org/10.1007/BF03179812]
[34]
Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol 2001; 54(3): 176-86.
[http://dx.doi.org/10.1136/jcp.54.3.176] [PMID: 11253127]
[35]
Meister A. Glutathione metabolism and its selective modification. J Biol Chem 1988; 263(33): 17205-8.
[http://dx.doi.org/10.1016/S0021-9258(19)77815-6] [PMID: 3053703]
[36]
Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2007; 2(2): 219-36.
[PMID: 18044138]
[37]
Sunitha D. A review on antioxidant methods. Asian J Pharm Clin Res 2016; 9(2): 14.
[http://dx.doi.org/10.22159/ajpcr.2016.v9s2.13092]
[38]
Tainter DR, Grenis AT. Species and Seasonings.A Food Technology Hand Book. New York: VVCH Publishers Inc 1993.
[39]
Cano JH, Volpato G. Herbal mixtures in the traditional medicine of eastern Cuba. J Ethnopharmacol 2004; 90(2-3): 293-316.
[http://dx.doi.org/10.1016/j.jep.2003.10.012] [PMID: 15013195]
[40]
Rothe M, Farrell KT. Spices, Condiments, and Seasonings. 415 Seiten, zahlr. Abb. und Tab. AVI Publishing Company, Inc., Westport, Connecticut, 1985. Preis: 55,– $. Food / Nahrung In: 1986; 30: p. (10)1077.
[41]
Bruneton J. Pharmacognosy, phytochemistry, medicinal plants, technique and documentation. Lavoisier (Paris) 1999; 3: 1120.
[42]
Busatta C, Vidal RS, Popiolski AS, et al. Application of Origanum majorana L. essential oil as an antimicrobial agent in sausage. Food Microbiol 2008; 25(1): 207-11.
[http://dx.doi.org/10.1016/j.fm.2007.07.003] [PMID: 17993397]
[43]
Raina AP, Negi KS. Essential oil composition of Origanum majorana and Origanum vulgare spp., Hirtum growing in India. Chem Nat Compd 2012; 47: 6.
[http://dx.doi.org/10.1007/s10600-012-0133-4]
[44]
Nakatani N. Phenolic antioxidants from herbs and spices. Biofactors 2000; 13(1-4): 141-6.
[http://dx.doi.org/10.1002/biof.5520130123] [PMID: 11237173]
[45]
Hussain A, Anwar F, Rasheed S, Nigam P, Janneh O, Sarker S. Composition, antioxidant and chemotherapeutic properties of the essential oils from two Origanum species growing in Pakistan. Rev Bras Farmacogn 2011; 21(6): 943-52.
[http://dx.doi.org/10.1590/S0102-695X2011005000165]
[46]
Proestos C, Komaitis M. Ultrasonically assisted extraction of phenolic compounds from aromatic plants, comparison with conventional extraction technics. J Food Qual 2006; 29: 567-82.
[http://dx.doi.org/10.1111/j.1745-4557.2006.00096.x]
[47]
Tripathy B, Satyanarayana S, Abedulla Khan K, Raja K. An updated review on traditional uses, taxonomy, phytochemistry, pharmacology and toxicology of Origanum majorana. Int J Pharm Res Health Sci 2017; 5(4): 1717-23.
[48]
Bina F, Rahimi R. Sweet marjoram. J Evid Based Complementary Altern Med 2017; 22(1): 175-85.
[http://dx.doi.org/10.1177/2156587216650793] [PMID: 27231340]
[49]
Ahmad Khera R, Nadeem F, Idrees Jilani M. Essential chemical constituents and medicinal uses of marjoram (Origanum majorana L.) – A comprehensive review. Int J Chem Biochem Sci 2016; 9: 56-62.
[50]
El-Ashmawy IM, Saleh A, Salama OM. Effects of marjoram volatile oil and grape seed extract on ethanol toxicity in male rats. Basic Clin Pharmacol Toxicol 2007; 101(5): 320-7.
[http://dx.doi.org/10.1111/j.1742-7835.2007.00125.x] [PMID: 17910615]
[51]
Leeja L, Thoppil JE. Antimicrobial activity of methanol extract of Origanum majorana L. (Sweet marjoram). J Environ Biol 2007; 28(1): 145-6.
[PMID: 17718003]
[52]
Martha R, Gutierrez P. Inhibition of advanced glycation end-product formation by Origanum majorana, in vitro and in streptozotocin-induced diabetic rats. J Evid Based Complementary Altern Med 2012; 1: 1-8.
[53]
Vasudeva N, Singla P, Das S, Sharma SK. Antigout and antioxidant activity of stem and root of Origanum majorana Linn. Am J Drug Discov Dev 2014; 4(2): 102-12.
[http://dx.doi.org/10.3923/ajdd.2014.102.112]
[54]
Kozłowska M, Laudy AE, Starosciak BJ, Napiorkowski A, Chomicz L, Kazimierczuk Z. Antimicrobial and antiprotozoal effect of sweet marjoram (Origanum majorana L.). Acta Sci Pol Hortorum Cultus 2010; 9(4): 133-41.
[55]
Ojha K, Dubey S, Chandrakar J, Anigo Minj R. A review on different methods of determination of antioxidant activity assay of herbal plants. Res J Life Sci Bioinform Pharm Chem Sci 2018; 4(6): 707.
[56]
Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 2005; 53(10): 4290-302.
[http://dx.doi.org/10.1021/jf0502698] [PMID: 15884874]
[57]
Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem 2005; 53(6): 1841-56.
[http://dx.doi.org/10.1021/jf030723c] [PMID: 15769103]
[58]
Bondet V, Brand-Williams W, Berset C. Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. Food Sci Technol (Campinas) 1997; 30: 609-15.
[59]
Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958; 181: 1149-50.
[http://dx.doi.org/10.1038/1811199a0]
[60]
Semiz G, Semiz A, Mercan-Doğan N. Essential oil composition, total phenolic content, antioxidant and antibiofilm activities of four Origanum species from southeastern Turkey. Int J Food Prop 2018; 21(1): 194-204.
[http://dx.doi.org/10.1080/10942912.2018.1440240]
[61]
Duletić-Laušević S, Alimpić Aradski A, Kolarević S, Vuković-Gačić B, Oalđe M, Živković J. Antineurodegenerative, antioxidant and antibacterial activities and phenolic components of Origanum majorana L. (Lamiaceae) extracts. J Appl Bot Food Qual 2018; 91: 126-34.
[62]
Mossa A, Heikal T, Mohafrash S, Refaie A. Antioxidant potential and hepatoprotective activity of Origanum majorana leaves extract against oxidative damage and hepatotoxicity induced by pirimiphos-methyl in male mice. J Appl Sci 2015; 15(1): 69-79.
[http://dx.doi.org/10.3923/jas.2015.69.79]
[63]
Moharram H, Youssef M. Methods for determining the antioxidant activity: A review. Alex J Food Sci Tech 2014; 11(1): 31-41.
[http://dx.doi.org/10.12816/0025348]
[64]
Beretta G, Granata P, Ferrero M, Orioli M, Facino RM. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal Chim Acta 2005; 533: 185-91.
[http://dx.doi.org/10.1016/j.aca.2004.11.010]
[65]
Lim C, Lim S. Ferric reducing capacity versus ferric reducing antioxidant power for measuring total antioxidant capacity. Lab Med 2013; 44(1): 51-5.
[http://dx.doi.org/10.1309/LM93W7KTFNPZIXRR]
[66]
Serafini L, Schmidt C, Oldoni T, Carpes S, Haminiuk C, Ribeiro I. Assessment of antioxidant activity of ethanolic extracts of marjoram (Origanum majorana L.) evaluated by different in vitro methods. Acta Hortic 2018; (1198): 85-92.
[http://dx.doi.org/10.17660/ActaHortic.2018.1198.16]
[67]
Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J 2013; 21(2): 143-52.
[http://dx.doi.org/10.1016/j.jsps.2012.05.002] [PMID: 24936134]
[68]
Miller HE. A simplified method for the evaluation of anti-oxidants. J Am Oil Chem Soc 1971; 18: 439-52.
[69]
Karadag A, Ozcelik B, Saner S. Review of methods to determine antioxidant capacities. Food Anal Methods 2009; 2: 41-60.
[http://dx.doi.org/10.1007/s12161-008-9067-7]
[70]
Kumar S. Assay guided comparison for enzymatic and non-enzymatic antioxidant activities with special reference to medicinal plants. Antioxidant Enzyme 2012.
[http://dx.doi.org/10.5772/50782]
[71]
Mossa AT, Nawwar GA. Free radical scavenging and antiacetylcholinesterase activities of Origanum majorana L. essential oil. Hum Exp Toxicol 2011; 30(10): 1501-13.
[http://dx.doi.org/10.1177/0960327110391686] [PMID: 21239482]
[72]
Kumar CS, Loh WS, Ooi CW, Quah CK, Fun HK. Structural correlation of some heterocyclic chalcone analogues and evaluation of their antioxidant potential. Molecules 2013; 18(10): 11996-2011.
[http://dx.doi.org/10.3390/molecules181011996] [PMID: 24077177]
[73]
Jin Jun W, Kyung Han B, Won Yu K, Sung Kim M, Seop Chang I, Yun Kim H. Antioxidant effects of Origanum majorana L. on superoxide anion radicals. Food Chem 2001; 75(4): 439-44.
[http://dx.doi.org/10.1016/S0308-8146(01)00233-3]
[74]
Afifi N, Shalaby M. eLbanna H, Ramadan S. Evaluation of the antioxidant activity of Marjoram plant (Origanium Majorana L.) in CCl 4-intoxicated rats. J Complement Med Drug Discov 2014; 4(1): 33.
[75]
Mossa AT, Refaie AA, Ramadan A, Bouajila J. Amelioration of prallethrin-induced oxidative stress and hepatotoxicity in rat by the administration of Origanum majorana essential oil. BioMed Res Int 2013; 2013859085
[http://dx.doi.org/10.1155/2013/859085] [PMID: 24381944]
[76]
Pasavei AG, Mohebbati R, Boroumand N, et al. Anti-hypolipidemic and anti-oxidative effects of hydroalcoholic extract of Origanum majorana on the hepatosteatosis induced with high-fat diet in rats. Malays J Med Sci 2020; 27(1): 57-69.
[http://dx.doi.org/10.21315/mjms2020.27.1.6] [PMID: 32158345]
[77]
Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70(1): 158-69.
[PMID: 6066618]
[78]
Sapakal VD, Shikalgar TS, Ghadge RV, Adnaik RS, Naikwade NS, Magdum CS. In vivo screening of antioxidant profile: A review. J Herb Med Toxicol 2008; 2(2): 1-8.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy