Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

A Significant Role of Chemistry in Drug Development: A Systematic Journey from Traditional to Modern Approaches with Anti-HIV/AIDS Drugs as Examples

Author(s): Madhu Yadav, Ritika Srivastava, Farha Naaz, Rajesh Verma and Ramendra K. Singh*

Volume 28, Issue 3, 2022

Published on: 30 November, 2021

Page: [232 - 247] Pages: 16

DOI: 10.2174/1381612827666211102101617

Price: $65

Abstract

Background: Traditionally, various plant extracts having interesting biological properties were the main source of new drugs. In the last 30 years, the role of chemistry in combination with new technologies, like various computational techniques in chemistry, has witnessed a major upsurge in drug discovery and targeted drug delivery.

Objective: This article provides a succinct overview of recent techniques of chemistry that have a great impact on the drug development process in general and also against HIV/AIDS. It focuses on new methods employed for drug development with an emphasis on in silico studies, including identifying drug targets, especially the proteins associated with specific diseases.

Methods: The rational drug development process starts with the identification of a drug target as the first phase, which helps in the computer-assisted design of new drug molecules. Synthetic chemistry has a major impact on the drug development process because it provides new molecules for future study. Natural products based semisynthesis or microwave assisted synthesis is also involved in developing newly designed drug molecules. Further, the role of analytical chemistry involves extraction, fractionation, isolation and characterization of newly synthesized molecules.

Results: Chemistry plays a key role in drug discovery and delivery by natural process or with the help of synthetic nanoparticles or nanomedicines. So, nanochemistry is also deeply involved in the development of new drugs and their applications.

Conclusion: The previous era of drug discovery was dominated only by chemistry, but the modern approaches involve a comprehensive knowledge of synthetic chemistry, medicinal chemistry, computational chemistry and the concerned biological phenomenon.

Keywords: Anti-HIV, drug target, drug design, in silico studies, synthetic chemistry, drug delivery.

[1]
Boyce M, Bertozzi CR. Bringing chemistry to life. Nat Methods 2011; 8(8): 638-42.
[http://dx.doi.org/10.1038/nmeth.1657] [PMID: 21799498]
[2]
Nören-Müller A, Reis-Corrêa I Jr, Prinz H, et al. Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis. Proc Natl Acad Sci USA 2006; 103(28): 10606-11.
[http://dx.doi.org/10.1073/pnas.0601490103] [PMID: 16809424]
[3]
Anderson PJ. The structure and amount of tubulin in cells and tissues. J Biol Chem 1979; 254(7): 2168-71.
[http://dx.doi.org/10.1016/S0021-9258(17)30198-9] [PMID: 429276]
[4]
Brock N, Pohl J, Stekar J, Scheef W. Studies on the urotoxicity of oxazaphosphorine cytostatics and its prevention--III. Profile of action of sodium 2-mercaptoethane sulfonate (mesna). Eur J Cancer Clin Oncol 1982; 18(12): 1377-87.
[http://dx.doi.org/10.1016/0277-5379(82)90143-2] [PMID: 6819957]
[5]
Cavalletti E, Cavaletti G, Tredici G, et al. Oral and intravenous BNP7787 protects against paclitaxel mediated neurotoxicity in Wistar rats. Proc Am Assoc Cancer Res 1999; 40: 398.
[6]
Connelly E, Markman M, Kennedy A, et al. Paclitaxel delivered as a 3-hr infusion with cisplatin in patients with gynecologic cancers: unexpected incidence of neurotoxicity. Gynecol Oncol 1996; 62(2): 166-8.
[http://dx.doi.org/10.1006/gyno.1996.0210] [PMID: 8751544]
[7]
Baran PS, Maimone TJ, Richter JM. Total synthesis of marine natural products without using protecting groups. Nature 2007; 446(7134): 404-8.
[http://dx.doi.org/10.1038/nature05569] [PMID: 17377577]
[8]
Drews J. Drug discovery: a historical perspective. Science 2000; 287(5460): 1960-4.
[http://dx.doi.org/10.1126/science.287.5460.1960] [PMID: 10720314]
[9]
Sussman S, Ames SL. Concepts and Classes of Drugs. In: Drug Abuse: Concepts, prevention, and cessation. New York, USA: Cambridge Univ. Press 2008.
[http://dx.doi.org/10.1017/CBO9780511500039]
[10]
Kritikos PG, Papadaki SP. The history of the poppy and of opium and their expansion in antiquity in the eastern Mediterranean area. Bull Narc 1967; 19: 17-38.
[11]
Kuntz ID. Structure-based strategies for drug design and discovery. Science 1992; 257(5073): 1078-82.
[http://dx.doi.org/10.1126/science.257.5073.1078] [PMID: 1509259]
[12]
Moon JB, Howe WJ. Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Proteins 1991; 11(4): 314-28.
[http://dx.doi.org/10.1002/prot.340110409] [PMID: 1758885]
[13]
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33(8): 1582-614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[14]
Shen B. A new golden age of natural products drug discovery. Cell 2015; 163(6): 1297-300.
[http://dx.doi.org/10.1016/j.cell.2015.11.031] [PMID: 26638061]
[15]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020; 83(3): 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[16]
Cragg GM, Newman DJ. Natural product drug discovery in the next millennium. Pharm Biol 2001; 39(Suppl. 1): 8-17.
[PMID: 21554167]
[17]
Bucar F, Wube A, Schmid M. Natural product isolation--how to get from biological material to pure compounds. Nat Prod Rep 2013; 30(4): 525-45.
[http://dx.doi.org/10.1039/c3np20106f] [PMID: 23396532]
[18]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod 2007; 70(3): 461-77.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[19]
Newman DJ, Cragg GM. Natural Products as Sources of New Drugs from 1981 to 2014. J Nat Prod 2016; 79(3): 629-61.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[20]
Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 2011; 8(1): 1-10.
[PMID: 22238476]
[21]
McRae J, Yang Q, Crawford R, Palombo E. Review of the methods used for isolating pharmaceutical lead compounds from traditional medicinal plants. Environmentalist 2007; 27: 165-74.
[http://dx.doi.org/10.1007/s10669-007-9024-9]
[22]
WHO, World Health Organization-Traditional Medicine Strategy: 2014-23. 2013. Available from: www.who.int.WHO
[23]
Groweiss A, Cardellina JH, Boyd MR. HIV-Inhibitory prenylated xanthones and flavones from Maclura tinctoria. J Nat Prod 2000; 63(11): 1537-9.
[http://dx.doi.org/10.1021/np000175m] [PMID: 11087602]
[24]
Ban TA. The role of serendipity in drug discovery. Dialogues Clin Neurosci 2006; 8(3): 335-44.
[http://dx.doi.org/10.31887/DCNS.2006.8.3/tban] [PMID: 17117615]
[25]
López-Muñoz F, Baumeister AA, Hawkins MF, Alamo C. The role of serendipity in the discovery of the clinical effects of psychotropic drugs: beyond of the myth. Actas Esp Psiquiatr 2012; 40(1): 34-42.
[PMID: 22344494]
[26]
Alberto F, Stefano F. Unexpected discoveries should be reconsidered in science-a look to the past? Int J Mol Sci 2019; 16: 3973.
[27]
Mark L R. A brief history of lithium treatment in psychiatry prim care companion. CNS Disord 2017; 19: 17br02140.
[28]
Mishra BB, Kishore N, Tripathi V, Tiwari VK. A novel antifungal anthraquinone from seeds of Aegle marmelos Correa (family Rutaceae). 2010; 81: 104-7.
[29]
Hebeisen P, Heinze-Krauss I, Angehrn P, Hohl P, Page MG, Then RL. In vitro and in vivo properties of Ro 63-9141, a novel broad-spectrum cephalosporin with activity against methicillin-resistant staphylococci. Antimicrob Agents Chemother 2001; 45(3): 825-36.
[http://dx.doi.org/10.1128/AAC.45.3.825-836.2001] [PMID: 11181368]
[30]
Available from: https://ccr.cancer.gov
[31]
Available from: http://www.fda.gov
[32]
Hecht P. High-throughput screening: beating the odds with informatics-driven chemistry. Curr Drug Discov 2002; 21-4.
[33]
Xu J, Hagler A. Chemoinformatics and drug discovery. Molecules 2002; 7: 566-600.
[http://dx.doi.org/10.3390/70800566]
[34]
Johnson DS, Weerapana E, Cravatt BF. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med Chem 2010; 2(6): 949-64.
[http://dx.doi.org/10.4155/fmc.10.21] [PMID: 20640225]
[35]
Kellenberger E, Muller P, Schalon C, Bret G, Foata N, Rognan D. sc-PDB: an annotated database of druggable binding sites from the Protein Data Bank. J Chem Inf Model 2006; 46(2): 717-27.
[http://dx.doi.org/10.1021/ci050372x] [PMID: 16563002]
[36]
Yadav DK, Meena A, Srivastava A, Chanda D, Khan F, Chattopadhyay SK. Development of QSAR model for immunomodulatory activity of natural coumarinolignoids. Drug Des Devel Ther 2010; 4: 173-86.
[PMID: 20856844]
[37]
Taylor RD, Jewsbury PJ, Essex JW. A review of protein-small molecule docking methods. J Comput Aided Mol Des 2002; 16(3): 151-66.
[http://dx.doi.org/10.1023/A:1020155510718] [PMID: 12363215]
[38]
Wallach JD, Ross JS, Naci H. The US Food and Drug Administration’s expedited approval programs: Evidentiary standards, regulatory trade-offs, and potential improvements. Clin Trials 2018; 15(3): 219-29.
[http://dx.doi.org/10.1177/1740774518770648] [PMID: 29871509]
[39]
Schilsky RL. Access versus evidence: The regulators’ dilemma. Clin Trials 2018; 15(3): 240-2.
[http://dx.doi.org/10.1177/1740774518770660] [PMID: 29871504]
[40]
Chen D, Qi EY. Innovative highlights of clinical drug trial design. Transl Res 2020; 224: 71-7.
[http://dx.doi.org/10.1016/j.trsl.2020.05.007] [PMID: 32504825]
[41]
Brondani M, Donnelly L. The HIV and SARS-CoV-2 Parallel in Dentistry from the Perspectives of the Oral Health Care Team. JDR Clin Trans Res 2020; 20.
[PMID: 32942933]
[42]
Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol 2007; 152(1): 21-37.
[http://dx.doi.org/10.1038/sj.bjp.0707306] [PMID: 17549046]
[43]
Friedrich C. Emil Fischer’s lock-and-key hypothesis after 100 years - towards a supracellular chemistry. In: Perspectives in Supramolecular Chemistry: The Lock-and-Key Principle. John Wiley & Sons, Ltd. 2007; Vol. 1: pp. 1-23.
[44]
Caron PR, Mullican MD, Mashal RD, Wilson KP, Su MS, Murcko MA. Chemogenomic approaches to drug discovery. Curr Opin Chem Biol 2001; 5(4): 464-70.
[http://dx.doi.org/10.1016/S1367-5931(00)00229-5] [PMID: 11470611]
[45]
Chen YZ, Zhi DG. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 2001; 43(2): 217-26.
[http://dx.doi.org/10.1002/1097-0134(20010501)43:2<217::AID-PROT1032>3.0.CO;2-G] [PMID: 11276090]
[46]
Rognan D. Chemogenomic approaches to rational drug design. Br J Pharmacol 2007; 152(1): 38-52.
[http://dx.doi.org/10.1038/sj.bjp.0707307] [PMID: 17533416]
[47]
Available from: http://www.pharmainfo.net
[48]
Chuaqui C, Deng Z, Singh J. Interaction profiles of protein kinase-inhibitor complexes and their application to virtual screening. J Med Chem 2005; 48(1): 121-33.
[http://dx.doi.org/10.1021/jm049312t] [PMID: 15634006]
[49]
Bock JR, Gough DA. Virtual screen for ligands of orphan G protein-coupled receptors. J Chem Inf Model 2005; 45(5): 1402-14.
[http://dx.doi.org/10.1021/ci050006d] [PMID: 16180917]
[50]
Jain SK, Chincholikar A. Pharmacophore mapping and drug design. Indian J Pharm Sci 2004; 66: 11-7.
[51]
Cummins DJ, Andrews CW, Bentley JA, Cory M. Molecular diversity in chemical databases: comparison of medicinal chemistry knowledge bases and databases of commercially available compounds. J Chem Inf Comput Sci 1996; 36(4): 750-63.
[http://dx.doi.org/10.1021/ci950168h] [PMID: 8768767]
[52]
Steindl TM, Schuster D, Laggner C, Langer T. Parallel screening: a novel concept in pharmacophore modeling and virtual screening. J Chem Inf Model 2006; 46(5): 2146-57.
[http://dx.doi.org/10.1021/ci6002043] [PMID: 16995745]
[53]
Ewing TJA, Kuntz ID. Critical evaluation of search algorithms used in automated molecular docking. J Comput Chem 1997; 18: 1175-89.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19970715)18:9<1175::AID-JCC6>3.0.CO;2-O]
[54]
Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian Genetic algorithm and empirical binding free energy function. J Comput Chem 1998; 19: 1639-62.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B]
[55]
Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997; 267(3): 727-48.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[56]
Rarey M, Kramer B, Lengauer T. Docking of hydrophobic ligands with interaction-based matching algorithms. Bioinformatics 1999; 15(3): 243-50.
[http://dx.doi.org/10.1093/bioinformatics/15.3.243] [PMID: 10222412]
[57]
Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004; 47(7): 1739-49.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[58]
Venkatachalam CM, Jiang X, Oldfield T, Waldman M. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 2003; 21(4): 289-307.
[http://dx.doi.org/10.1016/S1093-3263(02)00164-X] [PMID: 12479928]
[59]
Tarko L. QSAR studies regarding the inihibition of the carbonic anhydrase by the sulfonamides containing a picolinyl group. Rev Chim (Bucuresti) 2007; 58: 191-4.
[60]
Hu L, Benson ML, Smith RD, Lerner MG, Carlson HA. Binding MOAD (Mother Of All Databases). Proteins 2005; 60(3): 333-40.
[http://dx.doi.org/10.1002/prot.20512] [PMID: 15971202]
[61]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1-3): 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[62]
Zartler ER, Shapiro MJ. Fragonomics: fragment-based drug discovery. Curr Opin Chem Biol 2005; 9(4): 366-70.
[http://dx.doi.org/10.1016/j.cbpa.2005.05.002] [PMID: 15925537]
[63]
Balakin KV, Ivanenkov YA, Savchuk NP, Ivashchenko AA, Ekins S. Comprehensive computational assessment of ADME properties using mapping techniques. Curr Drug Discov Technol 2005; 2(2): 99-113.
[http://dx.doi.org/10.2174/1570163054064666] [PMID: 16472234]
[64]
Koch MA, Schuffenhauer A, Scheck M, et al. Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci USA 2005; 102(48): 17272-7.
[http://dx.doi.org/10.1073/pnas.0503647102] [PMID: 16301544]
[65]
Corey EJ. The Logic of Chemical Synthesis. New York: Wiley 1989.
[66]
Leznoff CC, Wong JY. The use of polymer supports in organic synthesis. The synthesis of monotrityl ethers of symmetrical diols. Can J Chem 1972; 50: 2892.
[http://dx.doi.org/10.1139/v72-463]
[67]
Schreiber SL. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000; 287(5460): 1964-9.
[http://dx.doi.org/10.1126/science.287.5460.1964] [PMID: 10720315]
[68]
Nicolaou KC, Hanko R, Hartwig W. Combinatorial chemistry in perspective. In: Handbook of Combinatorial Chemistry: Drugs, Catalysts, Materials. New York: Wiley 2002; pp. 1-9.
[http://dx.doi.org/10.1002/3527603034]
[69]
Martin D. Burke, Stuart, L.S. A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 2004; 43: 46-58.
[http://dx.doi.org/10.1002/anie.200300626]
[70]
Crowley JI, Rapoport H. Cyclization via solid phase synthesis. Unidirectional Dieckmann products from solid phase and benzyl triethylcarbinyl pimelates. J Am Chem Soc 1970; 92: 6363-5.
[http://dx.doi.org/10.1021/ja00724a059]
[71]
Yedida V, Leznoff CC. Regioselectivity in cycloaddition reactions on solid phases. Can J Chem 1980; 58: 1140.
[http://dx.doi.org/10.1139/v80-178]
[72]
Hermkens PHH, Ottenheijm HCJ, Rees D. Solid-phase organic reactions: A review of the recent literature. Tetrahedron 1996; 52: 4527-54.
[http://dx.doi.org/10.1016/0040-4020(96)00216-5]
[73]
Dolle RE, Nelson KH Jr. Comprehensive survey of combinatorial library synthesis: 1998. J Comb Chem 1999; 1(4): 235-82.
[http://dx.doi.org/10.1021/cc9900192] [PMID: 10748736]
[74]
Raju TNK. The Nobel chronicles. 1988: James Whyte Black, (b 1924), Gertrude Elion (1918-99), and George H Hitchings (1905-98). Lancet 2000; 355(9208): 1022.
[http://dx.doi.org/10.1016/S0140-6736(05)74775-9] [PMID: 10768469]
[75]
Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 2012; 11(3): 191-200.
[http://dx.doi.org/10.1038/nrd3681] [PMID: 22378269]
[76]
Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 2002; 41(14): 2596-9.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[77]
Bouillon C, Meyer A, Vidal S, et al. Microwave assisted “click” chemistry for the synthesis of multiple labeled-carbohydrate oligonucleotides on solid support. J Org Chem 2006; 71(12): 4700-2.
[http://dx.doi.org/10.1021/jo060572n] [PMID: 16749812]
[78]
Kolb HC, Finn MG, Sharpless KB. Click Chemistry. Angew Chem Int Ed Engl 2001; 40(11): 2004-21.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[79]
Corey EJ, Cheng X-M. The Logic of Chemical Synthesis. New York: Wiley 1989.
[80]
Heerding DA, Takata DT, Kwon C, Huffman WF. Samanen, J. Combinatorial chemistry. Use of an intramolecular ruthenium catalyzed olefin/alkyne metathesis reaction in tandem with a Diels-Alder cycloaddition reaction to construct functionalized hexahydroisoindoles. Tetrahedron Lett 1998; 39: 6815-8.
[http://dx.doi.org/10.1016/S0040-4039(98)01473-7]
[81]
Nüske H, Es-Sayed M, Labahn T, Schroen M, Bräse S, Stefan B. New efficient multicomponent reactions with C-C coupling for combinatorial application in liquid and on solid phase. Angew Chem Int Ed Engl 1999; 38(24): 3669-72.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3669::AID-ANIE3669>3.0.CO;2-X] [PMID: 10649319]
[82]
Coates WJ, Hunter DJ, MacLachlan WS. Successful implementation of automation in medicinal chemistry. Drug Discov Today 2000; 5(11): 521-7.
[http://dx.doi.org/10.1016/S1359-6446(00)01571-3] [PMID: 11084388]
[83]
Stephan CS, Siegfried B. Sequences of yne-ene cross metathesis and Diels-Alder cycloaddition reactions- Modular solid phase synthesis of substituted octahydrobenzazepinones. Synlett 1999; 12: 1879-82.
[84]
Burke MD, Schreiber SL. A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 2004; 43(1): 46-58.
[http://dx.doi.org/10.1002/anie.200300626] [PMID: 14694470]
[85]
Cotterill IC, Usyatinsky AY. Arnold, J.M., Clark, D.S., Dordick Michels, P.C., Khmelnitsky, Y.L. Microwave-assisted combinatorial chemistry, synthesis of substituted pyridines. Tetrahedron Lett 1998; 39: 1117-20.
[http://dx.doi.org/10.1016/S0040-4039(97)10796-1]
[86]
Kappe CO, Shishkin OV, Verdino GUP. X-ray structure, conformational analysis, enantioseparation, and determination of absolute configuration of the mitotic kinesin Eg5 inhibitor monastrol. Tetrahedron 2000; 56: 1859-62.
[http://dx.doi.org/10.1016/S0040-4020(00)00116-2]
[87]
Baxendale IR, Ley SV. Polymer-supported reagents for multi-step organic synthesis: application to the synthesis of sildenafil. Bioorg Med Chem Lett 2000; 10(17): 1983-6.
[http://dx.doi.org/10.1016/S0960-894X(00)00383-8] [PMID: 10987432]
[88]
Driowya M, Saber A, Marzag H, Demange L, Bougrin K, Benhida R. Microwave-assisted syntheses of bioactive seven-membered, macro-sized heterocycles and their fused derivatives. Molecules 2016; 21(8): 1032.
[http://dx.doi.org/10.3390/molecules21081032] [PMID: 27517892]
[89]
Valagaleti R, Burns PK, Michael G. Analytical support for drug manufacturing in the united states-from active pharmaceutical ingredient synthesis to drug product shelf life. Drug Inf J 2003; 37: 407-38.
[http://dx.doi.org/10.1177/009286150303700407]
[90]
Matei N, Birghila S, Popescu V, et al. Kinetic study of vitamin C degradation from pharmaceutical products. Rom J Phys 2008; 53: 343-51.
[91]
Rahman N, Anwar N, Kashif M. Application of pi-acceptors to the spectrophotometric determination of lisinopril in commercial dosage forms. Farmaco 2005; 60(6-7): 605-11.
[http://dx.doi.org/10.1016/j.farmac.2005.04.011] [PMID: 15932756]
[92]
Siddiqui MR, Al Othman ZA, Rahman N. Analytical techniques in pharmaceutical analysis: A review. Arab J Chem 2017; 10: S1409-21.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]
[93]
Szepesi G, Nyiredy S. Pharmaceutical and drugs. In: Sherma J, Fried B, Eds. Handbook of Thin-Layer Chromatography. 2nd ed. New York: Marcel Dekker 1996; pp. 208-35.
[94]
Ebrahim ZAJ, Balalau D. Baconi, D.L., Gutu, C.M., Ilie, M. HPTLC method for the assay of tramadol and pentazocine from mixtures. Farmacia 2011; 59: 381-7.
[95]
Watson DG. Pharmaceutical Analysis. Edinburg: Churchill Livingstone 1999; p. 208.
[96]
Zuo Y, Zhang L, Wu J, Fritz JW, Medeiros S, Rego C. Ultrasonic extraction and capillary gas chromatography determination of nicotine in pharmaceutical formulations. Anal Chim Acta 2004; 526: 35-9.
[http://dx.doi.org/10.1016/j.aca.2004.09.035]
[97]
Grodowska K, Parczewski A. Analytical methods for residual solvents determination in pharmaceutical products. Acta Pol Pharm 2010; 67(1): 13-26.
[PMID: 20210075]
[98]
Frost RP, Hussain MS, Raghani AR. Determination of pharmaceutical process impurities by solid phase microextraction gas chromatography. J Sep Sci 2003; 26: 1097-11.
[http://dx.doi.org/10.1002/jssc.200301528]
[99]
Hiriyanna SG, Basavaiah K. Isolation and characterization of process related impurities in anastrozole active pharmaceutical ingredient. J Braz Chem Soc 2008; 19: 397-404.
[http://dx.doi.org/10.1590/S0103-50532008000300005]
[100]
Gorog S. Ultraviolet-Visible Spectrometry in Pharmaceutical Analysis. Boca Raton: CRC Press 2017.
[101]
Basavaiah K, Prameela HC. Simple spectrophotometric determination of acyclovir in bulk drug and formulations. Farmaco 2002; 57(6): 443-9.
[http://dx.doi.org/10.1016/S0014-827X(02)01237-5] [PMID: 12088058]
[102]
Arabzadeh V, Sohrabi MR, Goudarzi N, Davallo M. Using artificial neural network and multivariate calibration methods for simultaneous spectrophotometric analysis of Emtricitabine and Tenofovir alafenamide fumarate in pharmaceutical formulation of HIV drug. Spectrochim Acta A Mol Biomol Spectrosc 2019; 215: 266-75.
[http://dx.doi.org/10.1016/j.saa.2019.02.077] [PMID: 30831397]
[103]
P B M, R B P, S G K. Derivative spectrophotometric method for estimation of antiretroviral drugs in fixed dose combinations. Adv Pharm Bull 2012; 2(1): 115-8.
[PMID: 24312779]
[104]
Sohrabi MR, Tayefeh Zarkesh M. Spectra resolution for simultaneous spectrophotometric determination of lamivudine and zidovudine components in pharmaceutical formulation of human immunodeficiency virus drug based on using continuous wavelet transform and derivative transform techniques. Talanta 2014; 122: 223-8.
[http://dx.doi.org/10.1016/j.talanta.2014.01.012] [PMID: 24720987]
[105]
Pramanik B, Lee MS, Chen G. Characterization of impurities and degradants using mass spectrometry. Wiley 2011.
[http://dx.doi.org/10.1002/9780470921371]
[106]
Shahabadi N, Abbasi AR, Moshtkob A, Hadidi S. Design, synthesis and DNA interaction studies of new fluorescent platinum complex containing anti-HIV drug didanosine. J Biomol Struct Dyn 2020; 38(10): 2837-48.
[http://dx.doi.org/10.1080/07391102.2019.1658643] [PMID: 31432748]
[107]
Zhan P, Pannecouque C, De Clercq E, Liu X. Anti-HIV drug discovery and development: current innovations and future trends. J Med Chem 2016; 59(7): 2849-78.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00497] [PMID: 26509831]
[108]
Zhu Q, Yu Z, Kabashima T, et al. Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants. Sci Rep 2015; 5: 10323.
[http://dx.doi.org/10.1038/srep10323] [PMID: 25988960]
[109]
Magde D, Elson EL, Webb WW. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 1974; 13(1): 29-61.
[http://dx.doi.org/10.1002/bip.1974.360130103] [PMID: 4818131]
[110]
Gao K, Oerlemans R, Groves MR. Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophys Rev 2020; 12(1): 85-104.
[http://dx.doi.org/10.1007/s12551-020-00619-2] [PMID: 32006251]
[111]
Alvarenga L, Ferreira D, Altekruse D, Menezes JC, Lochmann D. Tablet identification using near-infrared spectroscopy (NIRS) for pharmaceutical quality control. J Pharm Biomed Anal 2008; 48(1): 62-9.
[http://dx.doi.org/10.1016/j.jpba.2008.05.007] [PMID: 18572342]
[112]
Zidan AS, Spinks C, Fortunak J, Habib M, Khan MA. Near-infrared investigations of novel anti-HIV tenofovir liposomes. AAPS J 2010; 12(2): 202-14.
[http://dx.doi.org/10.1208/s12248-010-9177-1] [PMID: 20195931]
[113]
Ramirez JL, Bellamy MK, Romañac RJ. A novel method for analyzing thick tablets by near infrared spectroscopy. AAPS Pharm-SciTech 2001; 2(3): E11.
[http://dx.doi.org/10.1208/pt020311] [PMID: 14727870]
[114]
Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal 2007; 44(3): 683-700.
[http://dx.doi.org/10.1016/j.jpba.2007.03.023] [PMID: 17482417]
[115]
Blanco M, Eustaquio A, González JM, Serrano D. Identification and quantitation assays for intact tablets of two related pharmaceutical preparations by reflectance near-infrared spectroscopy: validation of the procedure. J Pharm Biomed Anal 2000; 22(1): 139-48.
[http://dx.doi.org/10.1016/S0731-7085(99)00274-5] [PMID: 10727133]
[116]
Malet-Martino M, Holzgrabe U. NMR techniques in biomedical and pharmaceutical analysis. J Pharm Biomed Anal 2011; 55(1): 1-15.
[http://dx.doi.org/10.1016/j.jpba.2010.12.023] [PMID: 21237608]
[117]
Roses AD. Pharmacogenetics in drug discovery and development: a translational perspective. Nat Rev Drug Discov 2008; 7(10): 807-17.
[http://dx.doi.org/10.1038/nrd2593] [PMID: 18806753]
[118]
DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003; 22(2): 151-85.
[http://dx.doi.org/10.1016/S0167-6296(02)00126-1] [PMID: 12606142]
[119]
Gillespie TA, Winger BE. Mass spectrometry for small molecule pharmaceutical product development: a review. Mass Spectrom Rev 2011; 30(3): 479-90.
[http://dx.doi.org/10.1002/mas.20289] [PMID: 21500245]
[120]
Korfmacher WA. Mass spectrometry for drug discovery and drug development. Wiley 2013.
[http://dx.doi.org/10.1002/9781118516157]
[121]
Kamnev AA. Analytical molecular and biomolecular spectroscopy: basics and applications. Spectrochim Acta A Mol Biomol Spectrosc 2013; 100: 1-2.
[http://dx.doi.org/10.1016/j.saa.2012.10.035] [PMID: 23157734]
[122]
Alanazi AM, Abdelhameed AS, Bakheit AH, et al. Unraveling the binding characteristics of the anti-HIV agents abacavir, efavirenz and emtricitabine to bovine serum albumin using spectroscopic and molecular simulation approaches. J Mol Liq 2018; 251: 345-57.
[http://dx.doi.org/10.1016/j.molliq.2017.12.066]
[123]
Narang J, Malhotra N, Singh G, Pundir CS. Electrochemical impediometric detection of anti-HIV drug taking gold nanorods as a sensing interface. Biosens Bioelectron 2015; 66: 332-7.
[http://dx.doi.org/10.1016/j.bios.2014.11.038] [PMID: 25437372]
[124]
Aftab S, Kurbanoglu S, Ozcelikay G, Bakirhan NK, Shah A, Ozkan SA. Carbon quantum dots co-catalyzed with multiwalled carbon nanotubes and silver nanoparticles modified nanosensor for the electrochemical assay of anti-HIV drug Rilpivirine. Sens Actuators B Chem 2019; 285: 571-83.
[http://dx.doi.org/10.1016/j.snb.2019.01.094]
[125]
Jimenez-Prieto R, Silva M. The continuous-addition-of-reagent technique as an effective tool for enhancing kinetic-based multicomponent determinations using computational neural networks. Anal Chim Acta 1999; 389: 131-9.
[http://dx.doi.org/10.1016/S0003-2670(99)00118-X]
[126]
Ferreira BDL, Araujo BCR, Sebastião RCO, et al. Kinetic study of anti-HIV drugs by thermal decomposition analysis. J Therm Anal Calorim 2017; 127: 577-85.
[http://dx.doi.org/10.1007/s10973-016-5855-2]
[127]
Řemínek R, Foret F. Capillary electrophoretic methods for quality control analyses of pharmaceuticals: A review. Electrophoresis 2021; 42(1-2): 19-37.
[http://dx.doi.org/10.1002/elps.202000185] [PMID: 32901975]
[128]
Vesterberg O. History of electrophoretic methods. J Chromatogr A 1989; 480: 3-19.
[http://dx.doi.org/10.1016/S0021-9673(01)84276-X] [PMID: 2687307]
[129]
Leonard S, Van Schepdael A, Iványi T, et al. Development of a capillary electrophoretic method for the separation of diastereoisomers of a new human immunodeficiency virus protease inhibitor. Electrophoresis 2005; 26(3): 627-32.
[http://dx.doi.org/10.1002/elps.200406147] [PMID: 15690435]
[130]
Michelini E, Cevenini L, Mezzanotte L, Coppa A, Roda A. Cell-based assays: fuelling drug discovery. Anal Bioanal Chem 2010; 398(1): 227-38.
[http://dx.doi.org/10.1007/s00216-010-3933-z] [PMID: 20623273]
[131]
das Neves J, Nunes R, Rodrigues F, Sarmento B. Nanomedicine in the development of anti-HIV microbicides. Adv Drug Deliv Rev 2016; 103: 57-75.
[http://dx.doi.org/10.1016/j.addr.2016.01.017] [PMID: 26829288]
[132]
Lisziewicz J, Tőke ER. Nanomedicine applications towards the cure of HIV. Nanomedicine 2013; 9(1): 28-38.
[http://dx.doi.org/10.1016/j.nano.2012.05.012] [PMID: 22659241]
[133]
Kaushik A, Jayant RD, Nair M. Nanomedicine for neuro-HIV/AIDS management. Nanomedicine (Lond) 2018; 13(7): 669-73.
[http://dx.doi.org/10.2217/nnm-2018-0005] [PMID: 29485351]
[134]
Skanji R, Andrieux K, Lalanne M, et al. A new nanomedicine based on didanosine glycerolipidic prodrug enhances the long term accumulation of drug in a HIV sanctuary. Int J Pharm 2011; 414(1-2): 285-97.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.005] [PMID: 21596125]
[135]
Armstead AL, Li B. Nanomedicine as an emerging approach against intracellular pathogens. Int J Nanomedicine 2011; 6: 3281-93.
[PMID: 22228996]
[136]
Curley P, Liptrott NJ, Owen A. Advances in nanomedicine drug delivery applications for HIV therapy. Future Sci OA 2017; 4(1): FSO230.
[http://dx.doi.org/10.4155/fsoa-2017-0069] [PMID: 29255619]
[137]
Giardiello M, Liptrott NJ, McDonald TO, et al. Accelerated oral nanomedicine discovery from miniaturized screening to clinical production exemplified by paediatric HIV nanotherapies. Nat Commun 2016; 7: 13184.
[http://dx.doi.org/10.1038/ncomms13184] [PMID: 27767027]
[138]
Saxena SK, Maurya VK, Kumar S, Bhatt MLB. Modern Approaches in Nanomedicine for NeuroAIDS and CNS Drug Delivery. Nanobiomedicine (Rij) 2020; 199-211.
[139]
Aqil F, Munagala R, Jeyabalan J, Vadhanam MV. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett 2013; 334(1): 133-41.
[http://dx.doi.org/10.1016/j.canlet.2013.02.032] [PMID: 23435377]
[140]
Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 2012; 8(2): 147-66.
[http://dx.doi.org/10.1016/j.nano.2011.05.016] [PMID: 21703993]
[141]
Fletcher CV, Staskus K, Wietgrefe SW, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci USA 2014; 111(6): 2307-12.
[http://dx.doi.org/10.1073/pnas.1318249111] [PMID: 24469825]
[142]
Dutta T, Agashe HB, Garg M, Balakrishnan P, Kabra M, Jain NK. Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J Drug Target 2007; 15(1): 89-98.
[http://dx.doi.org/10.1080/10611860600965914] [PMID: 17365278]
[143]
Chiappetta DA, Hocht C, Taira C, Sosnik A. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability [corrected]. Nanomedicine (Lond) 2010; 5(1): 11-23.
[http://dx.doi.org/10.2217/nnm.09.90] [PMID: 20025460]
[144]
Dubey V, Mishra D, Nahar M, Jain V, Jain NK. Enhanced transdermal delivery of an anti-HIV agent via ethanolic liposomes. Nanomedicine 2010; 6(4): 590-6.
[http://dx.doi.org/10.1016/j.nano.2010.01.002] [PMID: 20093197]
[145]
Mamo T, Moseman EA, Kolishetti N, et al. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond) 2010; 5(2): 269-85.
[http://dx.doi.org/10.2217/nnm.10.1] [PMID: 20148638]
[146]
Adiseshaiah PP, Hall JB, McNeil SE. Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(1): 99-112.
[http://dx.doi.org/10.1002/wnan.66] [PMID: 20049834]
[147]
Bawa R. Nanoparticle-based therapeutics in humans: a survey. In: Nanotechnology Law and Business. 2008; pp. 135-55.
[148]
Ochekpe NA, Olorunfemi PO, Ngwuluka NC. Nanotechnology and drug delivery part 2: nanostructures for drug delivery. Trop J Pharm Res 2009; 8: 275-87.
[http://dx.doi.org/10.4314/tjpr.v8i3.44547]
[149]
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[150]
Zhuang C, Pannecouque C, De Clercq E, Chen F. Development of non-nucleoside reverse transcriptase inhibitors (NNRTIs): our past twenty years. Acta Pharm Sin B 2020; 10(6): 961-78.
[http://dx.doi.org/10.1016/j.apsb.2019.11.010] [PMID: 32642405]
[151]
Srivastava R, Gupta SK, Naaz F, et al. Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Comput Biol Chem 2020; 89: 107400.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107400] [PMID: 33068917]
[152]
Yadav M, Srivastava R, Naaz F, Singh A, Verma R, Singh RK. In silico studies on new oxathiadiazoles as potential anti-HIV agents. Gene Rep 2019; 14: 87-93.
[http://dx.doi.org/10.1016/j.genrep.2018.12.004]
[153]
Singh VK, Srivastava R, Gupta PSS, et al. Anti-HIV potential of diarylpyrimidine derivatives as non-nucleoside reverse transcriptase inhibitors: design, synthesis, docking, TOPKAT analysis and molecular dynamics simulations. J Biomol Struct Dyn 2021; 39(7): 2430-46.
[http://dx.doi.org/10.1080/07391102.2020.1748111] [PMID: 32216610]
[154]
Zhu N, Zhang D, Wang W, et al. 2020. A novel coronavirus from patients with pneumonia in China. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[155]
Cooper TJ, Woodward BL, Alom S, Harky A. Coronavirus disease 2019 (COVID-19) outcomes in HIV/AIDS patients: a systematic review. HIV Med 2020; 21(9): 567-77.
[http://dx.doi.org/10.1111/hiv.12911] [PMID: 32671970]
[156]
DePaola LG. Managing the care of patients infected with bloodborne diseases. J Am Dent Assoc 2003; 134(3): 350-8.
[http://dx.doi.org/10.14219/jada.archive.2003.0166] [PMID: 12699050]
[157]
Mawar N, Saha S, Pandit A, Mahajan U. The third phase of HIV pandemic: social consequences of HIV/AIDS stigma & discrimination & future needs. Indian J Med Res 2005; 122(6): 471-84.
[PMID: 16517997]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy