Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Regulation of Cell Death Mechanisms by Melatonin: Implications in Cancer Therapy

Author(s): Zicheng Wang, Yanqing Liu* and Ahmed Eleojo Musa*

Volume 22, Issue 11, 2022

Published on: 12 January, 2022

Page: [2080 - 2090] Pages: 11

DOI: 10.2174/1871520621999211108090712

Price: $65

Abstract

Cancer therapy is based on the killing of cancer cells using various therapeutic agents, such as radiation, chemotherapy or targeted therapy drugs, and immunotherapy. Cancer cells may undergo apoptosis, mitotic catastrophe, necrosis, autophagy, mitophagy, senescence, etc., depending on the therapeutic modality and nature of cancer cells. Mutations in some critical genes, such as p53 and Phosphatase and Tensin Homolog (PTEN) tumor suppressor genes, are associated with immune escape of cancer cells and tumor progression. Furthermore, the overexpression of some genes. such as phosphatidylinositol-3-kinase (PI3K), Nuclear Factor of Kappa B (NF-κB), cyclooxygenase-2 (COX-2) and mammalian Target of Rapamycin (mTOR), is associated with the resistance of cancer cells to various types of cell death. Melatonin is known as a circadian regulator hormone that has several anti-cancer properties. It has the ability to activate tumor suppressor genes and attenuate the expression of survival genes in cancer cells. Modulation of cell death or survival genes that have been disrupted or overexpressed in cancer cells can improve cancer therapy. In this review, we explain the potential of melatonin in regulating various mechanisms of cancer cell death.

Keywords: Melatonin, cancer, apoptosis, senescence, mitotic catastrophe, autophagy.

Graphical Abstract

[1]
Mortezaee, K.; Parwaie, W.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Musa, A.E.; Shabeeb, D.; Esmaely, F.; Najafi, M.; Farhood, B. Targets for improving tumor response to radiotherapy. Int. Immunopharmacol., 2019, 76, 105847.
[http://dx.doi.org/10.1016/j.intimp.2019.105847] [PMID: 31466051]
[2]
Mortezaee, K.; Najafi, M. Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit. Rev. Oncol. Hematol., 2021, 157, 103180.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103180] [PMID: 33264717]
[3]
Atashzar, M.R.; Baharlou, R.; Karami, J.; Zoljalali Abdollahi, H.; Rezaei, R.; Pourramezan, F.; Moghaddam, Z.S.H. Cancer stem cells: A review from origin to therapeutic implications. J. Cell. Physiol., 2020, 235(2), 790-803.
[http://dx.doi.org/10.1002/jcp.29044] [PMID: 31286518]
[4]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Musa, E.A. Genomic instability and carcinogenesis of heavy charged particles radiation: Clinical and environmental implications. Medicina (Kaunas), 2019, 55(9), 591.
[http://dx.doi.org/10.3390/medicina55090591] [PMID: 31540340]
[5]
Rezaeyan, A.; Fardid, R.; Haddadi, G.H.; Takhshid, M.A.; Hosseinzadeh, M.; Najafi, M.; Salajegheh, A. Evaluating radioprotective effect of hesperidin on acute radiation damage in the lung tissue of rats. J. Biomed. Phys. Eng., 2016, 6(3), 165-174.
[PMID: 27853724]
[6]
Haddadi, G.H.; Rezaeyan, A.; Mosleh-Shirazi, M.A.; Hosseinzadeh, M.; Fardid, R.; Najafi, M.; Salajegheh, A. Hesperidin as radioprotector against radiation-induced lung damage in rat: A histopathological study. J. Med. Phys., 2017, 42(1), 25-32.
[http://dx.doi.org/10.4103/jmp.JMP_119_16] [PMID: 28405105]
[7]
Farhood, B.; Goradel, N.H.; Mortezaee, K.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Shabeeb, D.; Musa, A.E.; Fallah, H.; Najafi, M. Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation. J. Cell Commun. Signal., 2019, 13(1), 3-16.
[http://dx.doi.org/10.1007/s12079-018-0473-3] [PMID: 29911259]
[8]
Yahyapour, R.; Salajegheh, A.; Safari, A.; Amini, P.; Rezaeyan, A.; Amraee, A.; Najafi, M. Radiation-induced non-targeted effect and carcinogenesis; implications in clinical radiotherapy. J. Biomed. Phys. Eng., 2018, 8(4), 435-446.
[PMID: 30568933]
[9]
Amini, P.; Nodooshan, S.J.; Ashrafizadeh, M.; Eftekhari, S.M.; Aryafar, T.; Khalafi, L.; Musa, A.E.; Mahdavi, S.R.; Najafi, M.; Farhood, B. Resveratrol induces apoptosis and attenuates proliferation of MCF-7 cells in combination with radiation and hyperthermia. Curr. Mol. Med., 2021, 21(2), 142-150.
[http://dx.doi.org/10.2174/1566524020666200521080953] [PMID: 32436827]
[10]
Mortezaee, K.; Narmani, A.; Salehi, M.; Bagheri, H.; Farhood, B.; Haghi-Aminjan, H.; Najafi, M. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci., 2021, 269, 119020.
[http://dx.doi.org/10.1016/j.lfs.2021.119020] [PMID: 33450258]
[11]
Farhood, B.; Mortezaee, K.; Haghi-Aminjan, H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. A systematic review of radiation-induced testicular toxicities following radiotherapy for prostate cancer. J. Cell. Physiol., 2019, 234(9), 14828-14837.
[http://dx.doi.org/10.1002/jcp.28283] [PMID: 30740683]
[12]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol., 2020, 85, 106663.
[http://dx.doi.org/10.1016/j.intimp.2020.106663] [PMID: 32521494]
[13]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. Damage-associated molecular patterns in tumor radiotherapy. Int. Immunopharmacol., 2020, 86, 106761.
[http://dx.doi.org/10.1016/j.intimp.2020.106761] [PMID: 32629409]
[14]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. Int. Immunopharmacol., 2020, 87, 106807.
[http://dx.doi.org/10.1016/j.intimp.2020.106807] [PMID: 32683299]
[15]
Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Zarrin, V.; Moghadam, E.R.; Zabolian, A.; Tavakol, S.; Samarghandian, S.; Najafi, M. PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sci., 2020, 256, 117899.
[http://dx.doi.org/10.1016/j.lfs.2020.117899] [PMID: 32504749]
[16]
Ashrafizadeh, M.; Zarrabi, A.; Orouei, S. Kiavash Hushmandi; Hakimi, A.; Amirhossein Zabolian; Daneshi, S.; Samarghandian, S.; Baradaran, B.; Najafi, M. MicroRNA-mediated autophagy regulation in cancer therapy: The role in chemoresistance/chemosensitivity. Eur. J. Pharmacol., 2021, 892, 173660.
[http://dx.doi.org/10.1016/j.ejphar.2020.173660] [PMID: 33310181]
[17]
Yahyapour, R.; Shabeeb, D.; Cheki, M.; Musa, A.E.; Farhood, B.; Rezaeyan, A.; Amini, P.; Fallah, H.; Najafi, M. Radiation protection and mitigation by natural antioxidants and flavonoids: Implications to radiotherapy and radiation disasters. Curr. Mol. Pharmacol., 2018, 11(4), 285-304.
[http://dx.doi.org/10.2174/1874467211666180619125653] [PMID: 29921213]
[18]
Farhood, B.; Mortezaee, K.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Shabeeb, D.; Eleojo Musa, A.; Sanikhani, N.S.; Najafi, M.; Ahmadi, A. Selenium as an adjuvant for modification of radiation response. J. Cell. Biochem., 2019, 120(11), 18559-18571.
[http://dx.doi.org/10.1002/jcb.29171] [PMID: 31190419]
[19]
Farhood, B.; Goradel, N.H.; Mortezaee, K.; Khanlarkhani, N.; Najafi, M.; Sahebkar, A. Melatonin and cancer: From the promotion of genomic stability to use in cancer treatment. J. Cell. Physiol., 2019, 234(5), 5613-5627.
[http://dx.doi.org/10.1002/jcp.27391] [PMID: 30238978]
[20]
Talib, W.H. Melatonin and cancer hallmarks. Molecules, 2018, 23(3), E518.
[http://dx.doi.org/10.3390/molecules23030518] [PMID: 29495398]
[21]
Colombo, J.; Jardim-Perassi, B.V.; Ferreira, J.P.S.; Braga, C.Z.; Sonehara, N.M.; Júnior, R.P.; Moschetta, M.G.; Girol, A.P.; Zuccari, D.A.P.C. Melatonin differentially modulates NF-кB expression in breast and liver cancer cells. Anticancer. Agents Med. Chem., 2018, 18(12), 1688-1694.
[http://dx.doi.org/10.2174/1871520618666180131112304] [PMID: 29384062]
[22]
Farhood, B.; Goradel, N.H.; Mortezaee, K.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Mirtavoos-Mahyari, H.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; Najafi, M. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin. Transl. Oncol., 2019, 21(3), 268-279.
[23]
Ghobadi, A.; Shirazi, A.; Najafi, M.; Kahkesh, M.H.; Rezapoor, S. Melatonin ameliorates radiation-induced oxidative stress at targeted and nontargeted lung tissue. J. Med. Phys., 2017, 42(4), 241-244.
[http://dx.doi.org/10.4103/jmp.JMP_60_17] [PMID: 29296038]
[24]
Zetner, D.; Andersen, L.P.; Rosenberg, J. Melatonin as protection against radiation injury: A systematic review. Drug Res. (Stuttg.), 2016, 66(6), 281-296.
[http://dx.doi.org/10.1055/s-0035-1569358] [PMID: 26789653]
[25]
Esposito, E.; Cuzzocrea, S. Antiinflammatory activity of melatonin in central nervous system. Curr. Neuropharmacol., 2010, 8(3), 228-242.
[http://dx.doi.org/10.2174/157015910792246155] [PMID: 21358973]
[26]
Zhou, R.; Liu, H.; Wei, J.; Huang, Y.; Xie, M.; Lin, J. Effects of pineal gland and melatonin on CD4~(+)/CD8~(+) T cell subsets development in rat thymus. Chin. J. Anat., 2005, 28(2), 127-130.
[27]
Srinivasan, V.; Pandi-Perumal, S.R.; Brzezinski, A.; Bhatnagar, K.P.; Cardinali, D.P. Melatonin, immune function and cancer. Recent Pat. Endocr. Metab. Immune Drug Discov., 2011, 5(2), 109-123.
[http://dx.doi.org/10.2174/187221411799015408] [PMID: 22074586]
[28]
Zhou, L.; Chen, X.; Liu, T.; Gong, Y.; Chen, S.; Pan, G.; Cui, W.; Luo, Z.P.; Pei, M.; Yang, H.; He, F. Melatonin reverses H2 O2 -induced premature senescence in mesenchymal stem cells via the SIRT1-dependent pathway. J. Pineal Res., 2015, 59(2), 190-205.
[http://dx.doi.org/10.1111/jpi.12250] [PMID: 25975679]
[29]
Favero, G.; Franceschetti, L.; Bonomini, F.; Rodella, L.F.; Rezzani, R. Melatonin as an anti-inflammatory agent modulating inflammasome activation. Int. J. Endocrinol., 2017, 2017, 1835195.
[http://dx.doi.org/10.1155/2017/1835195] [PMID: 29104591]
[30]
Fardid, R.; Salajegheh, A.; Mosleh-Shirazi, M.A.; Sharifzadeh, S.; Okhovat, M.A.; Najafi, M.; Rezaeyan, A.; Abaszadeh, A. Melatonin ameliorates the production of COX-2, iNOS, and the formation of 8-OHdG in non-targeted lung tissue after pelvic irradiation. Cell J., 2017, 19(2), 324-331.
[PMID: 28670525]
[31]
Aliasgharzadeh, A.; Farhood, B.; Amini, P.; Saffar, H.; Motevaseli, E.; Rezapoor, S.; Nouruzi, F.; Shabeeb, D.H.; Eleojo Musa, A.; Mohseni, M.; Moradi, H.; Najafi, M. Melatonin attenuates upregulation of duox1 and duox2 and protects against lung injury following chest irradiation in rats. Cell J., 2019, 21(3), 236-242.
[PMID: 31210428]
[32]
Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; Najafi, M. Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: A histopathological study. Medicina, 2019, 55(8)
[33]
Lissoni, P.; Barni, S.; Tancini, G.; Ardizzoia, A.; Rovelli, F.; Cazzaniga, M.; Brivio, F.; Piperno, A.; Aldeghi, R.; Fossati, D. Immunotherapy with subcutaneous low-dose interleukin-2 and the pineal indole melatonin as a new effective therapy in advanced cancers of the digestive tract. Br. J. Cancer, 1993, 67(6), 1404-1407.
[http://dx.doi.org/10.1038/bjc.1993.260] [PMID: 8512825]
[34]
Grant, S.G.; Melan, M.A.; Latimer, J.J.; Witt-Enderby, P.A. Melatonin and breast cancer: cellular mechanisms, clinical studies and future perspectives. Expert Rev. Mol. Med., 2009, 11, e5-e5.
[http://dx.doi.org/10.1017/S1462399409000982] [PMID: 19193248]
[35]
Martínez-Campa, C.; González, A.; Mediavilla, M.D.; Alonso-González, C.; Alvarez-García, V.; Sánchez-Barceló, E.J.; Cos, S. Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br. J. Cancer, 2009, 101(9), 1613-1619.
[http://dx.doi.org/10.1038/sj.bjc.6605336] [PMID: 19773750]
[36]
Dwivedi, R.; Pandey, R.; Chandra, S.; Mehrotra, D. Apoptosis and genes involved in oral cancer - a comprehensive review. Oncol. Rev., 2020, 14(2), 472.
[http://dx.doi.org/10.4081/oncol.2020.472] [PMID: 32685111]
[37]
Miller, S.C.; Pandi-Perumal, S.R.; Esquifino, A.I.; Cardinali, D.P.; Maestroni, G.J.M. The role of melatonin in immuno-enhancement: potential application in cancer. Int. J. Exp. Pathol., 2006, 87(2), 81-87.
[http://dx.doi.org/10.1111/j.0959-9673.2006.00474.x] [PMID: 16623752]
[38]
Yao, Y.; Dai, W. Genomic instability and cancer. J. Carcinog. Mutagen., 2014, 5, 1000165.
[PMID: 25541596]
[39]
Igney, F.H.; Krammer, P.H. Death and anti-death: tumour resistance to apoptosis. Nat. Rev. Cancer, 2002, 2(4), 277-288.
[http://dx.doi.org/10.1038/nrc776] [PMID: 12001989]
[40]
Ravi, R.; Bedi, A. NF-kappaB in cancer-a friend turned foe. Drug Resist. Updates: Rev. Comment. Antimicrob. Anticancer Chemother., 2004, 7(1), 53-67.
[41]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Musa, A.E. NF-κB targeting for overcoming tumor resistance and normal tissues toxicity. J. Cell. Physiol., 2019, 234(10), 17187-17204.
[http://dx.doi.org/10.1002/jcp.28504] [PMID: 30912132]
[42]
Ashrafizadeh, M.; Taeb, S.; Haghi-Aminjan, H.; Afrashi, S.; Moloudi, K.; Musa, A.E.; Najafi, M.; Farhood, B. Resveratrol as an enhancer of apoptosis in cancer: A mechanistic review. Anti-cancer agents in medicinal chemistry,
[43]
Jeffries, K.A.; Krupenko, N.I. Ceramide signaling and p53 pathways. Adv. Cancer Res., 2018, 140, 191-215.
[http://dx.doi.org/10.1016/bs.acr.2018.04.011] [PMID: 30060809]
[44]
Khan, H.; Ullah, H.; Castilho, P.C.M.F.; Gomila, A.S.; D’Onofrio, G.; Filosa, R.; Wang, F.; Nabavi, S.M.; Daglia, M.; Silva, A.S.; Rengasamy, K.R.R.; Ou, J.; Zou, X.; Xiao, J.; Cao, H. Targeting NF-κB signaling pathway in cancer by dietary polyphenols. Crit. Rev. Food Sci. Nutr., 2020, 60(16), 2790-2800.
[http://dx.doi.org/10.1080/10408398.2019.1661827] [PMID: 31512490]
[45]
García-Santos, G.; Martin, V.; Rodríguez-Blanco, J.; Herrera, F.; Casado-Zapico, S.; Sánchez-Sánchez, A.M.; Antolín, I.; Rodríguez, C. Fas/Fas ligand regulation mediates cell death in human Ewing’s sarcoma cells treated with melatonin. Br. J. Cancer, 2012, 106(7), 1288-1296.
[http://dx.doi.org/10.1038/bjc.2012.66] [PMID: 22382690]
[46]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Potes, Y.; Shabeeb, D.; Musa, A.E. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci., 2019, 228, 228-241.
[http://dx.doi.org/10.1016/j.lfs.2019.05.009] [PMID: 31077716]
[47]
Davis, N.M.; Sokolosky, M.; Stadelman, K.; Abrams, S.L.; Libra, M.; Candido, S.; Nicoletti, F.; Polesel, J.; Maestro, R.; D’Assoro, A.; Drobot, L.; Rakus, D.; Gizak, A.; Laidler, P.; Dulińska-Litewka, J.; Basecke, J.; Mijatovic, S.; Maksimovic-Ivanic, D.; Montalto, G.; Cervello, M.; Fitzgerald, T.L.; Demidenko, Z.; Martelli, A.M.; Cocco, L.; Steelman, L.S.; McCubrey, J.A. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget, 2014, 5(13), 4603-4650.
[http://dx.doi.org/10.18632/oncotarget.2209] [PMID: 25051360]
[48]
Han, S.S.; Yun, H.; Son, D.J.; Tompkins, V.S.; Peng, L.; Chung, S.T.; Kim, J.S.; Park, E.S.; Janz, S. NF-kappaB/STAT3/PI3K signaling crosstalk in iMyc E mu B lymphoma. Mol. Cancer, 2010, 9, 97.
[http://dx.doi.org/10.1186/1476-4598-9-97] [PMID: 20433747]
[49]
Massacesi, C.; Di Tomaso, E.; Urban, P.; Germa, C.; Quadt, C.; Trandafir, L.; Aimone, P.; Fretault, N.; Dharan, B.; Tavorath, R.; Hirawat, S. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. OncoTargets Ther., 2016, 9, 203-210.
[http://dx.doi.org/10.2147/OTT.S89967] [PMID: 26793003]
[50]
Farhood, B.; Khodamoradi, E.; Hoseini-Ghahfarokhi, M.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Eleojo Musa, A.; Najafi, M. TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacol. Res., 2020, 155, 104745.
[http://dx.doi.org/10.1016/j.phrs.2020.104745] [PMID: 32145401]
[51]
Kumar, A.; Busca, A.; Saxena, M. PI3K/Akt pathway contributes to development of apoptosis resistance during differentiation of human macrophages by maintaining antiapoptotic Bcl-xL protein expression (48.7). J. Immunol., 2012, 188(Suppl 1)
[52]
Ashrafizadeh, M.; Najafi, M.; Ang, H.L.; Moghadam, E.R.; Mahabady, M.K.; Zabolian, A.; Jafaripour, L.; Bejandi, A.K.; Hushmandi, K.; Saleki, H.; Zarrabi, A.; Kumar, A.P. PTEN, a barrier for proliferation and metastasis of gastric cancer cells: from molecular pathways to targeting and regulation. Biomedicines, 2020, 8(8), 264.
[http://dx.doi.org/10.3390/biomedicines8080264] [PMID: 32756305]
[53]
Ashrafizadeh, M.; Zarrabi, A.; Samarghandian, S.; Najafi, M. PTEN: What we know of the function and regulation of this onco-suppressor factor in bladder cancer? Eur. J. Pharmacol., 2020, 881, 173226.
[http://dx.doi.org/10.1016/j.ejphar.2020.173226] [PMID: 32485246]
[54]
Gao, J.; Xia, R.; Chen, J.; Gao, J.; Luo, X.; Ke, C.; Ren, C.; Li, J.; Mi, Y. Inhibition of esophageal-carcinoma cell proliferation by genistein via suppression of JAK1/2-STAT3 and AKT/MDM2/p53 signaling pathways. Aging (Albany NY), 2020, 12(7), 6240-6259.
[http://dx.doi.org/10.18632/aging.103019] [PMID: 32276266]
[55]
Ma, H.; Wang, Z.; Hu, L.; Zhang, S.; Zhao, C.; Yang, H.; Wang, H.; Fang, Z.; Wu, L.; Chen, X. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas. Biochem. Biophys. Res. Commun., 2018, 496(4), 1322-1330.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.010] [PMID: 29408377]
[56]
Zhang, X.; Niu, Y.; Huang, Y. Melatonin inhibits cell proliferation in a rat model of breast hyperplasia by mediating the PTEN/AKT pathway. Oncol. Rep., 2021, 45(5), 1-9.
[http://dx.doi.org/10.3892/or.2021.8017] [PMID: 34184749]
[57]
Song, J.; Ma, S-J.; Luo, J-H.; Zhang, H.; Wang, R-X.; Liu, H.; Li, L.; Zhang, Z-G.; Zhou, R-X. Melatonin induces the apoptosis and inhibits the proliferation of human gastric cancer cells via blockade of the AKT/MDM2 pathway. Oncol. Rep., 2018, 39(4), 1975-1983.
[http://dx.doi.org/10.3892/or.2018.6282] [PMID: 29484412]
[58]
Fan, L.; Sun, G.; Ma, T.; Zhong, F.; Wei, W. Melatonin overcomes apoptosis resistance in human hepatocellular carcinoma by targeting survivin and XIAP. J. Pineal Res., 2013, 55(2), 174-183.
[http://dx.doi.org/10.1111/jpi.12060] [PMID: 23679681]
[59]
Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell, 2002, 9(3), 459-470.
[http://dx.doi.org/10.1016/S1097-2765(02)00482-3] [PMID: 11931755]
[60]
Gao, Y.; Xiao, X.; Zhang, C.; Yu, W.; Guo, W.; Zhang, Z.; Li, Z.; Feng, X.; Hao, J.; Zhang, K.; Xiao, B.; Chen, M.; Huang, W.; Xiong, S.; Wu, X.; Deng, W. Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-κB/iNOS signaling pathways. J. Pineal Res., 2017, 62(2), e12380.
[http://dx.doi.org/10.1111/jpi.12380] [PMID: 27865009]
[61]
Haupt, S.; Berger, M.; Goldberg, Z.; Haupt, Y. Apoptosis - the p53 network. J. Cell Sci., 2003, 116(Pt 20), 4077-4085.
[http://dx.doi.org/10.1242/jcs.00739] [PMID: 12972501]
[62]
Amaral, J.D.; Xavier, J.M.; Steer, C.J.; Rodrigues, C.M. Targeting the p53 pathway of apoptosis. Curr. Pharm. Des., 2010, 16(22), 2493-2503.
[http://dx.doi.org/10.2174/138161210791959818] [PMID: 20500145]
[63]
Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ., 2018, 25(1), 104-113.
[http://dx.doi.org/10.1038/cdd.2017.169] [PMID: 29149101]
[64]
Alamro, A.; Alkeraishan, N.; AlMalky, M.; Alghamdi, A.; Al-Daghri, N.M. Apoptosis induced by melatonin and vitamin D3 in MCF-7 breast cancer cell line by upregulating the gene expression of P53. 2020. [A head of print].
[65]
Proietti, S.; Cucina, A.; D’Anselmi, F.; Dinicola, S.; Pasqualato, A.; Lisi, E.; Bizzarri, M. Melatonin and vitamin D3 synergistically down-regulate Akt and MDM2 leading to TGFβ-1-dependent growth inhibition of breast cancer cells. J. Pineal Res., 2011, 50(2), 150-158.
[PMID: 21091766]
[66]
Santoro, R.; Marani, M.; Blandino, G.; Muti, P.; Strano, S. Melatonin triggers p53Ser phosphorylation and prevents DNA damage accumulation. Oncogene, 2012, 31(24), 2931-2942.
[http://dx.doi.org/10.1038/onc.2011.469] [PMID: 22002314]
[67]
Gandhi, S.J.; Minn, A.J.; Vonderheide, R.H.; Wherry, E.J.; Hahn, S.M.; Maity, A. Awakening the immune system with radiation: Optimal dose and fractionation. Cancer Lett., 2015, 368(2), 185-190.
[http://dx.doi.org/10.1016/j.canlet.2015.03.024] [PMID: 25799953]
[68]
Casado-Zapico, S.; Martín, V.; García-Santos, G.; Rodríguez-Blanco, J.; Sánchez-Sánchez, A.M.; Luño, E.; Suárez, C.; García-Pedrero, J.M.; Menendez, S.T.; Antolín, I.; Rodriguez, C. Regulation of the expression of death receptors and their ligands by melatonin in haematological cancer cell lines and in leukaemia cells from patients. J. Pineal Res., 2011, 50(3), 345-355.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00850.x] [PMID: 21392090]
[69]
Hussain, A.R.; Ahmed, S.O.; Ahmed, M.; Khan, O.S.; Al Abdulmohsen, S.; Platanias, L.C.; Al-Kuraya, K.S.; Uddin, S. Cross-talk between NFkB and the PI3-kinase/AKT pathway can be targeted in primary effusion lymphoma (PEL) cell lines for efficient apoptosis. PLoS One, 2012, 7(6), e39945-e39945.
[http://dx.doi.org/10.1371/journal.pone.0039945] [PMID: 22768179]
[70]
Volcic, M.; Karl, S.; Baumann, B.; Salles, D.; Daniel, P.; Fulda, S.; Wiesmüller, L. NF-κB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes. Nucleic Acids Res., 2012, 40(1), 181-195.
[http://dx.doi.org/10.1093/nar/gkr687] [PMID: 21908405]
[71]
Godwin, P.; Baird, A.M.; Heavey, S.; Barr, M.P.; O’Byrne, K.J.; Gately, K. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front. Oncol., 2013, 3, 120.
[http://dx.doi.org/10.3389/fonc.2013.00120] [PMID: 23720710]
[72]
Najafi, M.; Shirazi, A.; Motevaseli, E.; Rezaeyan, A.H.; Salajegheh, A.; Rezapoor, S. Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacology, 2017, 25(4), 403-413.
[http://dx.doi.org/10.1007/s10787-017-0332-5] [PMID: 28255737]
[73]
Ahmadi, Z.; Ashrafizadeh, M. Melatonin as a potential modulator of Nrf2. Fundam. Clin. Pharmacol., 2020, 34(1), 11-19.
[PMID: 31283051]
[74]
Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F.T.; Zhou, T.T.; Liu, B.; Bao, J.K. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif., 2012, 45(6), 487-498.
[http://dx.doi.org/10.1111/j.1365-2184.2012.00845.x] [PMID: 23030059]
[75]
Smith, A.G.; Macleod, K.F. Autophagy, cancer stem cells and drug resistance. J. Pathol., 2019, 247(5), 708-718.
[http://dx.doi.org/10.1002/path.5222] [PMID: 30570140]
[76]
Yun, C.W.; Lee, S.H. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466.
[http://dx.doi.org/10.3390/ijms19113466] [PMID: 30400561]
[77]
Boga, J.A.; Caballero, B.; Potes, Y.; Perez-Martinez, Z.; Reiter, R.J.; Vega-Naredo, I.; Coto-Montes, A. Therapeutic potential of melatonin related to its role as an autophagy regulator: A review. J. Pineal Res., 2019, 66(1), e12534.
[http://dx.doi.org/10.1111/jpi.12534] [PMID: 30329173]
[78]
Zhou, N.; Wei, Z.X.; Qi, Z.X. Inhibition of autophagy triggers melatonin-induced apoptosis in glioblastoma cells. BMC Neurosci., 2019, 20(1), 63.
[http://dx.doi.org/10.1186/s12868-019-0545-1] [PMID: 31870319]
[79]
Liu, C.; Jia, Z.; Zhang, X.; Hou, J.; Wang, L.; Hao, S.; Ruan, X.; Yu, Z.; Zheng, Y. Involvement of melatonin in autophagy-mediated mouse hepatoma H22 cell survival. Int. Immunopharmacol., 2012, 12(2), 394-401.
[http://dx.doi.org/10.1016/j.intimp.2011.12.012] [PMID: 22222116]
[80]
Ordoñez, R.; Fernández, A.; Prieto-Domínguez, N.; Martínez, L.; García-Ruiz, C.; Fernández-Checa, J.C.; Mauriz, J.L.; González-Gallego, J. Ceramide metabolism regulates autophagy and apoptotic cell death induced by melatonin in liver cancer cells. J. Pineal Res., 2015, 59(2), 178-189.
[http://dx.doi.org/10.1111/jpi.12249] [PMID: 25975536]
[81]
Tang, Z.; Hu, B.; Zang, F.; Wang, J.; Zhang, X.; Chen, H. Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration. Cell Death Dis., 2019, 10(7), 510.
[http://dx.doi.org/10.1038/s41419-019-1701-3] [PMID: 31263165]
[82]
Sagrillo-Fagundes, L.; Bienvenue-Pariseault, J.; Vaillancourt, C. Melatonin: The smart molecule that differentially modulates autophagy in tumor and normal placental cells. PLoS One, 2019, 14(1), e0202458.
[http://dx.doi.org/10.1371/journal.pone.0202458] [PMID: 30629581]
[83]
Chen, F.; Liu, H.; Wang, X.; Li, Z.; Zhang, J.; Pei, Y.; Zheng, Z.; Wang, J. Melatonin activates autophagy via the NF-κB signaling pathway to prevent extracellular matrix degeneration in intervertebral disc. Osteoarthritis Cartilage, 2020, 28(8), 1121-1132.
[http://dx.doi.org/10.1016/j.joca.2020.05.011] [PMID: 32470597]
[84]
Vara-Perez, M.; Felipe-Abrio, B.; Agostinis, P. Mitophagy in cancer: a tale of adaptation. Cells, 2019, 8(5), 493.
[http://dx.doi.org/10.3390/cells8050493] [PMID: 31121959]
[85]
Panigrahi, D.P. Seminars in cancer biology; Elsevier, 2019.
[86]
Lu, H.; Li, G.; Liu, L.; Feng, L.; Wang, X.; Jin, H. Regulation and function of mitophagy in development and cancer. Autophagy, 2013, 9(11), 1720-1736.
[http://dx.doi.org/10.4161/auto.26550] [PMID: 24091872]
[87]
Yan, C.; Li, T-S. Dual role of mitophagy in cancer drug resistance. Anticancer Res., 2018, 38(2), 617-621.
[PMID: 29374684]
[88]
Ferro, F. Seminars in cell & developmental biology; Elsevier, 2020, Vol. 98, pp. 129-138.
[89]
Prieto-Domínguez, N.; Ordóñez, R.; Fernández, A.; Méndez-Blanco, C.; Baulies, A.; Garcia-Ruiz, C.; Fernández-Checa, J.C.; Mauriz, J.L.; González-Gallego, J. Melatonin-induced increase in sensitivity of human hepatocellular carcinoma cells to sorafenib is associated with reactive oxygen species production and mitophagy. J. Pineal Res., 2016, 61(3), 396-407.
[http://dx.doi.org/10.1111/jpi.12358] [PMID: 27484637]
[90]
Shen, Y.Q.; Guerra-Librero, A.; Fernandez-Gil, B.I.; Florido, J.; García-López, S.; Martinez-Ruiz, L.; Mendivil-Perez, M.; Soto-Mercado, V.; Acuña-Castroviejo, D.; Ortega-Arellano, H.; Carriel, V.; Diaz-Casado, M.E.; Reiter, R.J.; Rusanova, I.; Nieto, A.; López, L.C.; Escames, G. Combination of melatonin and rapamycin for head and neck cancer therapy: Suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J. Pineal Res., 2018, 64(3), e12461.
[http://dx.doi.org/10.1111/jpi.12461] [PMID: 29247557]
[91]
Guerra-Librero, A.; Fernandez-Gil, B.I.; Florido, J.; Martinez-Ruiz, L.; Rodríguez-Santana, C.; Shen, Y.Q.; García-Verdugo, J.M.; López-Rodríguez, A.; Rusanova, I.; Quiñones-Hinojosa, A.; Acuña-Castroviejo, D.; Marruecos, J.; De Haro, T.; Escames, G. Melatonin targets metabolism in head and neck cancer cells by regulating mitochondrial structure and function. Antioxidants (Basel, Switzerland), 2021, 10(4)
[92]
Chen, L.; Liu, L.; Li, Y.; Gao, J. Melatonin increases human cervical cancer HeLa cells apoptosis induced by cisplatin via inhibition of JNK/Parkin/mitophagy axis. In Vitro Cell. Dev. Biol. Anim., 2018, 54(1), 1-10.
[http://dx.doi.org/10.1007/s11626-017-0200-z] [PMID: 29071589]
[93]
Yan, H.; Xiao, F.; Zou, J.; Qiu, C.; Sun, W.; Gu, M.; Zhang, L. NR4A1-induced increase in the sensitivity of a human gastric cancer line to TNFα-mediated apoptosis is associated with the inhibition of JNK/Parkin-dependent mitophagy. Int. J. Oncol., 2018, 52(2), 367-378.
[PMID: 29207128]
[94]
Najafi, M.; Shirazi, A.; Motevaseli, E.; Geraily, G.; Norouzi, F.; Heidari, M.; Rezapoor, S. The melatonin immunomodulatory actions in radiotherapy. Biophys. Rev., 2017, 9(2), 139-148.
[http://dx.doi.org/10.1007/s12551-017-0256-8] [PMID: 28510090]
[95]
Zhao, Q.; Wang, W.; Cui, J. Melatonin enhances TNF-α-mediated cervical cancer HeLa cells death via suppressing CaMKII/Parkin/mitophagy axis. Cancer Cell Int., 2019, 19, 58.
[http://dx.doi.org/10.1186/s12935-019-0777-2] [PMID: 30923460]
[96]
Li, D.; Tian, Z.; Tang, W.; Zhang, J.; Lu, L.; Sun, Z.; Zhou, Z.; Fan, F. The Protective Effects of 5-Methoxytryptamine-α-lipoic Acid on Ionizing Radiation-Induced Hematopoietic Injury. Int. J. Mol. Sci., 2016, 17(6), 935.
[http://dx.doi.org/10.3390/ijms17060935] [PMID: 27314327]
[97]
Najafi, M.; Shirazi, A.; Motevaseli, E.; Geraily, G.; Amini, P.; Tooli, L.F.; Shabeeb, D. Melatonin modulates regulation of NOX2 and NOX4 following irradiation in the lung. Curr. Clin. Pharmacol., 2019, 14(3), 224-231.
[http://dx.doi.org/10.2174/1574884714666190502151733] [PMID: 31057124]
[98]
Goradel, N.H.; Asghari, M.H.; Moloudizargari, M.; Negahdari, B.; Haghi-Aminjan, H.; Abdollahi, M. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence. Toxicol. Appl. Pharmacol., 2017, 335, 56-63.
[http://dx.doi.org/10.1016/j.taap.2017.09.022] [PMID: 28974455]
[99]
Shiu, S.Y. Towards rational and evidence-based use of melatonin in prostate cancer prevention and treatment. J. Pineal Res., 2007, 43(1), 1-9.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00451.x] [PMID: 17614829]
[100]
Zou, Z-W.; Liu, T.; Li, Y.; Chen, P.; Peng, X.; Ma, C.; Zhang, W-J.; Li, P-D. Melatonin suppresses thyroid cancer growth and overcomes radioresistance via inhibition of p65 phosphorylation and induction of ROS. Redox Biol., 2018, 16, 226-236.
[http://dx.doi.org/10.1016/j.redox.2018.02.025] [PMID: 29525603]
[101]
Hong, Y.; Won, J.; Lee, Y.; Lee, S.; Park, K.; Chang, K.T.; Hong, Y. Melatonin treatment induces interplay of apoptosis, autophagy, and senescence in human colorectal cancer cells. J. Pineal Res., 2014, 56(3), 264-274.
[http://dx.doi.org/10.1111/jpi.12119] [PMID: 24484372]
[102]
Song, N.; Kim, A.J.; Kim, H.J.; Jee, H.J.; Kim, M.; Yoo, Y.H.; Yun, J. Melatonin suppresses doxorubicin-induced premature senescence of A549 lung cancer cells by ameliorating mitochondrial dysfunction. J. Pineal Res., 2012, 53(4), 335-343.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01003.x] [PMID: 22536785]
[103]
Cheng, C-Y.; Liu, C-J.; Huang, Y-C.; Wu, S-H.; Fang, H-W.; Chen, Y-J. BI2536 induces mitotic catastrophe and radiosensitization in human oral cancer cells. Oncotarget, 2018, 9(30), 21231-21243.
[http://dx.doi.org/10.18632/oncotarget.25035] [PMID: 29765534]
[104]
Wang, M.; Gao, Q.; Teng, X.; Pan, M.; Lin, T.; Zhou, G.; Xu, B.; Yue, Z. Ionizing radiation, but not ultraviolet radiation, induces mitotic catastrophe in mouse epidermal keratinocytes with aberrant cell cycle checkpoints. Exp. Dermatol., 2018, 27(7), 791-794.
[http://dx.doi.org/10.1111/exd.13665] [PMID: 29672918]
[105]
Wang, X.; Chen, Z.; Mishra, A.K.; Silva, A.; Ren, W.; Pan, Z.; Wang, J.H. Chemotherapy-induced differential cell cycle arrest in B-cell lymphomas affects their sensitivity to Wee1 inhibition. Haematologica, 2018, 103(3), 466.
[106]
Portugal, J.; Mansilla, S.; Bataller, M. Mechanisms of drug-induced mitotic catastrophe in cancer cells. Curr. Pharm. Des., 2010, 16(1), 69-78.
[http://dx.doi.org/10.2174/138161210789941801] [PMID: 20214619]
[107]
Denisenko, T.V.; Sorokina, I.V.; Gogvadze, V.; Zhivotovsky, B. Mitotic catastrophe and cancer drug resistance: A link that must to be broken. Drug Resist. Updat., 2016, 24, 1-12.
[http://dx.doi.org/10.1016/j.drup.2015.11.002] [PMID: 26830311]
[108]
Li, J.; Cao, F.; Yin, H.L.; Huang, Z.J.; Lin, Z.T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: past, present and future. Cell Death Dis., 2020, 11(2), 88.
[http://dx.doi.org/10.1038/s41419-020-2298-2] [PMID: 32015325]
[109]
Wang, Y-Y.; Liu, X-L.; Zhao, R. Induction of pyroptosis and its implications in cancer management. Front. Oncol., 2019, 9(971), 971.
[http://dx.doi.org/10.3389/fonc.2019.00971] [PMID: 31616642]
[110]
Najafi, M.; Salehi, E.; Farhood, B.; Nashtaei, M.S.; Hashemi Goradel, N.; Khanlarkhani, N.; Namjoo, Z.; Mortezaee, K. Adjuvant chemotherapy with melatonin for targeting human cancers: A review. J. Cell. Physiol., 2019, 234(3), 2356-2372.
[http://dx.doi.org/10.1002/jcp.27259] [PMID: 30192001]
[111]
Mortezaee, K.; Potes, Y.; Mirtavoos-Mahyari, H.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Boosting immune system against cancer by melatonin: A mechanistic viewpoint. Life Sci., 2019, 238, 116960.
[http://dx.doi.org/10.1016/j.lfs.2019.116960] [PMID: 31629760]
[112]
Farhood, B.; Ashrafizadeh, M.; Khodamoradi, E.; Hoseini-Ghahfarokhi, M.; Afrashi, S.; Musa, A.E.; Najafi, M. Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci., 2020, 250, 117570.
[http://dx.doi.org/10.1016/j.lfs.2020.117570] [PMID: 32205088]
[113]
Yahyapour, R.; Amini, P.; Rezapoor, S.; Rezaeyan, A.; Farhood, B.; Cheki, M.; Fallah, H.; Najafi, M. Targeting of inflammation for radiation protection and mitigation. Curr. Mol. Pharmacol., 2018, 11(3), 203-210.
[http://dx.doi.org/10.2174/1874467210666171108165641] [PMID: 29119941]
[114]
Rezapoor, S.; Shirazi, A.; Abbasi, S.; Bazzaz, J.T.; Izadi, P.; Rezaeejam, H.; Valizadeh, M.; Soleimani-Mohammadi, F.; Najafi, M. Modulation of radiation-induced base excision repair pathway gene expression by melatonin. J. Med. Phys., 2017, 42(4), 245-250.
[http://dx.doi.org/10.4103/jmp.JMP_9_17] [PMID: 29296039]
[115]
Najafi, M.; Cheki, M.; Hassanzadeh, G.; Amini, P.; Shabeeb, D.; Musa, A.E. The radioprotective effect of combination of melatonin and metformin on rat duodenum damage induced by ionizing radiation: A histological study. Adv. Biomed. Res., 2019, 8(1), 51.
[http://dx.doi.org/10.4103/abr.abr_68_19] [PMID: 31516889]
[116]
Mortezaee, K.; Goradel, N.H.; Amini, P.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. NADPH Oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy. Curr. Mol. Pharmacol., 2019, 12(1), 50-60.
[http://dx.doi.org/10.2174/1874467211666181010154709] [PMID: 30318012]
[117]
Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Saffar, H.; Motevaseli, E.; Rezapoor, S.; Nouruzi, F.; Shabeeb, D.; Musa, A.E.; Ashabi, G.; Mohseni, M.; Moradi, H.; Najafi, M. Radiation-induced dual oxidase upregulation in rat heart tissues: Protective effect of melatonin. Medicina (Kaunas), 2019, 55(7), E317.
[http://dx.doi.org/10.3390/medicina55070317] [PMID: 31252673]
[118]
Ortiz, F.; Acuña-Castroviejo, D.; Doerrier, C.; Dayoub, J.C.; López, L.C.; Venegas, C.; García, J.A.; López, A.; Volt, H.; Luna-Sánchez, M.; Escames, G. Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. J. Pineal Res., 2015, 58(1), 34-49.
[http://dx.doi.org/10.1111/jpi.12191] [PMID: 25388914]
[119]
Fernández-Gil, B.; Moneim, A.E.A.; Ortiz, F.; Shen, Y-Q.; Soto-Mercado, V.; Mendivil-Perez, M.; Guerra-Librero, A.; Acuña-Castroviejo, D.; Molina-Navarro, M.M.; García-Verdugo, J.M.; Sayed, R.K.A.; Florido, J.; Luna, J.D.; López, L.C.; Escames, G. Melatonin protects rats from radiotherapy-induced small intestine toxicity. PLoS One, 2017, 12(4), e0174474.
[http://dx.doi.org/10.1371/journal.pone.0174474] [PMID: 28403142]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy