Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

MiR-582-5p Attenuates Neonatal Hypoxic-ischemic Encephalopathy by Targeting High Mobility Group box 1 (HMGB1) through Inhibiting Neuroinflammation and Oxidative Stress

Author(s): Guang Yang*, Zhimin Xue and Yuan Zhao

Volume 18, Issue 3, 2021

Published on: 08 November, 2021

Page: [295 - 301] Pages: 7

DOI: 10.2174/1567202618666211109102740

Price: $65

Abstract

Background: MiR-582-5p has been demonstrated to protect against ischemic stroke. However, its implication in the progression of neonatal hypoxic-ischemic encephalopathy (HIE) has not been explored.

Methods: In this study, we used an in vitro model of oxygen-glucose deprivation (OGD) to investigate the protective effect of miR-582-5p on PC12 cells. OGD-induced inhibition of cell viability and promotion of cell death was assessed by CCK-8 assay and flow cytometry. Real-time PCR and enzyme-linked immunosorbent assay (ELISA) were utilized to examine the levels of inflammatory cytokines. The effects of miR-582-5p on OGD-induced oxidative injury were assessed by the determination of oxidative stress indicators. Furthermore, dual-luciferase reporter assay and gain-offunction assay were used to determine the mechanism of miR-582-5p in OGD-induced cell injury.

Results: The expression of miR-582-5p was reduced upon OGD treatment in PC12 cells. Overexpression of miR-582-5p inhibited OGD-induced PC12 cell injury by regulating cell viability, apoptosis, inflammatory responses, and oxidative stress. MiR-582-5p targeted and negatively regulated high mobility group box 1 (HMGB1). MiR-582-5p presented protective effects on OGD-induced PC12 cell injury by targeting HMGB1.

Conclusion: Our results indicated that miR-582-5p ameliorates neuronal injury by inhibiting apoptosis, inflammation, and oxidative stress through targeting HMGB1.

Keywords: HMGB1, inflammation, miR-582-5p, neonatal hypoxic-ischemic encephalopathy, oxygen glucose deprivation, oxidative stress.

[1]
Greco P, Nencini G, Piva I, et al. Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future. Acta Neurol Belg 2020; 120(2): 277-88.
[http://dx.doi.org/10.1007/s13760-020-01308-3] [PMID: 32112349]
[2]
Liu F, McCullough LD. Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin 2013; 34(9): 1121-30.
[http://dx.doi.org/10.1038/aps.2013.89] [PMID: 23892271]
[3]
Zhao M, Zhu P, Fujino M, et al. Oxidative stress in hypoxic-ischemic encephalopathy: molecular mechanisms and therapeutic strategies. Int J Mol Sci 2016; 17(12): E2078.
[http://dx.doi.org/10.3390/ijms17122078] [PMID: 27973415]
[4]
Wassink G, Davidson JO, Dhillon SK, et al. Therapeutic hypothermia in neonatal hypoxic-ischemic encephalopathy. Curr Neurol Neurosci Rep 2019; 19(2): 2.
[http://dx.doi.org/10.1007/s11910-019-0916-0] [PMID: 30637551]
[5]
Wei L, Ren Q, Zhang Y, Wang J. Effects of hyperbaric oxygen and nerve growth factor on the long-term neural behavior of neonatal rats with hypoxic ischemic brain damage. Acta Cir Bras 2017; 32(4): 270-9.
[http://dx.doi.org/10.1590/s0102-865020170040000002] [PMID: 28538801]
[6]
Lv H, Wang Q, Wu S, et al. Neonatal hypoxic ischemic encephalopathy-related biomarkers in serum and cerebrospinal fluid. Clin Chim Acta 2015; 450: 282-97.
[http://dx.doi.org/10.1016/j.cca.2015.08.021] [PMID: 26320853]
[7]
Massaro AN, Wu YW, Bammler TK, et al. Plasma biomarkers of brain injury in neonatal hypoxic-ischemic encephalopathy. J Pediatr 2018; 194: 67-75.e1.
[http://dx.doi.org/10.1016/j.jpeds.2017.10.060] [PMID: 29478510]
[8]
Ni WJ, Leng XM. miRNA-dependent activation of mRNA translation. MicroRNA 2016; 5(2): 83-6.
[http://dx.doi.org/10.2174/2211536605666160825151201] [PMID: 27568791]
[9]
Ponnusamy V, Yip PK. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy. Neuropharmacology 2019; 149: 55-65.
[http://dx.doi.org/10.1016/j.neuropharm.2018.11.041] [PMID: 30716413]
[10]
Wang LL, Zhang M. miR-582-5p is a potential prognostic marker in human non-small cell lung cancer and functions as a tumor suppressor by targeting MAP3K2. Eur Rev Med Pharmacol Sci 2018; 22(22): 7760-7.
[PMID: 30536321]
[11]
Liu J, Liu S, Deng X, et al. MicroRNA-582-5p suppresses non-small cell lung cancer cells growth and invasion via downregulating NOTCH1. PLoS One 2019; 14(6): e0217652.
[http://dx.doi.org/10.1371/journal.pone.0217652] [PMID: 31170211]
[12]
Wu J, Li W, Ning J, Yu W, Rao T, Cheng F. Long noncoding RNA UCA1 targets miR-582-5p and contributes to the progression and drug resistance of bladder cancer cells through ATG7-mediated autophagy inhibition. OncoTargets Ther 2019; 12: 495-508.
[http://dx.doi.org/10.2147/OTT.S183940] [PMID: 30666128]
[13]
Tian Y, Guan Y, Su Y, Luo W, Yang G, Zhang Y. MiR-582-5p inhibits bladder cancer-genesis by suppressing TTK expression. Cancer Manag Res 2020; 12: 11933-44.
[http://dx.doi.org/10.2147/CMAR.S274835] [PMID: 33244270]
[14]
Maeno A, Terada N, Uegaki M, et al. Up-regulation of miR-582-5p regulates cellular proliferation of prostate cancer cells under androgen-deprived conditions. Prostate 2014; 74(16): 1604-12.
[http://dx.doi.org/10.1002/pros.22877] [PMID: 25176332]
[15]
Huang S, Zou C, Tang Y, et al. miR-582-3p and miR-582-5p suppress prostate cancer metastasis to bone by repressing TGF-β signaling. Mol Ther Nucleic Acids 2019; 16: 91-104.
[http://dx.doi.org/10.1016/j.omtn.2019.01.004] [PMID: 30852380]
[16]
Ding H, Gao S, Wang L, Wei Y, Zhang M. Overexpression of miR-582-5p inhibits the apoptosis of neuronal cells after cerebral ischemic stroke through regulating PAR-1/Rho/Rho Axis. J Stroke Cerebrovasc Dis 2019; 28(1): 149-55.
[17]
Štros M, Kučírek M, Sani SA, Polanská E. HMGB1-mediated DNA bending: Distinct roles in increasing p53 binding to DNA and the transactivation of p53-responsive gene promoters. Biochim Biophys Acta Gene Regul Mech 2018; 1861(3): 200-10.
[http://dx.doi.org/10.1016/j.bbagrm.2018.02.002] [PMID: 29421308]
[18]
Al-Ofi EA, Al-Ghamdi BS. High-mobility group Box 1 (HMGB1), an endogenous ligand of toll-like receptors 2 and 4, induces astroglial inflammation via nf-beta pathway. Folia Morphol (Warsz) 2019; 78(1): 10-6.
[19]
Hei Y, Chen R, Yi X, Long Q, Gao D, Liu W. HMGB1 neutralization attenuates hippocampal neuronal death and cognitive impairment in rats with chronic cerebral hypoperfusion via suppressing inflammatory responses and oxidative stress. Neuroscience 2018; 383: 150-9.
[http://dx.doi.org/10.1016/j.neuroscience.2018.05.010] [PMID: 29777754]
[20]
Hatayama K, Chen RH, Hanson J, et al. High-mobility group box-1 and inter-alpha inhibitor proteins: In vitro binding and co-localization in cerebral cortex after hypoxic-ischemic injury. FASEB J 2021; 35(3): e21399.
[http://dx.doi.org/10.1096/fj.202002109RR] [PMID: 33559227]
[21]
Le K, Wu S, Chibaatar E, Ali AI, Guo Y. Alarmin HMGB1 plays a detrimental role in hippocampal dysfunction caused by hypoxia-ischemia insult in neonatal mice: Evidence from the application of the HMGB1 inhibitor glycyrrhizin. ACS Chem Neurosci 2020; 11(6): 979-93.
[http://dx.doi.org/10.1021/acschemneuro.0c00084] [PMID: 32073822]
[22]
Liu X, Ma Y, Wei X, Fan T. Neuroprotective effect of licochalcone A against oxygen-glucose deprivation/reperfusion in rat primary cortical neurons by attenuating oxidative stress injury and inflammatory response via the SIRT1/Nrf2 pathway. J Cell Biochem 2018; 119(4): 3210-9.
[http://dx.doi.org/10.1002/jcb.26477] [PMID: 29105819]
[23]
Ma Q, Dasgupta C, Li Y, Huang L, Zhang L. MicroRNA-210 downregulates ISCU and induces mitochondrial dysfunction and neuronal death in neonatal hypoxic-ischemic brain injury. Mol Neurobiol 2019; 56(8): 5608-25.
[http://dx.doi.org/10.1007/s12035-019-1491-8] [PMID: 30656514]
[24]
Yang G, Zhao Y. Overexpression of miR-146b-5p ameliorates neonatal hypoxic ischemic encephalopathy by inhibiting IRAK1/TRAF6/TAK1/NF-αB signaling. Yonsei Med J 2020; 61(8): 660-9.
[http://dx.doi.org/10.3349/ymj.2020.61.8.660] [PMID: 32734729]
[25]
Chen Z, Hu Y, Lu R, Ge M, Zhang L. MicroRNA-374a-5p inhibits neuroinflammation in neonatal hypoxic-ischemic encephalopathy via regulating NLRP3 inflammasome targeted Smad6. Life Sci 2020; 252: 117664.
[http://dx.doi.org/10.1016/j.lfs.2020.117664] [PMID: 32304765]
[26]
Paudel YN, Angelopoulou E, Piperi C, Othman I, Shaikh MF. HMGB1-mediated neuroinflammatory responses in brain injuries: Potential mechanisms and therapeutic opportunities. Int J Mol Sci 2020; 21(13): E4609.
[http://dx.doi.org/10.3390/ijms21134609] [PMID: 32610502]
[27]
Wang F, Ji S, Wang M, et al. HMGB1 promoted P-glycoprotein at the blood-brain barrier in MCAO rats via TLR4/NF-κB signaling pathway. Eur J Pharmacol 2020; 880: 173189.
[http://dx.doi.org/10.1016/j.ejphar.2020.173189] [PMID: 32417325]
[28]
Sun Y, Chen H, Dai J, et al. Glycyrrhizin protects mice against experimental autoimmune encephalomyelitis by inhibiting high- mobility group box 1 (HMGB1) expression and neuronal HMGB1 release. Front Immunol 2018; 9: 1518.
[http://dx.doi.org/10.3389/fimmu.2018.01518] [PMID: 30013568]
[29]
Le K, Chibaatar Daliv E, Wu S, et al. SIRT1-regulated HMGB1 release is partially involved in TLR4 signal transduction: A possible anti-neuroinflammatory mechanism of resveratrol in neonatal hypoxic-ischemic brain injury. Int Immunopharmacol 2019; 75: 105779.
[http://dx.doi.org/10.1016/j.intimp.2019.105779] [PMID: 31362164]
[30]
Sun Y, Hei M, Fang Z, Tang Z, Wang B, Hu N. High-mobility group box 1 contributes to cerebral cortex injury in a neonatal hypoxic-ischemic rat model by regulating the phenotypic polarization of microglia. Front Cell Neurosci 2019; 13: 506.
[http://dx.doi.org/10.3389/fncel.2019.00506] [PMID: 31920543]
[31]
Zhang B, Zhong Q, Chen X, et al. Neuroprotective effects of celastrol on transient global cerebral ischemia rats via regulating hmgb1/nf-κb signaling pathway. Front Neurosci 2020; 14: 847.
[http://dx.doi.org/10.3389/fnins.2020.00847] [PMID: 32848589]
[32]
Zhi SM, Fang GX, Xie XM, et al. Melatonin reduces OGD/R-induced neuron injury by regulating redox/inflammation/apoptosis signaling. Eur Rev Med Pharmacol Sci 2020; 24(3): 1524-36.
[PMID: 32096202]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy