Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

The Neurotensinergic System: A Target for Cancer Treatment

Author(s): Manuel Lisardo Sánchez* and Rafael Coveñas

Volume 29, Issue 18, 2022

Published on: 12 January, 2022

Page: [3231 - 3260] Pages: 30

DOI: 10.2174/0929867328666211027124328

Price: $65

Abstract

Background: The scientific interest regarding the involvement of peptides in cancer has increased in the last few years. In tumor cells, the overexpression of peptides and their receptors is known, and new therapeutic targets for the treatment of cancer have been suggested. The overexpression of the neurotensinergic system has been associated with poor prognosis, tumor size, higher tumor aggressiveness, increased relapse risk, and worse sensitivity to chemotherapy agents.

Objective: The aim of this review is to update the findings regarding the involvement of the neurotensinergic system in cancer to suggest anticancer therapeutic strategies targeting this system. The neurotensin (NT) precursor, NT and its receptors (NTR), and the involvement of the neurotensinergic system in lung, breast, prostate, gastric, colon, liver, and pancreatic cancers, glioblastoma, neuroendocrine tumors, and B-cell leukemia will be mentioned and discussed as well as the signaling pathways mediated by NT. Some research lines to be developed in the future will be suggested, such as molecules regulating the expression of the NT precursor, the influence of the diet in the development of tumors, molecules and signaling pathways activated by NT, and antitumor therapeutic strategies targeting the neurotensinergic system.

Conclusion: NT, via the NTR, exerts oncogenic (tumor cell proliferation, invasion, migration, angiogenesis) and antiapoptotic effects, whereas NTR antagonists inhibit these effects. NTR expression can be used as a diagnostic tool/therapeutic target, and the administration of NTR antagonists as antitumor drugs could be a therapeutic strategy to treat tumors overexpressing NTR.

Keywords: Neurotensin, neurotensin receptor antagonists, tumor, lung, breast, prostate, gastrointestinal, liver, signaling pathways.

[1]
Mattiuzzi, C.; Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health, 2019, 9(4), 217-222.
[http://dx.doi.org/10.2991/jegh.k.191008.001] [PMID: 31854162]
[2]
Muñoz, M.; Coveñas, R. Involvement of substance P and the NK-1 receptor in human pathology. Amino Acids, 2014, 46(7), 1727-1750.
[http://dx.doi.org/10.1007/s00726-014-1736-9] [PMID: 24705689]
[3]
Kastin, A.J. Handbook of Biologically Active Peptides, 2nd ed; Academic Press: Amsterdam, 2013.
[4]
Zhao, M.; Wang, T.; Liu, Q.; Cummins, S. Copy number alteration of neuropeptides and receptors in multiple cancers. Sci. Rep., 2017, 7(1), 4598.
[http://dx.doi.org/10.1038/s41598-017-04832-0] [PMID: 28676692]
[5]
Kasprzak, A.; Adamek, A. The neuropeptide system and colorectal cancer liver metastases: mechanisms and management. Int. J. Mol. Sci., 2020, 21(10), 3494.
[http://dx.doi.org/10.3390/ijms21103494] [PMID: 32429087]
[6]
Colucci, R.; Blandizzi, C.; Ghisu, N.; Florio, T.; Del Tacca, M. Somatostatin inhibits colon cancer cell growth through cyclooxygenase-2 downregulation. Br. J. Pharmacol., 2008, 155(2), 198-209.
[http://dx.doi.org/10.1038/bjp.2008.268] [PMID: 18587421]
[7]
Bugni, J.M.; Rabadi, L.A.; Jubbal, K.; Karagiannides, I.; Lawson, G.; Pothoulakis, C. The neurotensin receptor-1 promotes tumor development in a sporadic but not an inflammation-associated mouse model of colon cancer. Int. J. Cancer, 2012, 130(8), 1798-1805.
[http://dx.doi.org/10.1002/ijc.26208] [PMID: 21630261]
[8]
Evers, B.M. Neurotensin and growth of normal and neoplastic tissues. Peptides, 2006, 27(10), 2424-2433.
[http://dx.doi.org/10.1016/j.peptides.2006.01.028] [PMID: 16904238]
[9]
Bugni, J.M.; Pothoulakis, C. Neurotensin. In: Handbook of Biologically Active Peptides; Kastin, A.J., Ed.; Academic Press: Amsterdam, 2013; pp. 1265-1270.
[10]
Wu, Z.; Fournel, L.; Stadler, N.; Liu, J.; Boullier, A.; Hoyeau, N.; Fléjou, J.F.; Duchatelle, V.; Djebrani-Oussedik, N.; Agopiantz, M.; Ségal-Bendirdjian, E.; Gompel, A.; Alifano, M.; Melander, O.; Trédaniel, J.; Forgez, P. Modulation of lung cancer cell plasticity and heterogeneity with the restoration of cisplatin sensitivity by neurotensin antibody. Cancer Lett., 2019, 444, 147-161.
[http://dx.doi.org/10.1016/j.canlet.2018.12.007] [PMID: 30583074]
[11]
Carraway, R.E.; Plona, A.M. Involvement of neurotensin in cancer growth: evidence, mechanisms and development of diagnostic tools. Peptides, 2006, 27(10), 2445-2460.
[http://dx.doi.org/10.1016/j.peptides.2006.04.030] [PMID: 16887236]
[12]
Mouritzen, M.V.; Abourayale, S.; Ejaz, R.; Ardon, C.B.; Carvalho, E.; Dalgaard, L.T.; Roursgaard, M.; Jenssen, H. Neurotensin, substance P, and insulin enhance cell migration. J. Pept. Sci., 2018, 24(7), e3093.
[http://dx.doi.org/10.1002/psc.3093] [PMID: 29938867]
[13]
Bakirtzi, K.; Law, I.K.; Xue, X.; Iliopoulos, D.; Shah, Y.M.; Pothoulakis, C. Neurotensin promotes the development of colitis and intestinal angiogenesis via Hif-1α-miR-210 signaling. J. Immunol., 2016, 196(10), 4311-4321.
[http://dx.doi.org/10.4049/jimmunol.1501443] [PMID: 27076683]
[14]
Bakirtzi, K.; West, G.; Fiocchi, C.; Law, I.K.; Iliopoulos, D.; Pothoulakis, C. The neurotensin-HIF-1α-VEGFα axis orchestrates hypoxia, colonic inflammation, and intestinal angiogenesis. Am. J. Pathol., 2014, 184(12), 3405-3414.
[http://dx.doi.org/10.1016/j.ajpath.2014.08.015] [PMID: 25307345]
[15]
Campbell, G.E.; Bender, H.R.; Parker, G.A.; Curry, T.E., Jr; Duffy, D.M. Neurotensin: A novel mediator of ovulation? FASEB J., 2021, 35(4), e21481.
[http://dx.doi.org/10.1096/fj.202002547RR] [PMID: 33710668]
[16]
Christou, N.; Blondy, S.; David, V.; Verdier, M.; Lalloué, F.; Jauberteau, M.O.; Mathonnet, M.; Perraud, A. Neurotensin pathway in digestive cancers and clinical applications: An overview. Cell Death Dis., 2020, 11(12), 1027.
[http://dx.doi.org/10.1038/s41419-020-03245-8] [PMID: 33268796]
[17]
Gully, D.; Canton, M.; Boigegrain, R.; Jeanjean, F.; Molimard, J.C.; Poncelet, M.; Gueudet, C.; Heaulme, M.; Leyris, R.; Brouard, A. Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. Proc. Natl. Acad. Sci. USA, 1993, 90(1), 65-69.
[http://dx.doi.org/10.1073/pnas.90.1.65] [PMID: 8380498]
[18]
Bakirtzi, K.; Hatziapostolou, M.; Karagiannides, I.; Polytarchou, C.; Jaeger, S.; Bakirtzi, K.; Hatziapostolou, M.; Karagiannides, I.; Polytarchou, C.; Jaeger, S.; Iliopoulos, D.; Pothoulakis, C. Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology, 2011, 141(5), 1749-61.
[http://dx.doi.org/10.1053/j.gastro.2011.07.038] [PMID: 21806946]
[19]
Zhu, S.; Tian, H.; Niu, X.; Wang, J.; Li, X.; Jiang, N.; Wen, S.; Chen, X.; Ren, S.; Xu, C.; Chang, C.; Flores-Morales, A.; Shang, Z.; Sun, Y.; Niu, Y. Neurotensin and its receptors mediate neuroendocrine transdifferentiation in prostate cancer. Oncogene, 2019, 38(24), 4875-4884.
[http://dx.doi.org/10.1038/s41388-019-0750-5] [PMID: 30770901]
[20]
Dong, Z.; Wang, X.; Zhao, Q.; Townsend, C.M., Jr; Evers, B.M. DNA methylation contributes to expression of the human neurotensin/neuromedin N gene. Am. J. Physiol., 1998, 274(3), G535-G543.
[PMID: 9530155]
[21]
Vincent, J.P.; Mazella, J.; Kitabgi, P. Neurotensin and neurotensin receptors. Trends Pharmacol. Sci., 1999, 20(7), 302-309.
[http://dx.doi.org/10.1016/S0165-6147(99)01357-7] [PMID: 10390649]
[22]
Dobner, P.R.; Carraway, R.E. Neurotensin/Neuromedin N. In: Handbook of Biologically Active Peptides; Kastin, A.J., Ed.; Academic Press: Amsterdam, 2013; pp. 875-882.
[23]
Cuber, J.C.; Herrmann, C.; Kitabgi, P.; Bosshard, A.; Bernard, C.; De Nadai, F.; Chayvialle, J.A. Neuromedin-N is not released with neurotensin from rat ileum. Endocrinology, 1990, 126(3), 1584-1592.
[http://dx.doi.org/10.1210/endo-126-3-1584] [PMID: 2307120]
[24]
Kitabgi, P.; De Nadai, F.; Cuber, J.C.; Dubuc, I.; Nouel, D.; Costentin, J. Calcium-dependent release of neuromedin N and neurotensin from mouse hypothalamus. Neuropeptides, 1990, 15(2), 111-114.
[http://dx.doi.org/10.1016/0143-4179(90)90047-3] [PMID: 2080018]
[25]
Carraway, R.E.; Mitra, S.P.; Spaulding, G. Posttranslational processing of the neurotensin/neuromedin-N precursor. Ann. N. Y. Acad. Sci., 1992, 668, 1-16.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb27335.x] [PMID: 1463268]
[26]
Kitabgi, P.; De Nadai, F.; Rovère, C.; Bidard, J.N. Biosynthesis, maturation, release, and degradation of neurotensin and neuromedin N. Ann. N. Y. Acad. Sci., 1992, 668, 30-42.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb27337.x] [PMID: 1463273]
[27]
Seidah, N.G.; Chrétien, M.; Day, R. The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie, 1994, 76(3-4), 197-209.
[http://dx.doi.org/10.1016/0300-9084(94)90147-3] [PMID: 7819324]
[28]
Rovère, C.; Barbero, P.; Kitabgi, P. Evidence that PC2 is the endogenous pro-neurotensin convertase in rMTC 6-23 cells and that PC1- and PC2-transfected PC12 cells differentially process pro-neurotensin. J. Biol. Chem., 1996, 271(19), 11368-11375.
[http://dx.doi.org/10.1074/jbc.271.19.11368] [PMID: 8626691]
[29]
Barbero, P.; Rovère, C.; De Bie, I.; Seidah, N.; Beaudet, A.; Kitabgi, P. PC5-A-mediated processing of pro-neurotensin in early compartments of the regulated secretory pathway of PC5-transfected PC12 cells. J. Biol. Chem., 1998, 273(39), 25339-25346.
[http://dx.doi.org/10.1074/jbc.273.39.25339] [PMID: 9738000]
[30]
Vivoli, M.; Lindberg, I. Prohormone Convertase 1/3. In: Handbook of Biologically Active Peptides; Academic Press: Amsterdam, 2013; pp. 1789-1796.
[31]
Vivoli, M.; Lindberg, I. Prohormone Convertase 2. In: Handbook of Biologically Active Peptides; Academic Press: Amsterdam, 2013; pp. 1797-1802.
[32]
Seidah, N.G. Proprotein Convertase Furin and Proprotein Convertase PC5/6. In: Handbook of Biologically Active Peptides; Academic Press: Amsterdam, 2013; pp. 1803-1811.
[33]
Rovère, C.; Barbero, P.; Maoret, J.J.; Laburthe, M.; Kitabgi, P. Pro-neurotensin/neuromedin N expression and processing in human colon cancer cell lines. Biochem. Biophys. Res. Commun., 1998, 246(1), 155-159.
[http://dx.doi.org/10.1006/bbrc.1998.8506] [PMID: 9600085]
[34]
Bidard, J.N.; de Nadai, F.; Rovere, C.; Moinier, D.; Laur, J.; Martinez, J.; Cuber, J.C.; Kitabgi, P. Immunological and biochemical characterization of processing products from the neurotensin/neuromedin N precursor in the rat medullary thyroid carcinoma 6-23 cell line. Biochem. J., 1993, 291(Pt 1), 225-233.
[http://dx.doi.org/10.1042/bj2910225] [PMID: 8471039]
[35]
Carraway, R.E.; Mitra, S.P.; Joyce, T.J. Tissue-specific processing of neurotensin/neuromedin-N precursor in cat. Regul. Pept., 1993, 43(1-2), 97-106.
[http://dx.doi.org/10.1016/0167-0115(93)90412-2] [PMID: 8426913]
[36]
Evers, B.M.; Beauchamp, R.D.; Ishizuka, J.; Townsend, C.M., Jr; Alam, T.; Papaconstantinou, J.; Thompson, J.C. Posttranscriptional regulation of neurotensin in the gut. Surgery, 1991, 110(2), 247-252.
[PMID: 1858034]
[37]
Evers, B.M. Endocrine gene neurotensin: molecular mechanisms and a model of intestinal differentiation. World J. Surg., 2002, 26(7), 799-805.
[http://dx.doi.org/10.1007/s00268-002-4055-3] [PMID: 11960215]
[38]
Evers, B.M.; Rajaraman, S.; Chung, D.H.; Townsend, C.M., Jr; Wang, X.; Graves, K.; Thompson, J.C. Developmental expression of the neurotensin gene in the rat liver. Ann. Surg., 1993, 218(2), 183-188.
[http://dx.doi.org/10.1097/00000658-199308000-00010] [PMID: 8342998]
[39]
Reinecke, M. Neurotensin. Immunohistochemical localization in central and peripheral nervous system and in endocrine cells and its functional role as neurotransmitter and endocrine hormone. Prog. Histochem. Cytochem., 1985, 16(1), 1-172.
[PMID: 2859633]
[40]
Sánchez, M.L.; Vecino, E.; Coveñas, R. Distribution of neurotensin and somatostatin-28 (1-12) in the minipig brainstem. Anat. Histol. Embryol., 2016, 45(4), 260-276.
[http://dx.doi.org/10.1111/ahe.12194] [PMID: 26250798]
[41]
Carraway, R.; Leeman, S.E. Characterization of radioimmunoassayable neurotensin in the rat. Its differential distribution in the central nervous system, small intestine, and stomach. J. Biol. Chem., 1976, 251(22), 7045-7052.
[http://dx.doi.org/10.1016/S0021-9258(17)32938-1] [PMID: 993203]
[42]
Feurle, G.E.; Müller, B.; Rix, E. Neurotensin induces hyperplasia of the pancreas and growth of the gastric antrum in rats. Gut, 1987, 28(S1)(Suppl.), 19-23.
[http://dx.doi.org/10.1136/gut.28.Suppl.19] [PMID: 3692307]
[43]
Wood, J.G.; Hoang, H.D.; Bussjaeger, L.J.; Solomon, T.E. Neurotensin stimulates growth of small intestine in rats. Am. J. Physiol., 1988, 255(6 Pt 1), G813-G817.
[PMID: 3202174]
[44]
Evers, B.M.; Izukura, M.; Chung, D.H.; Parekh, D.; Yoshinaga, K.; Greeley, G.H., Jr; Uchida, T.; Townsend, C.M., Jr; Thompson, J.C. Neurotensin stimulates growth of colonic mucosa in young and aged rats. Gastroenterology, 1992, 103(1), 86-91.
[http://dx.doi.org/10.1016/0016-5085(92)91099-P] [PMID: 1612361]
[45]
Coppola, T.; Béraud-Dufour, S.; Antoine, A.; Vincent, J.P.; Mazella, J. Neurotensin protects pancreatic beta cells from apoptosis. Int. J. Biochem. Cell Biol., 2008, 40(10), 2296-2302.
[http://dx.doi.org/10.1016/j.biocel.2008.03.015] [PMID: 18456542]
[46]
Schroeder, L.E.; Leinninger, G.M. Role of central neurotensin in regulating feeding: implications for the development and treatment of body weight disorders. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(3), 900-916.
[http://dx.doi.org/10.1016/j.bbadis.2017.12.036] [PMID: 29288794]
[47]
Demeule, M.; Beaudet, N.; Régina, A.; Besserer-Offroy, É.; Murza, A.; Tétreault, P.; Belleville, K.; Ché, C.; Larocque, A.; Thiot, C.; Béliveau, R.; Longpré, J.M.; Marsault, É.; Leduc, R.; Lachowicz, J.E.; Gonias, S.L.; Castaigne, J.P.; Sarret, P. Conjugation of a brain-penetrant peptide with neurotensin provides antinociceptive properties. J. Clin. Invest., 2014, 124(3), 1199-1213.
[http://dx.doi.org/10.1172/JCI70647] [PMID: 24531547]
[48]
Cui, H.; Cai, F.; Belsham, D.D. Anorexigenic hormones leptin, insulin, and alpha-melanocyte-stimulating hormone directly induce neurotensin (NT) gene expression in novel NT-expressing cell models. J. Neurosci., 2005, 25(41), 9497-9506.
[http://dx.doi.org/10.1523/JNEUROSCI.2269-05.2005] [PMID: 16221860]
[49]
Lee, M.R.; Hinton, D.J.; Song, J.Y.; Lee, K.W.; Choo, C.; Johng, H.; Unal, S.S.; Richelson, E.; Choi, D.S. Neurotensin receptor type 1 regulates ethanol intoxication and consumption in mice. Pharmacol. Biochem. Behav., 2010, 95(2), 235-241.
[http://dx.doi.org/10.1016/j.pbb.2010.01.012] [PMID: 20122953]
[50]
Blackburn, A.M.; Fletcher, D.R.; Bloom, S.R.; Christofides, N.D.; Long, R.G.; Fitzpatrick, M.L.; Baron, J.H. Effect of neurotensin on gastric function in man. Lancet, 1980, 1(8176), 987-989.
[http://dx.doi.org/10.1016/S0140-6736(80)91434-8] [PMID: 6103384]
[51]
Mustain, W.C.; Rychahou, P.G.; Evers, B.M. The role of neurotensin in physiologic and pathologic processes. Curr. Opin. Endocrinol. Diabetes Obes., 2011, 18(1), 75-82.
[http://dx.doi.org/10.1097/MED.0b013e3283419052] [PMID: 21124211]
[52]
Cáceda, R.; Kinkead, B.; Nemeroff, C.B. Neurotensin: role in psychiatric and neurological diseases. Peptides, 2006, 27(10), 2385-2404.
[http://dx.doi.org/10.1016/j.peptides.2006.04.024] [PMID: 16891042]
[53]
Brun, P.; Mastrotto, C.; Beggiao, E.; Stefani, A.; Barzon, L.; Sturniolo, G.C.; Palù, G.; Castagliuolo, I. Neuropeptide neurotensin stimulates intestinal wound healing following chronic intestinal inflammation. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 288(4), G621-G629.
[http://dx.doi.org/10.1152/ajpgi.00140.2004] [PMID: 15764810]
[54]
Binder, E.B.; Kinkead, B.; Owens, M.J.; Nemeroff, C.B. Neurotensin and dopamine interactions. Pharmacol. Rev., 2001, 53(4), 453-486.
[PMID: 11734615]
[55]
St-Gelais, F.; Legault, M.; Bourque, M.J.; Rompré, P.P.; Trudeau, L.E. Role of calcium in neurotensin-evoked enhancement in firing in mesencephalic dopamine neurons. J. Neurosci., 2004, 24(10), 2566-2574.
[http://dx.doi.org/10.1523/JNEUROSCI.5376-03.2004] [PMID: 15014132]
[56]
Ferraro, L.; Tomasini, M.C.; Fernandez, M.; Bebe, B.W.; O’Connor, W.T.; Fuxe, K.; Glennon, J.C.; Tanganelli, S.; Antonelli, T. Nigral neurotensin receptor regulation of nigral glutamate and nigroventral thalamic GABA transmission: a dual-probe microdialysis study in intact conscious rat brain. Neuroscience, 2001, 102(1), 113-120.
[http://dx.doi.org/10.1016/S0306-4522(00)00448-6] [PMID: 11226674]
[57]
Buhler, A.V.; Choi, J.; Proudfit, H.K.; Gebhart, G.F. Neurotensin activation of the NTR1 on spinally-projecting serotonergic neurons in the rostral ventromedial medulla is antinociceptive. Pain, 2005, 114(1-2), 285-294.
[http://dx.doi.org/10.1016/j.pain.2004.12.031] [PMID: 15733655]
[58]
Wenk, G.L.; Markowska, A.L.; Olton, D.S. Basal forebrain lesions and memory: Alterations in neurotensin, not acetylcholine, may cause amnesia. Behav. Neurosci., 1989, 103(4), 765-769.
[http://dx.doi.org/10.1037/0735-7044.103.4.765] [PMID: 2669837]
[59]
Lénárd, L.; László, K.; Kertes, E.; Ollmann, T.; Péczely, L.; Kovács, A.; Kállai, V.; Zagorácz, O.; Gálosi, R.; Karádi, Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci. Biobehav. Rev., 2018, 85, 1-20.
[http://dx.doi.org/10.1016/j.neubiorev.2017.09.003] [PMID: 28887225]
[60]
Rostène, W.H.; Alexander, M.J. Neurotensin and neuroendocrine regulation. Front. Neuroendocrinol., 1997, 18(2), 115-173.
[http://dx.doi.org/10.1006/frne.1996.0146] [PMID: 9101258]
[61]
Rökaeus, A.; Fried, G.; Lundberg, J.M. Occurrence, storage and release of neurotensin-like immunoreactivity from the adrenal gland. Acta Physiol. Scand., 1984, 120(3), 373-380.
[http://dx.doi.org/10.1111/j.1748-1716.1984.tb07397.x] [PMID: 6741572]
[62]
Rock, S.; Li, X.; Song, J.; Townsend, C.M., Jr; Weiss, H.L.; Rychahou, P.; Gao, T.; Li, J.; Evers, B.M. Kinase suppressor of Ras 1 and Exo70 promote fatty acid-stimulated neurotensin secretion through ERK1/2 signaling. PLoS One, 2019, 14(3), e0211134.
[http://dx.doi.org/10.1371/journal.pone.0211134] [PMID: 30917119]
[63]
Li, J.; Song, J.; Zaytseva, Y.Y.; Liu, Y.; Rychahou, P.; Jiang, K.; Starr, M.E.; Kim, J.T.; Harris, J.W.; Yiannikouris, F.B.; Katz, W.S.; Nilsson, P.M.; Orho-Melander, M.; Chen, J.; Zhu, H.; Fahrenholz, T.; Higashi, R.M.; Gao, T.; Morris, A.J.; Cassis, L.A.; Fan, T.W.; Weiss, H.L.; Dobner, P.R.; Melander, O.; Jia, J.; Evers, B.M. An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature, 2016, 533(7603), 411-415.
[http://dx.doi.org/10.1038/nature17662] [PMID: 27193687]
[64]
Barber, D.L.; Cacace, A.M.; Raucci, D.T.; Ganz, M.B. Fatty acids stereospecifically stimulate neurotensin release and increase [Ca2+]i in enteric endocrine cells. Am. J. Physiol., 1991, 261(3 Pt 1), G497-G503.
[PMID: 1887896]
[65]
Zhao, D.; Pothoulakis, C. Effects of NT on gastrointestinal motility and secretion, and role in intestinal inflammation. Peptides, 2006, 27(10), 2434-2444.
[http://dx.doi.org/10.1016/j.peptides.2005.12.016] [PMID: 16872719]
[66]
Iyer, M.R.; Kunos, G. Therapeutic approaches targeting the neurotensin receptors. Expert Opin. Ther. Pat., 2021, 31(5), 361-386.
[http://dx.doi.org/10.1080/13543776.2021.1866539] [PMID: 33393392]
[67]
Fredriksson, R.; Lagerström, M.C.; Lundin, L.G.; Schiöth, H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol., 2003, 63(6), 1256-1272.
[http://dx.doi.org/10.1124/mol.63.6.1256] [PMID: 12761335]
[68]
Pelaprat, D. Interactions between neurotensin receptors and G proteins. Peptides, 2006, 27(10), 2476-2487.
[http://dx.doi.org/10.1016/j.peptides.2006.04.027] [PMID: 16919370]
[69]
Zsürger, N.; Mazella, J.; Vincent, J.P. Solubilization and purification of a high affinity neurotensin receptor from newborn human brain. Brain Res., 1994, 639(2), 245-252.
[http://dx.doi.org/10.1016/0006-8993(94)91737-X] [PMID: 8205478]
[70]
Tanaka, K.; Masu, M.; Nakanishi, S. Structure and functional expression of the cloned rat neurotensin receptor. Neuron, 1990, 4(6), 847-854.
[http://dx.doi.org/10.1016/0896-6273(90)90137-5] [PMID: 1694443]
[71]
Chalon, P.; Vita, N.; Kaghad, M.; Guillemot, M.; Bonnin, J.; Delpech, B.; Le Fur, G.; Ferrara, P.; Caput, D. Molecular cloning of a levocabastine-sensitive neurotensin binding site. FEBS Lett., 1996, 386(2-3), 91-94.
[http://dx.doi.org/10.1016/0014-5793(96)00397-3] [PMID: 8647296]
[72]
Dubuc, I.; Costentin, J.; Terranova, J.P.; Barnouin, M.C.; Soubrié, P.; Le Fur, G.; Rostène, W.; Kitabgi, P. The nonpeptide neurotensin antagonist, SR 48692, used as a tool to reveal putative neurotensin receptor subtypes. Br. J. Pharmacol., 1994, 112(2), 352-354.
[http://dx.doi.org/10.1111/j.1476-5381.1994.tb13077.x] [PMID: 8075852]
[73]
Mazella, J.; Botto, J.M.; Guillemare, E.; Coppola, T.; Sarret, P.; Vincent, J.P. Structure, functional expression, and cerebral localization of the levocabastine-sensitive neurotensin/neuromedin N receptor from mouse brain. J. Neurosci., 1996, 16(18), 5613-5620.
[http://dx.doi.org/10.1523/JNEUROSCI.16-18-05613.1996] [PMID: 8795617]
[74]
Gully, D.; Labeeuw, B.; Boigegrain, R.; Oury-Donat, F.; Bachy, A.; Poncelet, M.; Steinberg, R.; Suaud-Chagny, M.F.; Santucci, V.; Vita, N.; Pecceu, F.; Labbé-Jullié, C.; Kitabgi, P.; Soubrié, P.; Le Fur, G.; Maffrand, J.P. Biochemical and pharmacological activities of SR 142948A, a new potent neurotensin receptor antagonist. J. Pharmacol. Exp. Ther., 1997, 280(2), 802-812.
[PMID: 9023294]
[75]
Vita, N.; Oury-Donat, F.; Chalon, P.; Guillemot, M.; Kaghad, M.; Bachy, A.; Thurneyssen, O.; García, S.; Poinot-Chazel, C.; Casellas, P.; Keane, P.; Le Fur, G.; Maffrand, J.P.; Soubrie, P.; Caput, D.; Ferrara, P. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells. Eur. J. Pharmacol., 1998, 360(2-3), 265-272.
[http://dx.doi.org/10.1016/S0014-2999(98)00678-5] [PMID: 9851594]
[76]
White, J.F.; Grodnitzky, J.; Louis, J.M.; Trinh, L.B.; Shiloach, J.; Gutierrez, J.; Northup, J.K.; Grisshammer, R. Dimerization of the class A G protein-coupled neurotensin receptor NTS1 alters G protein interaction. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 12199-12204.
[http://dx.doi.org/10.1073/pnas.0705312104] [PMID: 17620610]
[77]
Hwang, J.R.; Baek, M.W.; Sim, J.; Choi, H.S.; Han, J.M.; Kim, Y.L.; Hwang, J.I.; Kwon, H.B.; Beaudet, N.; Sarret, P.; Seong, J.Y. Intermolecular cross-talk between NTR1 and NTR2 neurotensin receptor promotes intracellular sequestration and functional inhibition of NTR1 receptors. Biochem. Biophys. Res. Commun., 2010, 391(1), 1007-1013.
[http://dx.doi.org/10.1016/j.bbrc.2009.12.007] [PMID: 19968961]
[78]
Petersen, C.M.; Nielsen, M.S.; Nykjaer, A.; Jacobsen, L.; Tommerup, N.; Rasmussen, H.H.; Roigaard, H.; Gliemann, J.; Madsen, P.; Moestrup, S.K. Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. J. Biol. Chem., 1997, 272(6), 3599-3605.
[http://dx.doi.org/10.1074/jbc.272.6.3599] [PMID: 9013611]
[79]
Mazella, J.; Zsürger, N.; Navarro, V.; Chabry, J.; Kaghad, M.; Caput, D.; Ferrara, P.; Vita, N.; Gully, D.; Maffrand, J.P.; Vincent, J.P. The 100-kDa neurotensin receptor is gp95/sortilin, a non-G-protein-coupled receptor. J. Biol. Chem., 1998, 273(41), 26273-26276.
[http://dx.doi.org/10.1074/jbc.273.41.26273] [PMID: 9756851]
[80]
Talbot, H.; Saada, S.; Naves, T.; Gallet, P.F.; Fauchais, A.L.; Jauberteau, M.O. Regulatory roles of sortilin and SorLA in immune-related processes. Front. Pharmacol., 2019, 9, 1507.
[http://dx.doi.org/10.3389/fphar.2018.01507] [PMID: 30666202]
[81]
Quistgaard, E.M.; Madsen, P.; Grøftehauge, M.K.; Nissen, P.; Petersen, C.M.; Thirup, S.S. Ligands bind to Sortilin in the tunnel of a ten-bladed beta-propeller domain. Nat. Struct. Mol. Biol., 2009, 16(1), 96-98.
[http://dx.doi.org/10.1038/nsmb.1543] [PMID: 19122660]
[82]
Quistgaard, E.M.; Grøftehauge, M.K.; Madsen, P.; Pallesen, L.T.; Christensen, B.; Sørensen, E.S.; Nissen, P.; Petersen, C.M.; Thirup, S.S. Revisiting the structure of the Vps10 domain of human sortilin and its interaction with neurotensin. Protein Sci., 2014, 23(9), 1291-1300.
[http://dx.doi.org/10.1002/pro.2512] [PMID: 24985322]
[83]
Nykjaer, A.; Lee, R.; Teng, K.K.; Jansen, P.; Madsen, P.; Nielsen, M.S.; Jacobsen, C.; Kliemannel, M.; Schwarz, E.; Willnow, T.E.; Hempstead, B.L.; Petersen, C.M. Sortilin is essential for proNGF-induced neuronal cell death. Nature, 2004, 427(6977), 843-848.
[http://dx.doi.org/10.1038/nature02319] [PMID: 14985763]
[84]
Teng, H.K.; Teng, K.K.; Lee, R.; Wright, S.; Tevar, S.; Almeida, R.D.; Kermani, P.; Torkin, R.; Chen, Z.Y.; Lee, F.S.; Kraemer, R.T.; Nykjaer, A.; Hempstead, B.L. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci., 2005, 25(22), 5455-5463.
[http://dx.doi.org/10.1523/JNEUROSCI.5123-04.2005] [PMID: 15930396]
[85]
Yano, H.; Torkin, R.; Martin, L.A.; Chao, M.V.; Teng, K.K. Proneurotrophin-3 is a neuronal apoptotic ligand: evidence for retrograde-directed cell killing. J. Neurosci., 2009, 29(47), 14790-14802.
[http://dx.doi.org/10.1523/JNEUROSCI.2059-09.2009] [PMID: 19940174]
[86]
Blondy, S.; Christou, N.; David, V.; Verdier, M.; Jauberteau, M.O.; Mathonnet, M.; Perraud, A. Neurotrophins and their involvement in digestive cancers. Cell Death Dis., 2019, 10(2), 123.
[http://dx.doi.org/10.1038/s41419-019-1385-8] [PMID: 30741921]
[87]
Massa, F.; Devader, C.; Béraud-Dufour, S.; Brau, F.; Coppola, T.; Mazella, J. Focal adhesion kinase dependent activation of the PI3 kinase pathway by the functional soluble form of neurotensin receptor-3 in HT29 cells. Int. J. Biochem. Cell Biol., 2013, 45(5), 952-959.
[http://dx.doi.org/10.1016/j.biocel.2013.01.020] [PMID: 23395631]
[88]
Massa, F.; Devader, C.; Lacas-Gervais, S.; Béraud-Dufour, S.; Coppola, T.; Mazella, J. Impairement of HT29 cancer cells cohesion by the soluble form of neurotensin receptor-3. Genes Cancer, 2014, 5(7-8), 240-249.
[http://dx.doi.org/10.18632/genesandcancer.22] [PMID: 25221642]
[89]
Leloup, N.; Lössl, P.; Meijer, D.H.; Brennich, M.; Heck, A.J.R.; Thies-Weesie, D.M.E.; Janssen, B.J.C. Low pH-induced conformational change and dimerization of sortilin triggers endocytosed ligand release. Nat. Commun., 2017, 8(1), 1708.
[http://dx.doi.org/10.1038/s41467-017-01485-5] [PMID: 29167428]
[90]
Devader, C.; Béraud-Dufour, S.; Coppola, T.; Mazella, J. The anti-apoptotic role of neurotensin. Cells, 2013, 2(1), 124-135.
[http://dx.doi.org/10.3390/cells2010124] [PMID: 24709648]
[91]
Wilson, C.M.; Naves, T.; Al Akhrass, H.; Vincent, F.; Melloni, B.; Bonnaud, F.; Lalloué, F.; Jauberteau, M.O. A new role under sortilin’s belt in cancer. Commun. Integr. Biol., 2016, 9(1), e1130192.
[http://dx.doi.org/10.1080/19420889.2015.1130192] [PMID: 27066187]
[92]
Martin, S.; Navarro, V.; Vincent, J.P.; Mazella, J. Neurotensin receptor-1 and -3 complex modulates the cellular signaling of neurotensin in the HT29 cell line. Gastroenterology, 2002, 123(4), 1135-1143.
[http://dx.doi.org/10.1053/gast.2002.36000] [PMID: 12360476]
[93]
Li, J.H.; Sicard, F.; Salam, M.A.; Baek, M.; LePrince, J.; Vaudry, H.; Kim, K.; Kwon, H.B.; Seong, J.Y. Molecular cloning and functional characterization of a type-I neurotensin receptor (NTR) and a novel NTR from the bullfrog brain. J. Mol. Endocrinol., 2005, 34(3), 793-807.
[http://dx.doi.org/10.1677/jme.1.01709] [PMID: 15956348]
[94]
Nakaizumi, A.; Uehara, H.; Baba, M.; Iishi, H.; Tatsuta, M. Enhancement by neurotensin of hepatocarcinogenesis by N-nitrosomorpholine in Sprague-Dawley rats. Cancer Lett., 1996, 110(1-2), 57-61.
[http://dx.doi.org/10.1016/S0304-3835(96)04466-7] [PMID: 9018081]
[95]
Gerber, M. Background review paper on total fat, fatty acid intake and cancers. Ann. Nutr. Metab., 2009, 55(1-3), 140-161.
[http://dx.doi.org/10.1159/000229000] [PMID: 19752540]
[96]
Moody, T.W. Peptide hormones and lung cancer. Panminerva Med., 2006, 48(1), 19-26.
[PMID: 16633328]
[97]
Alifano, M.; Souazé, F.; Dupouy, S.; Camilleri-Broët, S.; Younes, M.; Ahmed-Zaïd, S.M.; Takahashi, T.; Cancellieri, A.; Damiani, S.; Boaron, M.; Broët, P.; Miller, L.D.; Gespach, C.; Regnard, J.F.; Forgez, P. Neurotensin receptor 1 determines the outcome of non-small cell lung cancer. Clin. Cancer Res., 2010, 16(17), 4401-4410.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0659] [PMID: 20810387]
[98]
Younes, M.; Wu, Z.; Dupouy, S.; Lupo, A.M.; Mourra, N.; Takahashi, T.; Fléjou, J.F.; Trédaniel, J.; Régnard, J.F.; Damotte, D.; Alifano, M.; Forgez, P. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib. Oncotarget, 2014, 5(18), 8252-8269.
[http://dx.doi.org/10.18632/oncotarget.1633] [PMID: 25249545]
[99]
Wilson, C.M.; Naves, T.; Vincent, F.; Melloni, B.; Bonnaud, F.; Lalloué, F.; Jauberteau, M.O. Sortilin mediates the release and transfer of exosomes in concert with two tyrosine kinase receptors. J. Cell Sci., 2014, 127(Pt 18), 3983-3997.
[http://dx.doi.org/10.1242/jcs.149336] [PMID: 25037567]
[100]
Al-Akhrass, H.; Naves, T.; Vincent, F.; Magnaudeix, A.; Durand, K.; Bertin, F.; Melloni, B.; Jauberteau, M.O.; Lalloué, F. Sortilin limits EGFR signaling by promoting its internalization in lung cancer. Nat. Commun., 2017, 8(1), 1182.
[http://dx.doi.org/10.1038/s41467-017-01172-5] [PMID: 29084952]
[101]
Zhu, M.C.; Xiong, P.; Li, G.L.; Zhu, M. Could lung cancer exosomes induce apoptosis of natural killer cells through the p75NTR-proNGF-sortilin axis? Med. Hypotheses, 2017, 108, 151-153.
[http://dx.doi.org/10.1016/j.mehy.2017.09.003] [PMID: 29055389]
[102]
Dupouy, S.; Viardot-Foucault, V.; Alifano, M.; Souazé, F.; Plu-Bureau, G.; Chaouat, M.; Lavaur, A.; Hugol, D.; Gespach, C.; Gompel, A.; Forgez, P. The neurotensin receptor-1 pathway contributes to human ductal breast cancer progression. PLoS One, 2009, 4(1), e4223.
[http://dx.doi.org/10.1371/journal.pone.0004223] [PMID: 19156213]
[103]
Cross, A.S.; Azzopardi, J.G.; Krausz, T.; van Noorden, S.; Polak, J.M. A morphological and immunocytochemical study of a distinctive variant of ductal carcinoma in-situ of the breast. Histopathology, 1985, 9(1), 21-37.
[http://dx.doi.org/10.1111/j.1365-2559.1985.tb02968.x] [PMID: 2579885]
[104]
Souazé, F.; Dupouy, S.; Viardot-Foucault, V.; Bruyneel, E.; Attoub, S.; Gespach, C.; Gompel, A.; Forgez, P. Expression of neurotensin and NT1 receptor in human breast cancer: a potential role in tumor progression. Cancer Res., 2006, 66(12), 6243-6249.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0450] [PMID: 16778199]
[105]
Roselli, S.; Pundavela, J.; Demont, Y.; Faulkner, S.; Keene, S.; Attia, J.; Jiang, C.C.; Zhang, X.D.; Walker, M.M.; Hondermarck, H. Sortilin is associated with breast cancer aggressiveness and contributes to tumor cell adhesion and invasion. Oncotarget, 2015, 6(12), 10473-10486.
[http://dx.doi.org/10.18632/oncotarget.3401] [PMID: 25871389]
[106]
Demont, Y.; Corbet, C.; Page, A.; Ataman-Önal, Y.; Choquet-Kastylevsky, G.; Fliniaux, I.; Le Bourhis, X.; Toillon, R.A.; Bradshaw, R.A.; Hondermarck, H. Pro-nerve growth factor induces autocrine stimulation of breast cancer cell invasion through tropomyosin-related kinase A (TrkA) and sortilin protein. J. Biol. Chem., 2012, 287(3), 1923-1931.
[http://dx.doi.org/10.1074/jbc.M110.211714] [PMID: 22128158]
[107]
Castillo-Rodríguez, R.A.; Arango-Rodríguez, M.L.; Escobedo, L.; Hernández-Baltazar, D.; Gompel, A.; Forgez, P.; Martínez-Fong, D. Suicide HSVtk gene delivery by neurotensin-polyplex nanoparticles via the bloodstream and GCV Treatment specifically inhibit the growth of human MDA-MB-231 triple negative breast cancer tumors xenografted in athymic mice. PLoS One, 2014, 9(5), e97151.
[http://dx.doi.org/10.1371/journal.pone.0097151] [PMID: 24824754]
[108]
Dupouy, S.; Doan, V.K.; Wu, Z.; Mourra, N.; Liu, J.; De Wever, O.; Llorca, F.P.; Cayre, A.; Kouchkar, A.; Gompel, A.; Forgez, P. Activation of EGFR, HER2 and HER3 by neurotensin/neurotensin receptor 1 renders breast tumors aggressive yet highly responsive to lapatinib and metformin in mice. Oncotarget, 2014, 5(18), 8235-8251.
[http://dx.doi.org/10.18632/oncotarget.1632] [PMID: 25249538]
[109]
Sehgal, I.; Powers, S.; Huntley, B.; Powis, G.; Pittelkow, M.; Maihle, N.J. Neurotensin is an autocrine trophic factor stimulated by androgen withdrawal in human prostate cancer. Proc. Natl. Acad. Sci. USA, 1994, 91(11), 4673-4677.
[http://dx.doi.org/10.1073/pnas.91.11.4673] [PMID: 8197117]
[110]
Moody, T.W.; Mayr, C.A.; Gillespie, T.J.; Davis, T.P. Neurotensin is metabolized by endogenous proteases in prostate cancer cell lines. Peptides, 1998, 19(2), 253-258.
[http://dx.doi.org/10.1016/S0196-9781(97)00306-9] [PMID: 9493857]
[111]
Dal Farra, C.; Sarret, P.; Navarro, V.; Botto, J.M.; Mazella, J.; Vincent, J.P. Involvement of the neurotensin receptor subtype NTR3 in the growth effect of neurotensin on cancer cell lines. Int. J. Cancer, 2001, 92(4), 503-509.
[http://dx.doi.org/10.1002/ijc.1225] [PMID: 11304684]
[112]
Valerie, N.C.; Casarez, E.V.; Dasilva, J.O.; Dunlap-Brown, M.E.; Parsons, S.J.; Amorino, G.P.; Dziegielewski, J. Inhibition of neurotensin receptor 1 selectively sensitizes prostate cancer to ionizing radiation. Cancer Res., 2011, 71(21), 6817-6826.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1646] [PMID: 21903767]
[113]
Morgat, C.; Chastel, A.; Molinie, V.; Schollhammer, R.; Macgrogan, G.; Vélasco, V.; Malavaud, B.; Fernandez, P.; Hindié, E. Neurotensin receptor-1 expression in human prostate cancer: a pilot study on primary tumors and lymph node metastases. Int. J. Mol. Sci., 2019, 20(7), 1721.
[http://dx.doi.org/10.3390/ijms20071721] [PMID: 30959962]
[114]
Swift, S.L.; Burns, J.E.; Maitland, N.J. Altered expression of neurotensin receptors is associated with the differentiation state of prostate cancer. Cancer Res., 2010, 70(1), 347-356.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1252] [PMID: 20048080]
[115]
Tanimoto, R.; Morcavallo, A.; Terracciano, M.; Xu, S.Q.; Stefanello, M.; Buraschi, S.; Lu, K.G.; Bagley, D.H.; Gomella, L.G.; Scotlandi, K.; Belfiore, A.; Iozzo, R.V.; Morrione, A. Sortilin regulates progranulin action in castration-resistant prostate cancer cells. Endocrinology, 2015, 156(1), 58-70.
[http://dx.doi.org/10.1210/en.2014-1590] [PMID: 25365768]
[116]
Tanimoto, R.; Palladino, C.; Xu, S.Q.; Buraschi, S.; Neill, T.; Gomella, L.G.; Peiper, S.C.; Belfiore, A.; Iozzo, R.V.; Morrione, A. The perlecan-interacting growth factor progranulin regulates ubiquitination, sorting, and lysosomal degradation of sortilin. Matrix Biol., 2017, 64, 27-39.
[http://dx.doi.org/10.1016/j.matbio.2017.04.001] [PMID: 28433812]
[117]
Geer, S.; Reigl, U.; Maschauer, S.; Ritt, P.; Gmeiner, P.; Grill, E.; Prante, O. The neurotensin receptor subtype 1 as target for radiotherapy in prostate cancer. J. Labelled Comp. Radiopharm., 2017, 60, S21.
[118]
Xiangya Hospital of Central South University. A Study of 18F-AlF-NOTA-Neurotensin PET/CT for Imaging Prostate Cancer. NCT03516045 2018.
[119]
Zhou, Z.; Xie, J.; Cai, Y.; Yang, S.; Chen, Y.; Wu, H. The significance of NTR1 expression and its correlation with β-catenin and EGFR in gastric cancer. Diagn. Pathol., 2015, 10, 128.
[http://dx.doi.org/10.1186/s13000-015-0356-3] [PMID: 26215716]
[120]
Dong, Z.; Wang, X.; Evers, B.M. Site-specific DNA methylation contributes to neurotensin/neuromedin N expression in colon cancers. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 279(6), G1139-G1147.
[http://dx.doi.org/10.1152/ajpgi.2000.279.6.G1139] [PMID: 11093935]
[121]
Maoret, J.J.; Pospaï, D.; Rouyer-Fessard, C.; Couvineau, A.; Laboisse, C.; Voisin, T.; Laburthe, M. Neurotensin receptor and its mRNA are expressed in many human colon cancer cell lines but not in normal colonic epithelium: binding studies and RT-PCR experiments. Biochem. Biophys. Res. Commun., 1994, 203(1), 465-471.
[http://dx.doi.org/10.1006/bbrc.1994.2205] [PMID: 7521165]
[122]
Kim, J.T.; Weiss, H.L.; Evers, B.M. Diverse expression patterns and tumorigenic role of neurotensin signaling components in colorectal cancer cells. Int. J. Oncol., 2017, 50(6), 2200-2206.
[http://dx.doi.org/10.3892/ijo.2017.3990] [PMID: 28498396]
[123]
Gui, X.; Guzman, G.; Dobner, P.R.; Kadkol, S.S. Increased neurotensin receptor-1 expression during progression of colonic adenocarcinoma. Peptides, 2008, 29(9), 1609-1615.
[http://dx.doi.org/10.1016/j.peptides.2008.04.014] [PMID: 18541341]
[124]
Kontovounisios, C.; Qiu, S.; Rasheed, S.; Darzi, A.; Tekkis, P. The role of neurotensin as a novel biomarker in the endoscopic screening of high-risk population for developing colorectal neoplasia. Updates Surg., 2017, 69(3), 397-402.
[http://dx.doi.org/10.1007/s13304-017-0464-6] [PMID: 28560510]
[125]
Yoshinaga, K.; Evers, B.M.; Izukura, M.; Parekh, D.; Uchida, T.; Townsend, C.M., Jr; Thompson, J.C. Neurotensin stimulates growth of colon cancer. Surg. Oncol., 1992, 1(2), 127-134.
[http://dx.doi.org/10.1016/0960-7404(92)90025-G] [PMID: 1341243]
[126]
Maoret, J.J.; Anini, Y.; Rouyer-Fessard, C.; Gully, D.; Laburthe, M. Neurotensin and a non-peptide neurotensin receptor antagonist control human colon cancer cell growth in cell culture and in cells xenografted into nude mice. Int. J. Cancer, 1999, 80(3), 448-454.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990129)80:3<448:AID-IJC19>3.0.CO;2-N] [PMID: 9935189]
[127]
Akil, H.; Perraud, A.; Mélin, C.; Jauberteau, M.O.; Mathonnet, M. Fine-tuning roles of endogenous brain-derived neurotrophic factor, TrkB and sortilin in colorectal cancer cell survival. PLoS One, 2011, 6(9), e25097.
[http://dx.doi.org/10.1371/journal.pone.0025097] [PMID: 21966426]
[128]
Ye, Y.; Long, X.; Zhang, L.; Chen, J.; Liu, P.; Li, H.; Wei, F.; Yu, W.; Ren, X.; Yu, J. NTS/NTR1 co-expression enhances epithelial-to-mesenchymal transition and promotes tumor metastasis by activating the Wnt/β-catenin signaling pathway in hepatocellular carcinoma. Oncotarget, 2016, 7(43), 70303-70322.
[http://dx.doi.org/10.18632/oncotarget.11854] [PMID: 27611941]
[129]
Wu, Z.; Galmiche, A.; Liu, J.; Stadler, N.; Wendum, D.; Segal-Bendirdjian, E.; Paradis, V.; Forgez, P. Neurotensin regulation induces overexpression and activation of EGFR in HCC and restores response to erlotinib and sorafenib. Cancer Lett., 2017, 388, 73-84.
[http://dx.doi.org/10.1016/j.canlet.2016.11.032] [PMID: 27914862]
[130]
Collier, N.A.; Weinbren, K.; Bloom, S.R.; Lee, Y.C.; Hodgson, H.J.; Blumgart, L.H. Neurotensin secretion by fibrolamellar carcinoma of the liver. Lancet, 1984, 1(8376), 538-540.
[http://dx.doi.org/10.1016/S0140-6736(84)90934-6] [PMID: 6199633]
[131]
Tang, K.H.; Ma, S.; Lee, T.K.; Chan, Y.P.; Kwan, P.S.; Tong, C.M.; Ng, I.O.; Man, K.; To, K.F.; Lai, P.B.; Lo, C.M.; Guan, X.Y.; Chan, K.W. CD133(+) liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology, 2012, 55(3), 807-820.
[http://dx.doi.org/10.1002/hep.24739] [PMID: 21994122]
[132]
Yu, J.; Ren, X.; Chen, Y.; Liu, P.; Wei, X.; Li, H.; Ying, G.; Chen, K.; Winkler, H.; Hao, X. Dysfunctional activation of neurotensin/IL-8 pathway in hepatocellular carcinoma is associated with increased inflammatory response in microenvironment, more epithelial mesenchymal transition in cancer and worse prognosis in patients. PLoS One, 2013, 8(2), e56069.
[http://dx.doi.org/10.1371/journal.pone.0056069] [PMID: 23418512]
[133]
Feurle, G.E.; Helmstaedter, V.; Tischbirek, K.; Carraway, R.; Forssmann, W.G.; Grube, D.; Röher, H.D. A multihormonal tumor of the pancreas producing neurotensin. Dig. Dis. Sci., 1981, 26(12), 1125-1133.
[http://dx.doi.org/10.1007/BF01295980] [PMID: 7307861]
[134]
Reubi, J.C.; Waser, B.; Friess, H.; Büchler, M.; Laissue, J. Neurotensin receptors: A new marker for human ductal pancreatic adenocarcinoma. Gut, 1998, 42(4), 546-550.
[http://dx.doi.org/10.1136/gut.42.4.546] [PMID: 9616318]
[135]
Yin, X.; Wang, M.; Wang, H.; Deng, H.; He, T.; Tan, Y.; Zhu, Z.; Wu, Z.; Hu, S.; Li, Z. Evaluation of neurotensin receptor 1 as a potential imaging target in pancreatic ductal adenocarcinoma. Amino Acids, 2017, 49(8), 1325-1335.
[http://dx.doi.org/10.1007/s00726-017-2430-5] [PMID: 28536844]
[136]
Körner, M.; Waser, B.; Strobel, O.; Büchler, M.; Reubi, J.C. Neurotensin receptors in pancreatic ductal carcinomas. EJNMMI Res., 2015, 5, 17.
[http://dx.doi.org/10.1186/s13550-015-0094-2] [PMID: 25859423]
[137]
Ehlers, R.A.; Kim, Sh.; Zhang, Y.; Ethridge, R.T.; Murrilo, C.; Hellmich, M.R.; Evans, D.B.; Townsend, C.M., Jr; Mark Evers, B. Gut peptide receptor expression in human pancreatic cancers. Ann. Surg., 2000, 231(6), 838-848.
[http://dx.doi.org/10.1097/00000658-200006000-00008] [PMID: 10816627]
[138]
Ishizuka, J.; Townsend, C.M., Jr; Thompson, J.C. Neurotensin regulates growth of human pancreatic cancer. Ann. Surg., 1993, 217(5), 439-445.
[http://dx.doi.org/10.1097/00000658-199305010-00003] [PMID: 8387763]
[139]
Iwase, K.; Evers, B.M.; Hellmich, M.R.; Kim, H.J.; Higashide, S.; Gully, D.; Thompson, J.C.; Townsend, C.M., Jr Inhibition of neurotensin-induced pancreatic carcinoma growth by a nonpeptide neurotensin receptor antagonist, SR48692. Cancer, 1997, 79(9), 1787-1793.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19970501)79:9<1787:AID-CNCR22>3.0.CO;2-T] [PMID: 9128997]
[140]
Mijatovic, T.; Gailly, P.; Mathieu, V.; De Nève, N.; Yeaton, P.; Kiss, R.; Decaestecker, C. Neurotensin is a versatile modulator of in vitro human pancreatic ductal adenocarcinoma cell (PDAC) migration. Cell. Oncol., 2007, 29(4), 315-326.
[PMID: 17641415]
[141]
Wang, M.; Zhang, H.; Wang, H.; Feng, H.; Deng, H.; Wu, Z.; Lu, H.; Li, Z. Development of [18F] AlF-NOTA-NT as PET agents of neurotensin receptor-1 positive pancreatic cancer. Mol. Pharm., 2018, 15(8), 3093-3100.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00192] [PMID: 29889537]
[142]
Baum, R.P.; Singh, A.; Schuchardt, C.; Kulkarni, H.R.; Klette, I.; Wiessalla, S.; Osterkamp, F.; Reineke, U.; Smerling, C. 177Lu-3BP-227 for neurotensin receptor 1-targeted therapy of metastatic pancreatic adenocarcinoma: first clinical results. J. Nucl. Med., 2018, 59(5), 809-814.
[http://dx.doi.org/10.2967/jnumed.117.193847] [PMID: 29025990]
[143]
Ipsen. Study to evaluate the safety and activity (including distribution) of 177Lu-3BP-227 in subjects with solid tumours expressing neurotensin receptor type 1. NCT03525392 2018.
[144]
Dong, Z.; Lei, Q.; Yang, R.; Zhu, S.; Ke, X.X.; Yang, L.; Cui, H.; Yi, L. Inhibition of neurotensin receptor 1 induces intrinsic apoptosis via let-7a-3p/Bcl-w axis in glioblastoma. Br. J. Cancer, 2017, 116(12), 1572-1584.
[http://dx.doi.org/10.1038/bjc.2017.126] [PMID: 28494471]
[145]
Ayala-Sarmiento, A.E.; Martínez-Fong, D.; Segovia, J. The internalization of neurotensin by the low-affinity neurotensin receptors (NTSR2 and vNTSR2) activates ERK 1/2 in glioma cells and allows neurotensin-polyplex transfection of tGAS1. Cell. Mol. Neurobiol., 2015, 35(6), 785-795.
[http://dx.doi.org/10.1007/s10571-015-0172-z] [PMID: 25772140]
[146]
Yang, W.; Wu, P.F.; Ma, J.X.; Liao, M.J.; Wang, X.H.; Xu, L.S.; Xu, M.H.; Yi, L. Sortilin promotes glioblastoma invasion and mesenchymal transition through GSK-3β/β-catenin/twist pathway. Cell Death Dis., 2019, 10(3), 208.
[http://dx.doi.org/10.1038/s41419-019-1449-9] [PMID: 30814514]
[147]
Korbecki, J.; Gutowska, I.; Kojder, I.; Jeżewski, D.; Goschorska, M.; Łukomska, A.; Lubkowska, A.; Chlubek, D.; Baranowska-Bosiacka, I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget, 2018, 9(6), 7219-7270.
[http://dx.doi.org/10.18632/oncotarget.24102] [PMID: 29467963]
[148]
Xiong, J.; Zhou, L.; Yang, M.; Lim, Y.; Zhu, Y.H.; Fu, D.L.; Li, Z.W.; Zhong, J.H.; Xiao, Z.C.; Zhou, X.F. ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro. Neuro-oncol., 2013, 15(8), 990-1007.
[http://dx.doi.org/10.1093/neuonc/not039] [PMID: 23576602]
[149]
Kim, J.T.; Li, J.; Song, J.; Lee, E.Y.; Weiss, H.L.; Townsend, C.M., Jr; Evers, B.M. Differential expression and tumorigenic function of neurotensin receptor 1 in neuroendocrine tumor cells. Oncotarget, 2015, 6(29), 26960-26970.
[http://dx.doi.org/10.18632/oncotarget.4745] [PMID: 26298774]
[150]
Saada, S.; Marget, P.; Fauchais, A.L.; Lise, M.C.; Chemin, G.; Sindou, P.; Martel, C.; Delpy, L.; Vidal, E.; Jaccard, A.; Troutaud, D.; Lalloué, F.; Jauberteau, M.O. Differential expression of neurotensin and specific receptors, NTSR1 and NTSR2, in normal and malignant human B lymphocytes. J. Immunol., 2012, 189(11), 5293-5303.
[http://dx.doi.org/10.4049/jimmunol.1102937] [PMID: 23109725]
[151]
Abbaci, A.; Talbot, H.; Saada, S.; Gachard, N.; Abraham, J.; Jaccard, A.; Bordessoule, D.; Fauchais, A.L.; Naves, T.; Jauberteau, M.O. Neurotensin receptor type 2 protects B-cell chronic lymphocytic leukemia cells from apoptosis. Oncogene, 2018, 37(6), 756-767.
[http://dx.doi.org/10.1038/onc.2017.365] [PMID: 29059151]
[152]
Skrzydelski, D.; Lhiaubet, A.M.; Lebeau, A.; Forgez, P.; Yamada, M.; Hermans, E.; Rostene, W.; Pelaprat, D. Differential involvement of intracellular domains of the rat NTS1 neurotensin receptor in coupling to G proteins: A molecular basis for agonist-directed trafficking of receptor stimulus. Mol. Pharmacol., 2003, 64(2), 421-429.
[http://dx.doi.org/10.1124/mol.64.2.421] [PMID: 12869647]
[153]
Kitabgi, P. Neurotensin and neuromedin N are differentially processed from a common precursor by prohormone convertases in tissues and cell lines. Results Probl. Cell Differ., 2010, 50, 85-96.
[PMID: 19862492]
[154]
Zhao, D.; Bakirtzi, K.; Zhan, Y.; Zeng, H.; Koon, H.W.; Pothoulakis, C. Insulin-like growth factor-1 receptor transactivation modulates the inflammatory and proliferative responses of neurotensin in human colonic epithelial cells. J. Biol. Chem., 2011, 286(8), 6092-6099.
[http://dx.doi.org/10.1074/jbc.M110.192534] [PMID: 21212273]
[155]
Zhao, D.; Zhan, Y.; Koon, H.W.; Zeng, H.; Keates, S.; Moyer, M.P.; Pothoulakis, C. Metalloproteinase-dependent transforming growth factor-alpha release mediates neurotensin-stimulated MAP kinase activation in human colonic epithelial cells. J. Biol. Chem., 2004, 279(42), 43547-43554.
[http://dx.doi.org/10.1074/jbc.M401453200] [PMID: 15247267]
[156]
Ehlers, R.A.; Zhang, Y.; Hellmich, M.R.; Evers, B.M. Neurotensin-mediated activation of MAPK pathways and AP-1 binding in the human pancreatic cancer cell line, MIA PaCa-2. Biochem. Biophys. Res. Commun., 2000, 269(3), 704-708.
[http://dx.doi.org/10.1006/bbrc.2000.2335] [PMID: 10720480]
[157]
Zhao, D.; Zhan, Y.; Zeng, H.; Koon, H.W.; Moyer, M.P.; Pothoulakis, C. Neurotensin stimulates interleukin-8 expression through modulation of I kappa B alpha phosphorylation and p65 transcriptional activity: involvement of protein kinase C alpha. Mol. Pharmacol., 2005, 67(6), 2025-2031.
[http://dx.doi.org/10.1124/mol.104.010801] [PMID: 15755906]
[158]
Amorino, G.P.; Deeble, P.D.; Parsons, S.J. Neurotensin stimulates mitogenesis of prostate cancer cells through a novel c-Src/Stat5b pathway. Oncogene, 2007, 26(5), 745-756.
[http://dx.doi.org/10.1038/sj.onc.1209814] [PMID: 16862179]
[159]
DaSilva, J.O.; Amorino, G.P.; Casarez, E.V.; Pemberton, B.; Parsons, S.J. Neuroendocrine-derived peptides promote prostate cancer cell survival through activation of IGF-1R signaling. Prostate, 2013, 73(8), 801-812.
[http://dx.doi.org/10.1002/pros.22624] [PMID: 23192379]
[160]
Hassan, S.; Dobner, P.R.; Carraway, R.E. Involvement of MAP-kinase, PI3-kinase and EGF-receptor in the stimulatory effect of Neurotensin on DNA synthesis in PC3 cells. Regul. Pept., 2004, 120(1-3), 155-166.
[http://dx.doi.org/10.1016/j.regpep.2004.03.004] [PMID: 15177934]
[161]
Moody, T.W.; Lee, L.; Ramos-Alvarez, I.; Jensen, R.T. Neurotensin receptors regulate transactivation of the EGFR and HER2 in a reactive oxygen species-dependent manner. Eur. J. Pharmacol., 2019, 865, 172735.
[http://dx.doi.org/10.1016/j.ejphar.2019.172735] [PMID: 31614143]
[162]
Riehle, K.J.; Kenerson, H.L.; Riggle, K.M.; Turnham, R.; Sullivan, K.; Bauer, R.; Scott, J.D.; Yeung, R.S. Neurotensin as a source of cyclic AMP and co-mitogen in fibrolamellar hepatocellular carcinoma. Oncotarget, 2019, 10(49), 5092-5102.
[http://dx.doi.org/10.18632/oncotarget.27149] [PMID: 31489118]
[163]
Müller, K.M.; Tveteraas, I.H.; Aasrum, M.; Ødegård, J.; Dawood, M.; Dajani, O.; Christoffersen, T.; Sandnes, D.L. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells. BMC Cancer, 2011, 11, 421.
[http://dx.doi.org/10.1186/1471-2407-11-421] [PMID: 21961726]
[164]
Souazé, F.; Viardot-Foucault, V.; Roullet, N.; Toy-Miou-Leong, M.; Gompel, A.; Bruyneel, E.; Comperat, E.; Faux, M.C.; Mareel, M.; Rostène, W.; Fléjou, J.F.; Gespach, C.; Forgez, P. Neurotensin receptor 1 gene activation by the Tcf/beta-catenin pathway is an early event in human colonic adenomas. Carcinogenesis, 2006, 27(4), 708-716.
[http://dx.doi.org/10.1093/carcin/bgi269] [PMID: 16299383]
[165]
Fodde, R.; Smits, R.; Clevers, H. APC, signal transduction and genetic instability in colorectal cancer. Nat. Rev. Cancer, 2001, 1(1), 55-67.
[http://dx.doi.org/10.1038/35094067] [PMID: 11900252]
[166]
Gross, K.J.; Pothoulakis, C. Role of neuropeptides in inflammatory bowel disease. Inflamm. Bowel Dis., 2007, 13(7), 918-932.
[http://dx.doi.org/10.1002/ibd.20129] [PMID: 17343284]
[167]
Koon, H.W.; Kim, Y.S.; Xu, H.; Kumar, A.; Zhao, D.; Karagiannides, I.; Dobner, P.R.; Pothoulakis, C. Neurotensin induces IL-6 secretion in mouse preadipocytes and adipose tissues during 2,4,6,-trinitrobenzensulphonic acid-induced colitis. Proc. Natl. Acad. Sci. USA, 2009, 106(21), 8766-8771.
[http://dx.doi.org/10.1073/pnas.0903499106] [PMID: 19443690]
[168]
Navarro, V.; Vincent, J.P.; Mazella, J. Shedding of the luminal domain of the neurotensin receptor-3/sortilin in the HT29 cell line. Biochem. Biophys. Res. Commun., 2002, 298(5), 760-764.
[http://dx.doi.org/10.1016/S0006-291X(02)02564-0] [PMID: 12419319]
[169]
Massa, F.; Tormo, A.; Béraud-Dufour, S.; Coppola, T.; Mazella, J. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation. Biochem. Biophys. Res. Commun., 2011, 414(1), 118-122.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.034] [PMID: 21945442]
[170]
Béraud-Dufour, S.; Devader, C.; Massa, F.; Roulot, M.; Coppola, T.; Mazella, J. Focal adhesion kinase-dependent role of the soluble form of neurotensin receptor-3/sortilin in colorectal cancer cell dissociation. Int. J. Mol. Sci., 2016, 17(11), 1860.
[http://dx.doi.org/10.3390/ijms17111860] [PMID: 27834811]
[171]
Muñoz, M.; González-Ortega, A.; Rosso, M.; Robles-Frías, M.J.; Carranza, A.; Salinas-Martín, M.V.; Coveñas, R. The substance P/neurokinin-1 receptor system in lung cancer: focus on the antitumor action of neurokinin-1 receptor antagonists. Peptides, 2012, 38(2), 318-325.
[http://dx.doi.org/10.1016/j.peptides.2012.09.024] [PMID: 23026680]
[172]
Zhang, Y.; Zhu, S.; Yi, L.; Liu, Y.; Cui, H. Neurotensin receptor1 antagonist SR48692 reduces proliferation by inducing apoptosis and cell cycle arrest in melanoma cells. Mol. Cell. Biochem., 2014, 389(1-2), 1-8.
[http://dx.doi.org/10.1007/s11010-013-1920-3] [PMID: 24357116]
[173]
Blondy, S.; Talbot, H.; Saada, S.; Christou, N.; Battu, S.; Pannequin, J.; Jauberteau, M.O.; Lalloué, F.; Verdier, M.; Mathonnet, M.; Perraud, A. Overexpression of sortilin is associated with 5-FU resistance and poor prognosis in colorectal cancer. J. Cell. Mol. Med., 2021, 25(1), 47-60.
[http://dx.doi.org/10.1111/jcmm.15752] [PMID: 33325631]
[174]
Reubi, J.C.; Waser, B.; Schaer, J.C.; Laissue, J.A. Neurotensin receptors in human neoplasms: high incidence in Ewing’s sarcomas. Int. J. Cancer, 1999, 82(2), 213-218.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990719)82:2<213:AID-IJC11>3.0.CO;2-8] [PMID: 10389755]
[175]
Iwase, K.; Evers, B.M.; Hellmich, M.R.; Kim, H.J.; Higashide, S.; Gully, D.; Townsend, C.M. Jr Indirect inhibitory effect of a neurotensin receptor antagonist on human colon cancer (LoVo) growth. Surg. Oncol., 1996, 5(5-6), 245-251.
[http://dx.doi.org/10.1016/S0960-7404(96)80028-4] [PMID: 9129137]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy