Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Design Strategies, Chemistry and Therapeutic Insights of Multi-target Directed Ligands as Antidepressant Agents

Author(s): Karanvir Singh, Rohit Bhatia, Bhupinder Kumar, Gurpreet Singh and Vikramdeep Monga*

Volume 20, Issue 7, 2022

Published on: 28 March, 2022

Page: [1329 - 1358] Pages: 30

DOI: 10.2174/1570159X19666211102154311

Price: $65

Abstract

Depression is one of the major disorders of the central nervous system worldwide and causes disability and functional impairment. According to the World Health Organization, around 265 million people worldwide are affected by depression. Currently marketed antidepressant drugs take weeks or even months to show anticipated clinical efficacy but remain ineffective in treating suicidal thoughts and cognitive impairment. Due to the multifactorial complexity of the disease, single-target drugs do not always produce satisfactory results and lack the desired level of therapeutic efficacy. Recent literature reports have revealed improved therapeutic potential of multi-target directed ligands due to their synergistic potency and better safety. Medicinal chemists have gone to great extents to design multitarget ligands by generating structural hybrids of different key pharmacophores with improved binding affinities and potency towards different receptors or enzymes. This article has compiled the design strategies of recently published multi-target directed ligands as antidepressant agents. Their biological evaluation, structural-activity relationships, mechanistic and in silico studies have also been described. This article will prove to be highly useful for the researchers to design and develop multi-target ligands as antidepressants with high potency and therapeutic efficacy.

Keywords: CNS disorders, depression, antidepressants, multi-target directed ligands, structure-activity relationship, inhibitor.

Graphical Abstract

[1]
Jablensky A, Johnson R, Bunney W, Cruz M, Durkin M, Familusi J. Neurological, psychiatric, and developmental disorders; meet-ing the challenge in the developing world. National Academy Press 2001.
[2]
Ferrari AJ, Charlson FJ, Norman RE, et al. Burden of depressive disor-ders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med 2013; 10(11): e1001547.
[http://dx.doi.org/10.1371/journal.pmed.1001547] [PMID: 24223526]
[3]
Subbaiah MAM. Triple reuptake inhibitors as potential therapeutics for depression and other disorders: design paradigm and develop-mental challenges. J Med Chem 2018; 61(6): 2133-65.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01827] [PMID: 28731336]
[4]
Ouyang G, Pan G, Liu Q, et al. The global, regional, and national burden of pancreatitis in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. BMC Med 2020; 18(1): 388.
[http://dx.doi.org/10.1186/s12916-020-01859-5] [PMID: 33298026]
[5]
Hellerstein DJ, Flaxer J. Vilazodone for the treatment of major depressive disorder: an evidence-based review of its place in therapy. Core Evid 2015; 10: 49-62.
[http://dx.doi.org/10.2147/CE.S54075] [PMID: 25945081]
[6]
Fiske A, Wetherell JL, Gatz M. Depression in older adults. Annu Rev Clin Psychol 2009; 5: 363-89.
[http://dx.doi.org/10.1146/annurev.clinpsy.032408.153621] [PMID: 19327033]
[7]
Gold SM, Köhler-Forsberg O, Moss-Morris R, et al. Comor-bid depression in medical diseases. Nat Rev Dis Primers 2020; 6(1): 69.
[http://dx.doi.org/10.1038/s41572-020-0200-2] [PMID: 32820163]
[8]
D.E. Hert. M.; Correll, C.U.; Bobes, J.; Cetkovich-Bakmas, M.; Cohen, D.; Asai, I.; Detraux, J.; Gautam, S.; Möller, H.J.; Ndetei, D.M.; Newcomer, J.W.; Uwakwe, R.; Leucht, S. Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry 2011; 10(1): 52-77.
[http://dx.doi.org/10.1002/j.2051-5545.2011.tb00014.x] [PMID: 21379357]
[9]
Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 2007; 370(9590): 851-8.
[http://dx.doi.org/10.1016/S0140-6736(07)61415-9] [PMID: 17826170]
[10]
Bartels H, Middel BL, van der Laan BF, Staal MJ, Albers FW. The additive effect of co-occurring anxiety and depression on health status, quality of life and coping strategies in help-seeking tinnitus sufferers. Ear Hear 2008; 29(6): 947-56.
[http://dx.doi.org/10.1097/AUD.0b013e3181888f83] [PMID: 18941410]
[11]
Brody DJ, Pratt LA, Hughes JP. Prevalence of depression among adults aged 20 and over. United States 2018; pp. 2013-6.
[12]
Ettman CK, Abdalla SM, Cohen GH, Sampson L, Vivier PM, Galea S. Prevalence of depression symptoms in US adults before and during the COVID-19 pandemic. JAMA Netw Open 2020; 3(9): e2019686.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.19686] [PMID: 32876685]
[13]
Weissman MM, Bland R, Joyce PR, Newman S, Wells JE, Wittchen H-U. Sex differences in rates of depression: cross-national perspectives. J Affect Disord 1993; 29(2-3): 77-84.
[http://dx.doi.org/10.1016/0165-0327(93)90025-F] [PMID: 8300980]
[14]
Wang PS, Aguilar-Gaxiola S, Alonso J, et al. Use of mental health services for anxiety, mood, and substance disorders in 17 countries in the WHO world mental health surveys. Lancet 2007; 370(9590): 841-50.
[http://dx.doi.org/10.1016/S0140-6736(07)61414-7] [PMID: 17826169]
[15]
Gilbert P. Psychotherapy and counselling for depression. Sage 2007.
[16]
Watson R, Harvey K, McCabe C, Reynolds S. Understanding anhedonia: a qualitative study exploring loss of interest and pleasure in adolescent depression. Eur Child Adolesc Psychiatry 2020; 29(4): 489-99.
[http://dx.doi.org/10.1007/s00787-019-01364-y] [PMID: 31270605]
[17]
Treadway MT, Zald DH. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev 2011; 35(3): 537-55.
[http://dx.doi.org/10.1016/j.neubiorev.2010.06.006] [PMID: 20603146]
[18]
Higgins ET, Klein R, Strauman T. Self-concept discrepancy theory: A psychological model for distinguishing among different aspects of depression and anxiety. Soc Cogn 1985; 3(1): 51-76.
[http://dx.doi.org/10.1521/soco.1985.3.1.51]
[19]
Cawson P, Wattam C, Brooker S, Kelly G. Child maltreatment in the United Kingdom: A study of the prevalence of abuse and neglect. London: NSPCC 2000.
[20]
Springer KW, Sheridan J, Kuo D, Carnes M. The long-term health outcomes of childhood abuse. An overview and a call to action. J Gen Intern Med 2003; 18(10): 864-70.
[http://dx.doi.org/10.1046/j.1525-1497.2003.20918.x] [PMID: 14521650]
[21]
Heim C, Newport DJ, Mletzko T, Miller AH, Nemeroff CB. The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology 2008; 33(6): 693-710.
[http://dx.doi.org/10.1016/j.psyneuen.2008.03.008] [PMID: 18602762]
[22]
Pillemer K, Suitor JJ, Pardo S, Henderson C. Jr Mothers’ differentiation and depressive symptoms among adult children. J Marriage Fam 2010; 72(2): 333-45.
[http://dx.doi.org/10.1111/j.1741-3737.2010.00703.x] [PMID: 20607119]
[23]
Schmidt PJ. Mood, depression, and reproductive hormones in the menopausal transition. Am J Med 2005; 118(12)(Suppl. 12B): 54-8.
[http://dx.doi.org/10.1016/j.amjmed.2005.09.033] [PMID: 16414327]
[24]
Rashid T, Haider I. Life events and depression. Ann Punjab Med College 2008; 2(1): 11-6.
[25]
Mata DA, Ramos MA, Bansal N, et al. Prevalence of depression and depressive symp-toms among resident physicians: a systematic review and meta-analysis. JAMA 2015; 314(22): 2373-83.
[http://dx.doi.org/10.1001/jama.2015.15845] [PMID: 26647259]
[26]
Davey CG, Yücel M, Allen NB. The emergence of depression in adolescence: development of the prefrontal cortex and the represen-tation of reward. Neurosci Biobehav Rev 2008; 32(1): 1-19.
[http://dx.doi.org/10.1016/j.neubiorev.2007.04.016] [PMID: 17570526]
[27]
Larson R, Csikszentmihalyi M, Graef R. Mood variability and the psychosocial adjustment of adolescents. J Youth Adolesc 1980; 9(6): 469-90.
[http://dx.doi.org/10.1007/BF02089885] [PMID: 24318310]
[28]
Mitchell AJ, Vaze A, Rao S. Clinical diagnosis of depression in primary care: a meta-analysis. Lancet 2009; 374(9690): 609-19.
[http://dx.doi.org/10.1016/S0140-6736(09)60879-5] [PMID: 19640579]
[29]
Beck AT, Steer RA, Beck JS, Newman CF. Hopelessness, depression, suicidal ideation, and clinical diagnosis of depression. Suicide Life Threat Behav 1993; 23(2): 139-45.
[http://dx.doi.org/10.1111/j.1943-278X.1993.tb00378.x] [PMID: 8342213]
[30]
Gotlib IH, Lewinsohn PM, Seeley JR. Symptoms versus a diagnosis of depression: differences in psychosocial functioning. J Consult Clin Psychol 1995; 63(1): 90-100.
[http://dx.doi.org/10.1037/0022-006X.63.1.90] [PMID: 7896995]
[31]
Kumar KS, Srivastava S, Paswan S, Dutta AS. Depression-symptoms, causes, medications and therapies. Pharma Innov 2012; 1(3, Part A): 37.
[32]
Diamond A. Evidence for the importance of dopamine for prefrontal cortex functions early in life. Philos Trans R Soc Lond B Biol Sci 1996; 351(1346): 1483-93.
[http://dx.doi.org/10.1098/rstb.1996.0134] [PMID: 8941960]
[33]
Bymaster FP, Katner JS, Nelson DL, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for ef-ficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002; 27(5): 699-711.
[http://dx.doi.org/10.1016/S0893-133X(02)00346-9] [PMID: 12431845]
[34]
Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2004; 74(1): 1-58.
[http://dx.doi.org/10.1016/j.pneurobio.2004.05.006] [PMID: 15381316]
[35]
Lambert G, Johansson M, Ågren H, Friberg P. Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders. Arch Gen Psychiatry 2000; 57(8): 787-93.
[http://dx.doi.org/10.1001/archpsyc.57.8.787] [PMID: 10920468]
[36]
Molinoff PB, Axelrod J. Biochemistry of catecholamines. Annu Rev Biochem 1971; 40(1): 465-500.
[http://dx.doi.org/10.1146/annurev.bi.40.070171.002341] [PMID: 4399447]
[37]
Papakostas GI. Evidence for S-adenosyl-L-methionine (SAM-e) for the treatment of major depressive disorder. J Clin Psychiatry 2009; 70(Suppl. 5): 18-22.
[http://dx.doi.org/10.4088/JCP.8157su1c.04] [PMID: 19909689]
[38]
Mischoulon D, Fava M. Role of S-adenosyl-L-methionine in the treatment of depression: a review of the evidence. Am J Clin Nutr 2002; 76(5): 1158S-61S.
[http://dx.doi.org/10.1093/ajcn/76.5.1158S] [PMID: 12420702]
[39]
Owens MJ, Nemeroff CB. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem 1994; 40(2): 288-95.
[http://dx.doi.org/10.1093/clinchem/40.2.288] [PMID: 7508830]
[40]
Dantzer R, O’Connor JC, Lawson MA, Kelley KW. Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology 2011; 36(3): 426-36.
[http://dx.doi.org/10.1016/j.psyneuen.2010.09.012] [PMID: 21041030]
[41]
Dorszewska J, Florczak-Wyspianska J, Kowalska M, Stanski M, Kowalewska A, Kozubski W. Serotonin in neurological diseases. Serotonin: A Chemical Messenger Between All Types of Living Cells 2017; 219
[http://dx.doi.org/10.5772/intechopen.69035]
[42]
Ramsay RR. Monoamine oxidases: the biochemistry of the proteins as targets in medicinal chemistry and drug discovery. Curr Top Med Chem 2012; 12(20): 2189-209.
[http://dx.doi.org/10.2174/156802612805219978] [PMID: 23231396]
[43]
Bosch OJ, Müsch W, Bredewold R, Slattery DA, Neumann ID. Prenatal stress increases HPA axis activity and impairs maternal care in lactating female offspring: implications for postpartum mood disorder. Psychoneuroendocrinology 2007; 32(3): 267-78.
[http://dx.doi.org/10.1016/j.psyneuen.2006.12.012] [PMID: 17337328]
[44]
Dickens MJ, Pawluski JL. The HPA axis during the perinatal period: implications for perinatal depression. Endocrinology 2018; 159(11): 3737-46.
[http://dx.doi.org/10.1210/en.2018-00677] [PMID: 30256957]
[45]
Adell A. Brain NMDA receptors in schizophrenia and depression. Biomolecules 2020; 10(6): 947.
[http://dx.doi.org/10.3390/biom10060947] [PMID: 32585886]
[46]
Szakacs R, Janka Z, Kalman J. The “blue” side of glutamatergic neurotransmission: NMDA receptor antagonists as possible novel ther-apeutics for major depression. Neuropsychopharmacol Hung 2012; 14(1): 29-40.
[PMID: 22427468]
[47]
Kumar RR, Sahu B, Pathania S, Singh PK, Akhtar MJ, Kumar B. Piperazine, a key substructure for antidepressants: its role in developments and structure-activity relationships. ChemMedChem 2021; 16(12): 1878-901.
[http://dx.doi.org/10.1002/cmdc.202100045] [PMID: 33751807]
[48]
Kumar B, Mantha AK, Kumar V. Recent developments on the structure–activity relationship studies of MAO inhibitors and their role in different neurological disorders. RSC Advances 2016; 6(48): 42660-83.
[http://dx.doi.org/10.1039/C6RA00302H]
[49]
Kumar B, Gupta VP, Kumar V. A perspective on monoamine oxidase enzyme as drug target: challenges and opportunities. Curr Drug Targets 2017; 18(1): 87-97.
[http://dx.doi.org/10.2174/1389450117666151209123402] [PMID: 26648064]
[50]
Benfield P, Heel RC, Lewis SP. Fluoxetine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic effica-cy in depressive illness. Drugs 1986; 32(6): 481-508.
[http://dx.doi.org/10.2165/00003495-198632060-00002] [PMID: 2878798]
[51]
Murdoch D, McTavish D. Sertraline. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depression and obsessive-compulsive disorder. Drugs 1992; 44(4): 604-24.
[http://dx.doi.org/10.2165/00003495-199244040-00007] [PMID: 1281075]
[52]
Cassano GB, Baldini Rossi N, Pini S. Psychopharmacology of anxiety disorders. Dialogues Clin Neurosci 2002; 4(3): 271-85.
[http://dx.doi.org/10.31887/DCNS.2002.4.3/gcassano] [PMID: 22033867]
[53]
Locher C, Koechlin H, Zion SR, et al. Efficacy and safety of selective sero-tonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and placebo for common psychiatric disorders among children and adolescents: a systematic review and meta-analysis. JAMA Psychiatry 2017; 74(10): 1011-20.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.2432] [PMID: 28854296]
[54]
Puetz TW, Youngstedt SD, Herring MP. Effects of pharmacotherapy on combat-related PTSD, anxiety, and depression: a systematic review and meta-regression analysis. PLoS One 2015; 10(5): e0126529.
[http://dx.doi.org/10.1371/journal.pone.0126529] [PMID: 26020791]
[55]
Knadler MP, Lobo E, Chappell J, Bergstrom R. Duloxetine: clinical pharmacokinetics and drug interactions. Clin Pharmacokinet 2011; 50(5): 281-94.
[http://dx.doi.org/10.2165/11539240-000000000-00000] [PMID: 21366359]
[56]
Holliday SM, Benfield P. Venlafaxine. A review of its pharmacology and therapeutic potential in depression. Drugs 1995; 49(2): 280-94.
[http://dx.doi.org/10.2165/00003495-199549020-00010] [PMID: 7729333]
[57]
Protti M, Mandrioli R, Marasca C, Cavalli A, Serretti A, Mercolini L. New-generation, non-SSRI antidepressants: Drug-drug interac-tions and therapeutic drug monitoring. Part 2: NaSSAs, NRIs, SNDRIs, MASSAs, NDRIs, and others. Med Res Rev 2020; 40(5): 1794-832.
[http://dx.doi.org/10.1002/med.21671] [PMID: 32285503]
[58]
Massana J, Möller HJ, Burrows GD, Montenegro RM. Reboxetine: a double-blind comparison with fluoxetine in major depressive disorder. Int Clin Psychopharmacol 1999; 14(2): 73-80.
[http://dx.doi.org/10.1097/00004850-199903000-00003] [PMID: 10220121]
[59]
Nishimura M, Sato K. Ketamine stereoselectively inhibits rat dopamine transporter. Neurosci Lett 1999; 274(2): 131-4.
[http://dx.doi.org/10.1016/S0304-3940(99)00688-6] [PMID: 10553955]
[60]
Molero P, Ramos-Quiroga JA, Martin-Santos R, Calvo-Sánchez E, Gutiérrez-Rojas L, Meana JJ. Antidepressant efficacy and toler-ability of ketamine and esketamine: a critical review. CNS Drugs 2018; 32(5): 411-20.
[http://dx.doi.org/10.1007/s40263-018-0519-3] [PMID: 29736744]
[61]
McEwen BS, Chattarji S, Diamond DM, et al. The neurobiological properties of tian-eptine (Stablon): from monoamine hypothesis to glutamatergic modulation. Mol Psychiatry 2010; 15(3): 237-49.
[http://dx.doi.org/10.1038/mp.2009.80] [PMID: 19704408]
[62]
McEwen BS, Olié JP. Neurobiology of mood, anxiety, and emotions as revealed by studies of a unique antidepressant: tianeptine. Mol Psychiatry 2005; 10(6): 525-37.
[http://dx.doi.org/10.1038/sj.mp.4001648] [PMID: 15753957]
[63]
Invernizzi R, Pozzi L, Garattini S, Samanin R. Tianeptine increases the extracellular concentrations of dopamine in the nucleus ac-cumbens by a serotonin-independent mechanism. Neuropharmacology 1992; 31(3): 221-7.
[http://dx.doi.org/10.1016/0028-3908(92)90171-K] [PMID: 1630590]
[64]
Kumar B, Kuhad A. Lumateperone: a new treatment approach for neuropsychiatric disorders. Drugs of Today (Barcelona, Spain: 1998) 2018; 54(12): 713-719.
[http://dx.doi.org/10.1358/dot.2018.54.12.2899443]
[65]
Blair HA. Lumateperone: First approval. Drugs 2020; 80(4): 417-23.
[http://dx.doi.org/10.1007/s40265-020-01271-6] [PMID: 32060882]
[66]
McMorris T, Harris RC, Swain J, et al. Effect of creatine supplemen-tation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol. Psychopharmacology (Berl) 2006; 185(1): 93-103.
[http://dx.doi.org/10.1007/s00213-005-0269-z] [PMID: 16416332]
[67]
Cunha MP, Machado DG, Capra JC, Jacinto J, Bettio LE, Rodrigues ALS. Antidepressant-like effect of creatine in mice involves dopaminergic activation. J Psychopharmacol 2012; 26(11): 1489-501.
[http://dx.doi.org/10.1177/0269881112447989] [PMID: 22674968]
[68]
Martinez Botella G, Salituro FG, Harrison BL, et al. Neuroactive steroids. 2. 3α-Hydroxy-3β-methyl-21-(4-cyano-1 H-pyrazol-1′-yl)-19-nor-5β-pregnan-20-one (SAGE-217): a clinical next generation neuroactive steroid positive allosteric modulator of the (γ-aminobutyric acid) A receptor. J Med Chem 2017; 60(18): 7810-9.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00846] [PMID: 28753313]
[69]
Kleinman RA, Schatzberg AF. Understanding the clinical effects and mechanisms of action of neurosteroids. Am J Psychiatry 2021; 178(3): 221-3.
[http://dx.doi.org/10.1176/appi.ajp.2020.20020134] [PMID: 33138631]
[70]
Ishibashi T, Horisawa T, Tokuda K, et al. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther 2010; 334(1): 171-81.
[http://dx.doi.org/10.1124/jpet.110.167346] [PMID: 20404009]
[71]
Ishiyama T, Tokuda K, Ishibashi T, Ito A, Toma S, Ohno Y. Lurasidone (SM-13496), a novel atypical antipsychotic drug, reverses MK-801-induced impairment of learning and memory in the rat passive-avoidance test. Eur J Pharmacol 2007; 572(2-3): 160-70.
[http://dx.doi.org/10.1016/j.ejphar.2007.06.058] [PMID: 17662268]
[72]
Bang-Andersen B, Ruhland T, Jørgensen M, et al. Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J Med Chem 2011; 54(9): 3206-21.
[http://dx.doi.org/10.1021/jm101459g] [PMID: 21486038]
[73]
Sanchez C, Asin KE, Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther 2015; 145: 43-57.
[http://dx.doi.org/10.1016/j.pharmthera.2014.07.001] [PMID: 25016186]
[74]
Wróbel MZ, Chodkowski A, Herold F, et al. Bączek, T.; Satała, G.; Bojarski, A.J.; Turło, J. Synthesis and biological evaluation of new multi-target 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with potential antidepressant effect. Eur J Med Chem 2019; 183: 111736.
[http://dx.doi.org/10.1016/j.ejmech.2019.111736] [PMID: 31586817]
[75]
Khan A. Vilazodone, a novel dual-acting serotonergic antidepressant for managing major depression. Expert Opin Investig Drugs 2009; 18(11): 1753-64.
[http://dx.doi.org/10.1517/13543780903286396] [PMID: 19764890]
[76]
Verma R, Bhatia R, Singh G, Kumar B, Mehan S, Monga V. Design, synthesis and neuropharmacological evaluation of new 2,4-disubstituted-1,5-benzodiazepines as CNS active agents. Bioorg Chem 2020; 101: 104010.
[http://dx.doi.org/10.1016/j.bioorg.2020.104010] [PMID: 32615464]
[77]
Dhiman P, Arora N, Thanikachalam PV, Monga V. Recent advances in the synthetic and medicinal perspective of quinolones: A review. Bioorg Chem 2019; 92: 103291.
[http://dx.doi.org/10.1016/j.bioorg.2019.103291] [PMID: 31561107]
[78]
Nehra B, Rulhania S, Jaswal S, Kumar B, Singh G, Monga V. Recent advancements in the development of bioactive pyrazoline derivatives. Eur J Med Chem 2020; 205: 112666.
[http://dx.doi.org/10.1016/j.ejmech.2020.112666] [PMID: 32795767]
[79]
Rulhania S, Kumar S, Nehra B, Gupta G, Monga V. An insight into the medicinal perspective of synthetic analogs of imidazole. J Mol Struct 2021; 129982.
[http://dx.doi.org/10.1016/j.molstruc.2021.129982]
[80]
Alhaider AA, Abdelkader MA, Lien EJ. Design, synthesis, and pharmacological activities of 2-substituted 4-phenylquinolines as potential antidepressant drugs. J Med Chem 1985; 28(10): 1394-8.
[http://dx.doi.org/10.1021/jm00148a004] [PMID: 4045918]
[81]
Faquih AE, Memon RI, Hafeez H, Zeshan M, Naveed S. A review of novel antidepressants: a guide for clinicians. Cureus 2019; 11(3): e4185.
[http://dx.doi.org/10.7759/cureus.4185] [PMID: 31106085]
[82]
Molenaar NM, Kamperman AM, Boyce P, Bergink V. Guidelines on treatment of perinatal depression with antidepressants: An in-ternational review. Aust N Z J Psychiatry 2018; 52(4): 320-7.
[http://dx.doi.org/10.1177/0004867418762057] [PMID: 29506399]
[83]
Singh K, Pal R, Khan SA, Kumar B, Akhtar MJ. Insights into the structure activity relationship of Nitrogen-containing heterocyclics for the development of antidepressant compounds: An updated review. J Mol Struct 2021; 130369.
[http://dx.doi.org/10.1016/j.molstruc.2021.130369]
[84]
Siddiqui N, Andalip SB, Bawa S, et al. Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review. J Pharm Bioallied Sci 2011; 3(2): 194-212.
[http://dx.doi.org/10.4103/0975-7406.80765] [PMID: 21687347]
[85]
Moreira LKDS, de Brito AF, da Silva DM, et al. Potential antidepressant-like effect of piperazine derivative LQFM212 in mice: Role of monoaminer-gic pathway and brain-derived neurotrophic factor. Behav Brain Res 2021; 401: 113066.
[http://dx.doi.org/10.1016/j.bbr.2020.113066] [PMID: 33333109]
[86]
Garg V, Maurya RK, Thanikachalam PV, Bansal G, Monga V. An insight into the medicinal perspective of synthetic analogs of indole: A review. Eur J Med Chem 2019; 180: 562-612.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.019] [PMID: 31344615]
[87]
Zhou J, Jiang X, He S, et al. Rational design of multitarget-directed ligands: strategies and emerging paradigms. J Med Chem 2019; 62(20): 8881-914.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00017] [PMID: 31082225]
[88]
Bolognesi ML, Simoni E, Rosini M, Minarini A, Tumiatti V, Melchiorre C. Multitarget-directed ligands: innovative chemical probes and therapeutic tools against Alzheimer’s disease. Curr Top Med Chem 2011; 11(22): 2797-806.
[http://dx.doi.org/10.2174/156802611798184373] [PMID: 22039879]
[89]
Zhang P, Xu S, Zhu Z, Xu J. Multi-target design strategies for the improved treatment of Alzheimer’s disease. Eur J Med Chem 2019; 176: 228-47.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.020] [PMID: 31103902]
[90]
Bhatia R, Rawal RK. Coumarin Hybrids: Promising Scaffolds in the Treatment of Breast Cancer. Mini Rev Med Chem 2019; 19(17): 1443-58.
[http://dx.doi.org/10.2174/1389557519666190308122509] [PMID: 30854961]
[91]
Schrimpf MR, Lee C-h, Li T, Gfesser G, Mortell K, Faghih R. Indole and indoline derivatives and methods of use thereof. Google Patents 2018.
[92]
Muñoz-torrero lópez-ibarra VC, Pont Masanet, Codony Gisbert, inventor Multitarget compounds for the treatment of Alzheimer’s disease; 2020.
[93]
Bortolami M, Rocco D, Messore A, et al. Acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease - a patent review (2016-present). Expert Opin Ther Pat 2021; 31(5): 399-420.
[http://dx.doi.org/10.1080/13543776.2021.1874344] [PMID: 33428491]
[94]
Andrisano V, Naldi M, De Simone A, Bartolini M. A patent review of butyrylcholinesterase inhibitors and reactivators 2010-2017. Expert Opin Ther Pat 2018; 28(6): 455-65.
[http://dx.doi.org/10.1080/13543776.2018.1476494] [PMID: 29757691]
[95]
Manna K, Agrawal YK. Microwave assisted synthesis of new indophenazine 1,3,5-trisubstruted pyrazoline derivatives of benzofuran and their antimicrobial activity. Bioorg Med Chem Lett 2009; 19(10): 2688-92.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.161] [PMID: 19395261]
[96]
Shibinskaya MO, Lyakhov SA, Mazepa AV, et al. Synthesis, cytotoxicity, antiviral activity and interferon inducing ability of 6-(2-aminoethyl)-6H-indolo[2,3-b]quinoxalines. Eur J Med Chem 2010; 45(3): 1237-43.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.014] [PMID: 20056519]
[97]
Palluotto F, Carotti A, Casini G, et al. Structure-activity relationships of 2-aryl-2,5-dihydropyridazino [4,3-b]indol-3(3H)-ones at the benzodiazepine receptor. Bioorg Med Chem 1996; 4(12): 2091-104.
[http://dx.doi.org/10.1016/S0968-0896(96)00220-9] [PMID: 9022974]
[98]
Heinrich T, Böttcher H, Schiemann K, et al. Dual 5-HT1A agonists and 5-HT re-uptake inhibitors by combination of indole-butyl-amine and chromenonyl-piperazine structural elements in a single molecular entity. Bioorg Med Chem 2004; 12(18): 4843-52.
[http://dx.doi.org/10.1016/j.bmc.2004.07.014] [PMID: 15336263]
[99]
Dhar AK, Mahesh R, Jindal A, Bhatt S. Piperazine analogs of naphthyridine-3-carboxamides and indole-2-carboxamides: novel 5-HT3 receptor antagonists with antidepressant-like activity. Arch Pharm (Weinheim) 2015; 348(1): 34-45.
[http://dx.doi.org/10.1002/ardp.201400293] [PMID: 25581677]
[100]
Sravanthi TV, Manju SL. Indoles - A promising scaffold for drug development. Eur J Pharm Sci 2016; 91: 1-10.
[http://dx.doi.org/10.1016/j.ejps.2016.05.025] [PMID: 27237590]
[101]
Zhou D, Zhou P, Evrard DA, et al. Studies toward the discovery of the next generation of antidepressants. Part 6: Dual 5-HT1A receptor and serotonin transporter affinity within a class of arylpiperazinyl-cyclohexyl indole derivatives. Bioorg Med Chem 2008; 16(14): 6707-23.
[http://dx.doi.org/10.1016/j.bmc.2008.05.075] [PMID: 18571421]
[102]
Kumar D, Sharma S, Kalra S, Singh G, Monga V, Kumar B. Medicinal Perspective of Indole Derivatives: Recent Developments and Structure-Activity Relationship Studies. Curr Drug Targets 2020; 21(9): 864-91.
[http://dx.doi.org/10.2174/1389450121666200310115327] [PMID: 32156235]
[103]
James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Bur-den of Disease Study 2017. Lancet 2018; 392(10159): 1789-858.
[http://dx.doi.org/10.1016/S0140-6736(18)32279-7] [PMID: 30496104]
[104]
Wang W-T, Qian H, Wu J-W, Chen X-W, Li J-Q. Synthesis and antidepressant-like activity of novel alkoxy-piperidine derivatives targeting SSRI/5-HT1A/5-HT7. Bioorg Med Chem Lett 2019; 29(24): 126769.
[http://dx.doi.org/10.1016/j.bmcl.2019.126769] [PMID: 31699607]
[105]
Pessoa-Mahana H, Silva-Matus P, Pessoa-Mahana CD, et al. Synthesis and docking of novel 3-indolylpropyl derivatives as new polyphar-macological agents displaying affinity for 5-HT1A R/SERT. Arch Pharm (Weinheim) 2017; 350(1): e1600271.
[http://dx.doi.org/10.1002/ardp.201600271] [PMID: 27981607]
[106]
Pessoa-Mahana H, González-Lira C, Fierro A, et al. Synthesis, docking and pharmacological evaluation of novel ho-mo- and hetero-bis 3-piperazinylpropylindole derivatives at SERT and 5-HT1A receptor. Bioorg Med Chem 2013; 21(24): 7604-11.
[http://dx.doi.org/10.1016/j.bmc.2013.10.036] [PMID: 24262884]
[107]
Mathew B, Baek SC, Thomas Parambi DG, et al. Potent and highly selective dual-targeting monoamine oxidase-B inhibitors: Fluorinated chalcones of morpho-line versus imidazole. Arch Pharm (Weinheim) 2019; 352(4): e1800309.
[http://dx.doi.org/10.1002/ardp.201800309] [PMID: 30663112]
[108]
Cerda-Cavieres C, Quiroz G, Iturriaga-Vásquez P, et al. Synthesis, docking, 3-D-qsar, and biological assays of novel indole derivatives targeting serotonin transporter, dopamine D2 receptor, and mao-a enzyme: In the pursuit for potential multitarget directed ligands. Molecules 2020; 25(20): 4614.
[http://dx.doi.org/10.3390/molecules25204614] [PMID: 33050524]
[109]
Modica MN, Intagliata S, Pittalà V, et al. Synthesis and binding proper-ties of new long-chain 4-substituted piperazine derivatives as 5-HT₁A and 5-HT₇ receptor ligands. Bioorg Med Chem Lett 2015; 25(7): 1427-30.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.042] [PMID: 25759032]
[110]
Oh SJ, Ha H-J, Chi DY, Lee HK. Serotonin receptor and transporter ligands - current status. Curr Med Chem 2001; 8(9): 999-1034.
[http://dx.doi.org/10.2174/0929867013372599] [PMID: 11472239]
[111]
Bojarski AJ, Mokrosz MJ. Duszyńska, B.; Kozioł A.; Bugno, R. New imide 5-HT1A receptor ligands - modification of terminal frag-ment geometry. Molecules 2004; 9(3): 170-7.
[http://dx.doi.org/10.3390/90300170] [PMID: 18007421]
[112]
Wróbel MZ, Chodkowski A, Herold F. Gomółka, A.; Kleps, J.; Mazurek, A.P.; Pluciński, F.; Mazurek, A.; Nowak, G.; Siwek, A.; Stachowicz, K.; Sławińska, A.; Wolak, M.; Szewczyk, B.; Satała, G.; Bojarski, A.J.; Turło, J. Synthesis and biological evaluation of novel pyrrolidine-2,5-dione derivatives as potential antidepressant agents. Part 1. Eur J Med Chem 2013; 63: 484-500.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.033] [PMID: 23524160]
[113]
Wróbel MZ, Chodkowski A, Marciniak M, et al. Turło, J. Synthesis of new 4-butyl-arylpiperazine-3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives and evaluation for their 5-HT1A and D2 receptor affinity and sero-tonin transporter inhibition. Bioorg Chem 2020; 97: 103662.
[http://dx.doi.org/10.1016/j.bioorg.2020.103662] [PMID: 32086055]
[114]
Gu Z-S, Xiao Y, Zhang Q-W, Li J-Q. Synthesis and antidepressant activity of a series of arylalkanol and aralkyl piperazine derivatives targeting SSRI/5-HT1A/5-HT7. Bioorg Med Chem Lett 2017; 27(24): 5420-3.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.007] [PMID: 29138029]
[115]
Gu Z-S, Wang W-T, Qian H, et al. Synthesis and antidepressant effect of novel aralkyl pipera-zine and piperidine derivatives targeting SSRI/5-HT1A/5-HT7. Bioorg Med Chem Lett 2019; 29(23): 126703.
[http://dx.doi.org/10.1016/j.bmcl.2019.126703] [PMID: 31627993]
[116]
Kumar B, Kumar V, Prashar V, et al. Dipropargyl substituted diphe-nylpyrimidines as dual inhibitors of monoamine oxidase and acetylcholinesterase. Eur J Med Chem 2019; 177: 221-34.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.039] [PMID: 31151057]
[117]
Kumar B, Dwivedi AR, Sarkar B, et al. 4, 6-Diphenylpyrimidine derivatives as dual inhibitors of monoamine oxidase and acetylcholinesterase for the treatment of Alzheimer’s disease. ACS Chem Neurosci 2019; 10(1): 252-65.
[http://dx.doi.org/10.1021/acschemneuro.8b00220] [PMID: 30296051]
[118]
Frampton JE. Vilazodone: in major depressive disorder. CNS Drugs 2011; 25(7): 615-27.
[http://dx.doi.org/10.2165/11207550-000000000-00000] [PMID: 21699273]
[119]
Liu W, Wang H, Li X, et al. Design, synthesis and evalua-tion of vilazodone-tacrine hybrids as multitarget-directed ligands against depression with cognitive impairment. Bioorg Med Chem 2018; 26(12): 3117-25.
[http://dx.doi.org/10.1016/j.bmc.2018.04.037] [PMID: 29729987]
[120]
Li X, Wang H, Xu Y, et al. Novel Vilazodone-Tacrine Hybrids as Potential Multitarget-Directed Ligands for the Treatment of Alzheimer’s Disease Accompanied with Depression: Design, Synthesis, and Biological Evaluation. ACS Chem Neurosci 2017; 8(12): 2708-21.
[http://dx.doi.org/10.1021/acschemneuro.7b00259] [PMID: 28872831]
[121]
Rosemeyer H. The chemodiversity of purine as a constituent of natural products. Chem Biodivers 2004; 1(3): 361-401.
[http://dx.doi.org/10.1002/cbdv.200490033] [PMID: 17191854]
[122]
Zagórska A. Kołaczkowski, M.; Bucki, A.; Siwek, A.; Kazek, G.; Satała, G.; Bojarski, A.J.; Partyka, A.; Wesołowska, A.; Pawłowski, M. Structure-activity relationships and molecular studies of novel arylpiperazinylalkyl purine-2,4-diones and purine-2,4,8-triones with anti-depressant and anxiolytic-like activity. Eur J Med Chem 2015; 97: 142-54.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.046] [PMID: 25965777]
[123]
Haesslein JL, Jullian N. Recent advances in cyclin-dependent kinase inhibition. Purine-based derivatives as anti-cancer agents. Roles and perspectives for the future. Curr Top Med Chem 2002; 2(9): 1037-50.
[http://dx.doi.org/10.2174/1568026023393291] [PMID: 12171570]
[124]
Wang S-B, Deng X-Q, Liu D-C, Zhang H-J, Quan Z-S. Synthesis and evaluation of anticonvulsant and antidepressant activities of 7-alkyl-7 H-tetrazolo [1, 5-g] purine derivatives. Med Chem Res 2014; 23(10): 4619-26.
[http://dx.doi.org/10.1007/s00044-014-1030-0]
[125]
Pawlowski M, Katlabi J, Drabczynska A, Duszynska B, Charakchieva-Minol S, Deren-Wesolek A. New 9-or 10-arylpiperazinoalkyl substituted pyrimido-or diazepino [2, 1-f] purines with partial or full 5-HT1A agonistic activity. Eur J Med Chem 1999; 34(2): 167-75.
[http://dx.doi.org/10.1016/S0223-5234(99)80050-6]
[126]
Zagórska A, Bucki A. Kołaczkowski, M.; Siwek, A.; Głuch- Lutwin, M.; Starowicz, G. Synthesis and biological evaluation of 2- fluoro and 3-trifluoromethyl-phenyl-piperazinylalkyl derivatives of 1 H-imidazo [2, 1-f] purine-2, 4 (3 H, 8 H)-dione as potential antidepressant agents. J Enzyme Inhib Med Chem 2016; 31(sup3): 10-24.
[127]
Magli E. Kędzierska, E.; Kaczor, A.A.; Bielenica, A.; Severino, B.; Gibuła-Tarłowska, E.; Kotlińska, J.H.; Corvino, A.; Sparaco, R.; Es-posito, G.; Albrizio, S.; Perissutti, E.; Frecentese, F.; Leśniak, A.; Bujalska-Zadrożny, M.; Struga, M.; Capasso, R.; Santagada, V.; Calien-do, G.; Fiorino, F. Synthesis, docking studies, and pharmacological evaluation of 2-hydroxypropyl-4-arylpiperazine derivatives as seroto-ninergic ligands. Arch Pharm (Weinheim) 2021; 354(5): e2000414.
[http://dx.doi.org/10.1002/ardp.202000414] [PMID: 33543794]
[128]
Chłon, G.; Pawłowski, M.B. Duszyn ska, A. Szaro, E. Tatarczyn ska, A. Kłodzin ska, E. Chojnacka-Wójcik. Pol J Pharmacol 2001; 53: 359.
[PMID: 11990082]
[129]
Pawłowski, M.; Chłoń G.; Obniska, J.; Zejc, A.; Charakchieva-Minol, S.; Mokrosz, M.J. Synthesis, 5-HT1A and 5-HT2A receptor affinity of new 1-phenylpiperazinylpropyl derivatives of purine-2,6- and pyrrolidine-2,5-diones. Farmaco 2000; 55(6-7): 461-8.
[http://dx.doi.org/10.1016/S0014-827X(00)00069-0] [PMID: 11204747]
[130]
Chłoń-Rzepa, G.; Zagórska, A.; Bucki, A.; Kołaczkowski, M.; Pawłowski, M.; Satała, G.; Bojarski, A.J.; Partyka, A.; Wesołowska, A.; Pękala, E.; Słoczyńska, K. New arylpiperazinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and dihydro[1,3]oxazolo[2,3-f]purinedione targeting the serotonin 5-HT1A/5-HT2A/5-HT7 and dopamine D2 receptors. Arch Pharm (Weinheim) 2015; 348(4): 242-53.
[http://dx.doi.org/10.1002/ardp.201500015] [PMID: 25773907]
[131]
Chłoń-Rzepa, G.; Żmudzki, P.; Zajdel, P.; Bojarski, A.J.; Duszyńska, B.; Nikiforuk, A.; Tatarczyńska, E.; Pawłowski, M. 7-Arylpiperazinylalkyl and 7-tetrahydroisoquinolinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and some of their purine-2,6,8-trione analogs as 5-HT(1A), 5-HT(2A), and 5-HT(7) serotonin receptor ligands. Bioorg Med Chem 2007; 15(15): 5239-50.
[http://dx.doi.org/10.1016/j.bmc.2007.05.017] [PMID: 17517514]
[132]
Chłoń-Rzepa, G.; Żmudzki, P.; Pawłowski, M.; Wesołowska, A.; Satała, G.; Bojarski, A.J. New 7-arylpiperazinylalkyl-8-morpholin-4-yl-purine-2, 6-dione derivatives with anxiolytic activity–Synthesis, crystal structure and structure–activity study. J Mol Struct 2014; 1067: 243-51.
[http://dx.doi.org/10.1016/j.molstruc.2014.03.018]
[133]
Partyka A. Chłoń-Rzepa, G.; Wasik, A.; Jastrzębska-Więsek, M.; Bucki, A.; Kołaczkowski, M.; Satała, G.; Bojarski, A.J.; Wesołowska, A. Antidepressant- and anxiolytic-like activity of 7-phenylpiperazinylalkyl-1,3-dimethyl-purine-2,6-dione derivatives with diversified 5-HT₁A receptor functional profile. Bioorg Med Chem 2015; 23(1): 212-21.
[http://dx.doi.org/10.1016/j.bmc.2014.11.008] [PMID: 25435254]
[134]
Chłoń-Rzepa, G.; Zagórska, A.; Żmudzki, P.; Bucki, A.; Kołaczkowski, M.; Partyka, A.; Wesołowska, A.; Kazek, G.; Głuch-Lutwin, M.; Siwek, A.; Starowicz, G.; Pawłowski, M. Aminoalkyl Derivatives of 8-Alkoxypurine-2,6-diones: Multifunctional 5-HT1A/5-HT7 Receptor Ligands and PDE Inhibitors with Antidepressant Activity. Arch Pharm (Weinheim) 2016; 349(12): 889-903.
[http://dx.doi.org/10.1002/ardp.201600260] [PMID: 27869315]
[135]
Chłoń-Rzepa, G.; Żmudzki, P.; Satała, G.; Duszyńska, B.; Partyka, A.; Wróbel, D.; Jastrzębska-Więsek, M.; Wesołowska, A.; Bojarski, A.J.; Pawłowski, M.; Zajdel, P. New 8-aminoalkyl derivatives of purine-2,6-dione with arylalkyl, allyl or propynyl substituents in position 7, their 5-HT1A, 5-HT2A, and 5-HT7 receptor affinity and pharmacological evaluation. Pharmacol Rep 2013; 65(1): 15-29.
[http://dx.doi.org/10.1016/S1734-1140(13)70960-5] [PMID: 23563020]
[136]
Czopek A, Byrtus H. Kołaczkowski, M.; Pawłowski, M.M. Dy bała, G. Nowak, E. Tatarczynśka, A. Wesołowska, E. Chojnac ka-Wójcik. Eur J Med Chem 2010; 45: 1295-303.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.053] [PMID: 20060623]
[137]
Czopek A. Kołaczkowski, M.; Bucki, A.; Byrtus, H.; Pawłowski, M.; Siwek, A.; Bojarski, A.J.; Bednarski, M.; Wróbel, D.; Wesołowska, A. Novel mannich bases, 5-arylimidazolidine-2,4-dione derivatives with dual 5-HT(1A) receptor and serotonin transporter affinity. Arch Pharm (Weinheim) 2013; 346(2): 98-109.
[http://dx.doi.org/10.1002/ardp.201200378] [PMID: 23288448]
[138]
Jann MW. Buspirone: an update on a unique anxiolytic agent. Pharmacotherapy 1988; 8(2): 100-16.
[http://dx.doi.org/10.1002/j.1875-9114.1988.tb03543.x] [PMID: 3041384]
[139]
Rydelek-Fitzgerald L, Teitler M, Fletcher PW, Ismaiel AM, Glennon RA. NAN-190: agonist and antagonist interactions with brain 5-HT1A receptors. Brain Res 1990; 532(1-2): 191-6.
[http://dx.doi.org/10.1016/0006-8993(90)91759-A] [PMID: 2282513]
[140]
Casey AB, Canal CE. Classics in chemical neuroscience: aripiprazole. ACS Chem Neurosci 2017; 8(6): 1135-46.
[http://dx.doi.org/10.1021/acschemneuro.7b00087] [PMID: 28368577]
[141]
Halene TB, Siegel SJ. Antipsychotic-like properties of phosphodiesterase 4 inhibitors: evaluation of 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (RO-20-1724) with auditory event-related potentials and prepulse inhibition of startle. J Pharmacol Exp Ther 2008; 326(1): 230-9.
[http://dx.doi.org/10.1124/jpet.108.138586] [PMID: 18420599]
[142]
Huai Q, Wang H, Sun Y, Kim H-Y, Liu Y, Ke H. Three-dimensional structures of PDE4D in complex with roliprams and implica-tion on inhibitor selectivity. Structure 2003; 11(7): 865-73.
[http://dx.doi.org/10.1016/S0969-2126(03)00123-0] [PMID: 12842049]
[143]
Czopek A, Bucki A. Kołaczkowski, M.; Zagórska, A.; Drop, M.; Pawłowski, M.; Siwek, A.; Głuch-Lutwin, M.; Pękala, E.; Chrzanowska, A.; Struga, M.; Partyka, A.; Wesołowska, A. Novel multitarget 5-arylidenehydantoins with arylpiperazinealkyl fragment: Pharmacological evaluation and investigation of cytotoxicity and metabolic stability. Bioorg Med Chem 2019; 27(18): 4163-73.
[http://dx.doi.org/10.1016/j.bmc.2019.07.046] [PMID: 31383628]
[144]
Zaręba, P.; Jaśkowska, J.; Czekaj, I.; Satała, G. Design, synthesis and molecular modelling of new bulky Fananserin derivatives with al-tered pharmacological profile as potential antidepressants. Bioorg Med Chem 2019; 27(15): 3396-407.
[http://dx.doi.org/10.1016/j.bmc.2019.06.028] [PMID: 31253535]
[145]
Zaręba, P.; Jaśkowska, J.; Śliwa, P.; Satała, G. New dual ligands for the D2 and 5-HT1A receptors from the group of 1,8-naphthyl deriva-tives of LCAP. Bioorg Med Chem Lett 2019; 29(16): 2236-42.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.029] [PMID: 31253532]
[146]
Kułaga, D.; Jaśkowska, J.; Satała, G. Design, synthesis and biological evaluation of novel serotonin and dopamine receptor ligands being 6-bromohexyl saccharine derivatives. Bioorg Med Chem Lett 2019; 29(21): 126667.
[http://dx.doi.org/10.1016/j.bmcl.2019.126667] [PMID: 31547945]
[147]
Peng X-M, Damu GL, Zhou C. Current developments of coumarin compounds in medicinal chemistry. Curr Pharm Des 2013; 19(21): 3884-930.
[http://dx.doi.org/10.2174/1381612811319210013] [PMID: 23438968]
[148]
Patil PO, Bari SB, Firke SD, Deshmukh PK, Donda ST, Patil DA. A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer’s disease. Bioorg Med Chem 2013; 21(9): 2434-50.
[http://dx.doi.org/10.1016/j.bmc.2013.02.017] [PMID: 23517722]
[149]
Abdel-Latif NA. Synthesis and antidepressant activity of some new coumarin derivatives. Sci Pharm 2005; 73(4): 193-216.
[http://dx.doi.org/10.3797/scipharm.aut-05-15]
[150]
Huong DTL, Choi HC, Rho TC, Lee HS, Lee MK, Kim YH. Inhibitory activity of monoamine oxidase by coumarins from Peucedanum japonicum. Arch Pharm Res 1999; 22(3): 324-6.
[http://dx.doi.org/10.1007/BF02976373] [PMID: 10403141]
[151]
Dutta AK, Gopishetty B, Gogoi S, Ali S, Zhen J, Reith M. The novel trisubstituted pyran derivative D-142 has triple monoamine reuptake inhibitory activity and exerts potent antidepressant-like activity in rodents. Eur J Pharmacol 2011; 671(1-3): 39-44.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.162] [PMID: 21963455]
[152]
Sashidhara KV, Modukuri RK, Singh S, et al. Design and synthesis of new series of coumarin-aminopyran derivatives possessing potential anti-depressant-like activity. Bioorg Med Chem Lett 2015; 25(2): 337-41.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.036] [PMID: 25488839]
[153]
Bashir MA, Khan AU, Badshah H, Rodrigues-Filho E, Din ZU, Khan A. Synthesis, characterization, molecular docking evalua-tion, antidepressant, and anti-Alzheimer effects of dibenzylidene ketone derivatives. Drug Dev Res 2019; 80(5): 595-605.
[http://dx.doi.org/10.1002/ddr.21537] [PMID: 30964563]
[154]
Zygmunt M, Sapa J. Chłoń-Rzepa, G.; Zagórska, A.; Siwek, A.; Pawłowski, M.; Nowak, G. 7-3-Chlorophenypiperazinylalkyl derivatives of 8-alkoxy-purine-2,6-dione as a serotonin receptor ligands with potential antidepressant activity. Pharmacol Rep 2014; 66(3): 505-10.
[http://dx.doi.org/10.1016/j.pharep.2013.12.014] [PMID: 24905531]
[155]
Jankowska A. Satała, G.; Kołaczkowski, M.; Bucki, A.; Głuch-Lutwin, M.; Świerczek, A.; Pociecha, K.; Partyka, A.; Jastrzębska-Więsek, M.; Lubelska, A.; Latacz, G.; Gawalska, A.; Bojarski, A.J.; Wyska, E.; Chłoń-Rzepa, G. Novel anilide and benzylamide derivatives of ar-ylpiperazinylalkanoic acids as 5-HT1A/5-HT7 receptor antagonists and phosphodiesterase 4/7 inhibitors with procognitive and antidepres-sant activity. Eur J Med Chem 2020; 201: 112437.
[http://dx.doi.org/10.1016/j.ejmech.2020.112437] [PMID: 32673902]
[156]
Kramer T, Schmidt B, Lo Monte F. Small-molecule inhibitors of GSK-3: structural insights and their application to Alzheimer’s disease models. Int J Alzheimers Dis 2012; 2012: 381029.
[http://dx.doi.org/10.1155/2012/381029] [PMID: 22888461]
[157]
Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 1996; 93(16): 8455-9.
[http://dx.doi.org/10.1073/pnas.93.16.8455] [PMID: 8710892]
[158]
Silva T, Reis J, Teixeira J, Borges F. Alzheimer’s disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing Res Rev 2014; 15: 116-45.
[http://dx.doi.org/10.1016/j.arr.2014.03.008] [PMID: 24726823]
[159]
Journet M, Cai D, Kowal JJ, Larsen RD. Highly efficient and mild synthesis of variously 5-substituted-4-carbaldehyde-1, 2, 3-triazole derivatives. Tetrahedron Lett 2001; 42(52): 9117-8.
[http://dx.doi.org/10.1016/S0040-4039(01)01923-2]
[160]
Sanghvi YS, Bhattacharya BK, Kini GD, et al. Growth inhibi-tion and induction of cellular differentiation of human myeloid leukemia cells in culture by carbamoyl congeners of ribavirin. J Med Chem 1990; 33(1): 336-44.
[http://dx.doi.org/10.1021/jm00163a054] [PMID: 2296029]
[161]
Khan I, Tantray MA, Hamid H, et al. Synthesis of pyrimidin-4-one-1,2,3-triazole conju-gates as glycogen synthase kinase-3β inhibitors with anti-depressant activity. Bioorg Chem 2016; 68: 41-55.
[http://dx.doi.org/10.1016/j.bioorg.2016.07.007] [PMID: 27454617]
[162]
Charney DS. Monoamine dysfunction and the pathophysiology and treatment of depression. J Clin Psychiatry 1998; 59(14): 11-4.
[PMID: 9818625]
[163]
Hamon M, Blier P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45: 54-63.
[http://dx.doi.org/10.1016/j.pnpbp.2013.04.009] [PMID: 23602950]
[164]
Skinner MH, Kuan HY, Pan A, et al. Duloxetine is both an inhibitor and a substrate of cytochrome P4502D6 in healthy volunteers. Clin Pharmacol Ther 2003; 73(3): 170-7.
[http://dx.doi.org/10.1067/mcp.2003.28] [PMID: 12621382]
[165]
Fischer H, Kansy M, Bur D. CAFCA: a novel tool for the calculation of amphiphilic properties of charged drug molecules. CHIMIA International Journal for Chemistry 2000; 54(11): 640-5.
[166]
Honda E, Ishichi Y, Kimura E, et al. Design, synthesis, and biological activities of 1-aryl-1,4-diazepan-2-one derivatives as novel triple reuptake inhibitors. Bioorg Med Chem Lett 2014; 24(16): 3898-902.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.046] [PMID: 25017029]
[167]
Wen H, Qin W, Yang G, Guo Y. Design and Synthesis of Arylamidine Derivatives as Serotonin/Norepinephrine Dual Reuptake Inhibi-tors. Molecules 2019; 24(3): 497.
[http://dx.doi.org/10.3390/molecules24030497] [PMID: 30704101]
[168]
Paudel S, Sun N, Khadka DB, Yoon G, Kim K-M, Cheon SH. Design, synthesis and docking study of 4-arylpiperazine carbox-amides as monoamine neurotransmitters reuptake inhibitors. Bioorg Med Chem 2018; 26(14): 4127-35.
[http://dx.doi.org/10.1016/j.bmc.2018.06.043] [PMID: 30007567]
[169]
Paudel S, Min X, Acharya S, et al. Design, synthesis, and systematic evaluation of 4-arylpiperazine- and 4-benzylpiperidine napthyl ethers as inhibitors of monoamine neurotransmitters reuptake. Bioorg Med Chem 2018; 26(20): 5538-46.
[http://dx.doi.org/10.1016/j.bmc.2018.09.033] [PMID: 30293797]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy