Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Wogonin and Alleviation of Hyperglycemia via Inhibition of DAG Mediated PKC Expression. A Brief Insight

Author(s): Shahzad Khan*

Volume 28, Issue 12, 2021

Published on: 27 October, 2021

Page: [1365 - 1371] Pages: 7

DOI: 10.2174/0929866528666211027113349

Price: $65

Abstract

Abstract: Protein kinase C (PKC) is a family of protein kinase enzymes that can phosphorylate other proteins and influence their functions, such as signal transduction, cell survival, and death. Increased diacylglycerol (DAG) concentrations, which are typically observed raised in hyperglycemic situations such as diabetes mellitus, can also activate PKC enzymes (DM). On the other hand, PKC isomers have been shown to play an essential role in diabetes and many hyperglycemic complications, most importantly atherosclerosis and diabetic cardiomyopathy (DCM). As a result, blocking PKC activation via DAG can prevent hyperglycemia and related consequences, such as DCM. Wogonin is a herbal medicine which has anti-inflammatory properties, and investigations show that it scavenge oxidative radicals, attenuate nuclear factor-kappa B (NF-κB) activity, inhibit several essential cell cycle regulatory genes, block nitric oxide (NO) and suppress cyclooxygenase- 2 (COX-2). Furthermore, several investigations show that wogonin also attenuates diacylglycerol DAG levels in diabetic mice. Since the DAG-PKC pathway is linked with hyperglycemia and its complications, Wogonin-mediated DAG-PKC attenuation can help treat hyperglycemia and its complications.

Keywords: Wogonin, PKC, DAG, hyperglycemia, diabetic mellitus, protein kinase C.

Graphical Abstract

[1]
Newton, A.C. Regulation of the ABC kinases by phosphorylation: Protein kinase C as a paradigm. Biochem. J., 2003, 370(Pt 2), 361-371.
[http://dx.doi.org/10.1042/bj20021626] [PMID: 12495431]
[2]
Parker, P.J.; Coussens, L.; Totty, N.; Rhee, L.; Young, S.; Chen, E.; Stabel, S.; Waterfield, M.D.; Ullrich, A. The complete primary structure of protein kinase C- the major phorbol ester receptor. Science, 1986, 233(4766), 853-859.
[http://dx.doi.org/10.1126/science.3755547] [PMID: 3755547]
[3]
Coussens, L.; Parker, P.J.; Rhee, L.; Yang-Feng, T.L.; Chen, E.; Waterfield, M.D.; Francke, U.; Ullrich, A. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science, 1986, 233(4766), 859-866.
[http://dx.doi.org/10.1126/science.3755548] [PMID: 3755548]
[4]
Steinberg, S.F. Structural basis of protein kinase C isoform function. Physiol. Rev., 2008, 88(4), 1341-1378.
[http://dx.doi.org/10.1152/physrev.00034.2007] [PMID: 18923184]
[5]
Mochly-Rosen, D.; Das, K.; Grimes, K.V. Protein kinase C, an elusive therapeutic target? Nat. Rev. Drug Discov., 2012, 11(12), 937-957.
[http://dx.doi.org/10.1038/nrd3871] [PMID: 23197040]
[6]
Nishikawa, T.; Edelstein, D.; Brownlee, M. The missing link: A single unifying mechanism for diabetic complications. Kidney Int. Suppl., 2000, 77, S26-S30.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07705.x] [PMID: 10997687]
[7]
Mellor, H.; Parker, P.J. The extended protein kinase C superfamily. Biochem. J., 1998, 332(Pt 2), 281-292.
[http://dx.doi.org/10.1042/bj3320281] [PMID: 9601053]
[8]
Corbalán-García, S.; Gómez-Fernández, J.C. Protein kinase C regulatory domains: the art of decoding many different signals in membranes. Biochim. Biophys. Acta, 2006, 1761(7), 633-654.
[http://dx.doi.org/10.1016/j.bbalip.2006.04.015] [PMID: 16809062]
[9]
Konishi, H.; Tanaka, M.; Takemura, Y.; Matsuzaki, H.; Ono, Y.; Kikkawa, U.; Nishizuka, Y. Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc. Natl. Acad. Sci. USA, 1997, 94(21), 11233-11237.
[http://dx.doi.org/10.1073/pnas.94.21.11233] [PMID: 9326592]
[10]
Nishikawa, T.; Edelstein, D.; Du, X.L.; Yamagishi, S.; Matsumura, T.; Kaneda, Y.; Yorek, M.A.; Beebe, D.; Oates, P.J.; Hammes, H.P.; Giardino, I.; Brownlee, M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 2000, 404(6779), 787-790.
[http://dx.doi.org/10.1038/35008121] [PMID: 10783895]
[11]
Inoguchi, T.; Battan, R.; Handler, E.; Sportsman, J.R.; Heath, W.; King, G.L. Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc. Natl. Acad. Sci. USA, 1992, 89(22), 11059-11063.
[http://dx.doi.org/10.1073/pnas.89.22.11059] [PMID: 1438315]
[12]
Ishii, H.; Jirousek, M.R.; Koya, D.; Takagi, C.; Xia, P.; Clermont, A.; Bursell, S.E.; Kern, T.S.; Ballas, L.M.; Heath, W.F.; Stramm, L.E.; Feener, E.P.; King, G.L. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC β inhibitor. Science, 1996, 272(5262), 728-731.
[http://dx.doi.org/10.1126/science.272.5262.728] [PMID: 8614835]
[13]
Celermajer, D.S. Endothelial dysfunction: Does it matter? Is it reversible? J. Am. Coll. Cardiol., 1997, 30(2), 325-333.
[http://dx.doi.org/10.1016/S0735-1097(97)00189-7] [PMID: 9247501]
[14]
Lüscher, T.F.; Noll, G. Endothelial function as an end-point in interventional trials: concepts, methods and current data. J. Hypertens., 1996, 14(2), S111-S1119.
[15]
Aiello, L.P.; Clermont, A.; Arora, V.; Davis, M.D.; Sheetz, M.J.; Bursell, S.E. Inhibition of PKC β by oral administration of ruboxistaurin is well tolerated and ameliorates diabetes-induced retinal hemodynamic abnormalities in patients. Invest. Ophthalmol. Vis. Sci., 2006, 47(1), 86-92.
[http://dx.doi.org/10.1167/iovs.05-0757] [PMID: 16384948]
[16]
Aiello, L.P.; Vignati, L.; Sheetz, M.J.; Zhi, X.; Girach, A.; Davis, M.D.; Wolka, A.M.; Shahri, N.; Milton, R.C. Oral protein kinase c β inhibition using ruboxistaurin: Efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with diabetic retinopathy in the Protein Kinase C β Inhibitor-Diabetic Retinopathy Study and the Protein Kinase C β Inhibitor-Diabetic Retinopathy Study 2. Retina, 2011, 31(10), 2084-2094.
[http://dx.doi.org/10.1097/IAE.0b013e3182111669] [PMID: 21862954]
[17]
Bates, E.; Bode, C.; Costa, M.; Gibson, C.M.; Granger, C.; Green, C.; Grimes, K.; Harrington, R.; Huber, K.; Kleiman, N.; Mochly-Rosen, D.; Roe, M.; Sadowski, Z.; Solomon, S.; Widimsky, P. Intracoronary KAI-9803 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. Circulation, 2008, 117(7), 886-896.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.759167] [PMID: 18250271]
[18]
Pilz, S.; März, W. Free fatty acids as a cardiovascular risk factor. Clin. Chem. Lab. Med., 2008, 46(4), 429-434.
[http://dx.doi.org/10.1515/CCLM.2008.118] [PMID: 18605928]
[19]
Montecucco, F.; Steffens, S.; Mach, F. Insulin resistance: A proinflammatory state mediated by lipid-induced signaling dysfunction and involved in atherosclerotic plaque instability. Mediators Inflamm., 2008, 2008, 767623.
[http://dx.doi.org/10.1155/2008/767623] [PMID: 18604303]
[20]
Puljak, L.; Pagliassotti, M.J.; Wei, Y.; Qadri, I.; Parameswara, V.; Esser, V.; Fitz, J.G.; Kilic, G. Inhibition of cellular responses to insulin in a rat liver cell line. A role for PKC in insulin resistance. J. Physiol., 2005, 563(Pt 2), 471-482.
[http://dx.doi.org/10.1113/jphysiol.2004.080333] [PMID: 15649984]
[21]
Liu, Y.M.; Wang, X.; Nawaz, A.; Kong, Z.H.; Hong, Y.; Wang, C.H.; Zhang, J.J. Wogonin ameliorates lipotoxicity-induced apoptosis of cultured vascular smooth muscle cells via interfering with DAG-PKC pathway. Acta Pharmacol. Sin., 2011, 32(12), 1475-1482.
[http://dx.doi.org/10.1038/aps.2011.120] [PMID: 21986573]
[22]
Phuah, E-T. Review on the current state of diacylglycerol production using enzymatic approach. Food Bioprocess Technol., 2015, 8(6), 1169-1186.
[http://dx.doi.org/10.1007/s11947-015-1505-0]
[23]
Ali, E.S.; Hua, J.; Wilson, C.H.; Tallis, G.A.; Zhou, F.H.; Rychkov, G.Y.; Barritt, G.J. The glucagon-like peptide-1 analogue exendin-4 reverses impaired intracellular Ca(2+) signalling in steatotic hepatocytes. Biochim. Biophys. Acta, 2016, 1863(9), 2135-2146.
[http://dx.doi.org/10.1016/j.bbamcr.2016.05.006] [PMID: 27178543]
[24]
Ferreira, J.C.; Brum, P.C.; Mochly-Rosen, D. βIIPKC and εPKC isozymes as potential pharmacological targets in cardiac hypertrophy and heart failure. J. Mol. Cell. Cardiol., 2011, 51(4), 479-484.
[http://dx.doi.org/10.1016/j.yjmcc.2010.10.020] [PMID: 21035454]
[25]
Inagaki, K.; Churchill, E.; Mochly-Rosen, D. Epsilon protein kinase C as a potential therapeutic target for the ischemic heart. Cardiovasc. Res., 2006, 70(2), 222-230.
[http://dx.doi.org/10.1016/j.cardiores.2006.02.015] [PMID: 16635641]
[26]
Geraldes, P.; King, G.L. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ. Res., 2010, 106(8), 1319-1331.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.217117] [PMID: 20431074]
[27]
Gutterman, D.D. Vascular dysfunction in hyperglycemia: is protein kinase C the culprit? Circulat. Res., 2002, 90, 5-7.
[http://dx.doi.org/10.1161/res.90.1.5]
[28]
Rask-Madsen, C.; King, G.L. Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arterioscler. Thromb. Vasc. Biol., 2005, 25(3), 487-496.
[http://dx.doi.org/10.1161/01.ATV.0000155325.41507.e0] [PMID: 15637306]
[29]
Rask-Madsen, C.; King, G.L. Mechanisms of disease: Endothelial dysfunction in insulin resistance and diabetes. Nat. Clin. Pract. Endocrinol. Metab., 2007, 3(1), 46-56.
[http://dx.doi.org/10.1038/ncpendmet0366] [PMID: 17179929]
[30]
Kang, N.; Alexander, G.; Park, J.K.; Maasch, C.; Buchwalow, I.; Luft, F.C.; Haller, H. Differential expression of protein kinase C isoforms in streptozotocin-induced diabetic rats. Kidney Int., 1999, 56(5), 1737-1750.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00725.x] [PMID: 10571782]
[31]
Taher, M.M.; Garcia, J.G.; Natarajan, V. Hydroperoxide-induced diacylglycerol formation and protein kinase C activation in vascular endothelial cells. Arch. Biochem. Biophys., 1993, 303(2), 260-266.
[http://dx.doi.org/10.1006/abbi.1993.1281] [PMID: 8512313]
[32]
Wilson, C.H.; Ali, E.S.; Scrimgeour, N.; Martin, A.M.; Hua, J.; Tallis, G.A.; Rychkov, G.Y.; Barritt, G.J. Steatosis inhibits liver cell store-operated Ca2+ entry and reduces ER Ca2+ through a protein kinase C-dependent mechanism. Biochem. J., 2015, 466(2), 379-390.
[http://dx.doi.org/10.1042/BJ20140881] [PMID: 25422863]
[33]
Das, S.K.; Yuan, Y.F.; Li, M.Q. Specific PKC βII inhibitor: One stone two birds in the treatment of diabetic foot ulcers. Biosci. Rep., 2018, 38(5), BSR20171459.
[http://dx.doi.org/10.1042/BSR20171459] [PMID: 29440456]
[34]
Wang, F.; Huang, D.; Zhu, W.; Li, S.; Yan, M.; Wei, M.; Li, J. Selective inhibition of PKCβ2 preserves cardiac function after myocardial infarction and is associated with improved angiogenesis of ischemic myocardium in diabetic rats. Int. J. Mol. Med., 2013, 32(5), 1037-1046.
[http://dx.doi.org/10.3892/ijmm.2013.1477] [PMID: 24002353]
[35]
Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med., 1993, 329(14), 977-986.
[http://dx.doi.org/10.1056/NEJM199309303291401] [PMID: 8366922]
[36]
Enomoto, R.; Koshiba, C.; Suzuki, C.; Lee, E. Wogonin potentiates the antitumor action of etoposide and ameliorates its adverse effects. Cancer Chemother. Pharmacol., 2011, 67(5), 1063-1072.
[http://dx.doi.org/10.1007/s00280-010-1396-8] [PMID: 20658136]
[37]
Ma, S.C.; Du, J.; But, P.P.; Deng, X.L.; Zhang, Y.W.; Ooi, V.E.; Xu, H.X.; Lee, S.H.; Lee, S.F. Antiviral Chinese medicinal herbs against respiratory syncytial virus. J. Ethnopharmacol., 2002, 79(2), 205-211.
[http://dx.doi.org/10.1016/S0378-8741(01)00389-0] [PMID: 11801383]
[38]
Chi, Y.S.; Kim, H.P. Suppression of cyclooxygenase-2 expression of skin fibroblasts by wogonin, a plant flavone from Scutellaria radix. Prostaglandins Leukot. Essent. Fatty Acids, 2005, 72(1), 59-66.
[http://dx.doi.org/10.1016/j.plefa.2004.04.009] [PMID: 15589400]
[39]
Lee, D.H.; Kim, C.; Zhang, L.; Lee, Y.J. Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells. Biochem. Pharmacol., 2008, 75(10), 2020-2033.
[http://dx.doi.org/10.1016/j.bcp.2008.02.023] [PMID: 18377871]
[40]
Li-Weber, M. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat. Rev., 2009, 35(1), 57-68.
[http://dx.doi.org/10.1016/j.ctrv.2008.09.005] [PMID: 19004559]
[41]
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96(2-3), 67-202.
[http://dx.doi.org/10.1016/S0163-7258(02)00298-X] [PMID: 12453566]
[42]
Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol. Med., 1997, 22(5), 749-760.
[http://dx.doi.org/10.1016/S0891-5849(96)00351-6] [PMID: 9119242]
[43]
He, F.; Wang, Q.; Zheng, X.L.; Yan, J.Q.; Yang, L.; Sun, H.; Hu, L.N.; Lin, Y.; Wang, X. Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species. Oncol. Rep., 2012, 28(2), 601-605.
[http://dx.doi.org/10.3892/or.2012.1841] [PMID: 22665077]
[44]
Yang, L.; Zheng, X.L.; Sun, H.; Zhong, Y.J.; Wang, Q.; He, H.N.; Shi, X.W.; Zhou, B.; Li, J.K.; Lin, Y.; Zhang, L.; Wang, X. Catalase suppression-mediated H(2)O(2) accumulation in cancer cells by wogonin effectively blocks tumor necrosis factor-induced NF-κB activation and sensitizes apoptosis. Cancer Sci., 2011, 102(4), 870-876.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01874.x] [PMID: 21244577]
[45]
Song, X.; Zhou, Y.; Zhou, M.; Huang, Y.; Li, Z.; You, Q.; Lu, N.; Guo, Q. Wogonin influences vascular permeability via Wnt/β-catenin pathway. Mol. Carcinog., 2015, 54(7), 501-512.
[http://dx.doi.org/10.1002/mc.22093] [PMID: 24136474]
[46]
Khan, S.; Kamal, M.A. Can wogonin be used in controlling diabetic cardiomyopathy? Curr. Pharm. Des., 2019, 25(19), 2171-2177.
[http://dx.doi.org/10.2174/1381612825666190708173108] [PMID: 31298148]
[47]
Bak, E.J.; Kim, J.; Choi, Y.H.; Kim, J.H.; Lee, D.E.; Woo, G.H.; Cha, J.H.; Yoo, Y.J. Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice. Clin. Nutr., 2014, 33(1), 156-163.
[http://dx.doi.org/10.1016/j.clnu.2013.03.013] [PMID: 23623334]
[48]
Mehta, N.N.; Sheetz, M.; Price, K.; Comiskey, L.; Amrutia, S.; Iqbal, N.; Mohler, E.R.; Reilly, M.P. Selective PKC beta inhibition with ruboxistaurin and endothelial function in type-2 diabetes mellitus. Cardiovasc. Drugs Ther., 2009, 23(1), 17-24.
[http://dx.doi.org/10.1007/s10557-008-6144-5] [PMID: 18949545]
[49]
Tuttle, K.R.; Bakris, G.L.; Toto, R.D.; McGill, J.B.; Hu, K.; Anderson, P.W. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care, 2005, 28(11), 2686-2690.
[http://dx.doi.org/10.2337/diacare.28.11.2686] [PMID: 16249540]
[50]
Kunisaki, M.; Bursell, S.E.; Umeda, F.; Nawata, H.; King, G.L. Normalization of diacylglycerol-protein kinase C activation by vitamin E in aorta of diabetic rats and cultured rat smooth muscle cells exposed to elevated glucose levels. Diabetes, 1994, 43(11), 1372-1377.
[http://dx.doi.org/10.2337/diab.43.11.1372] [PMID: 7926314]
[51]
Way, K.J.; Katai, N.; King, G.L. Protein kinase C and the development of diabetic vascular complications. Diabet. Med., 2001, 18(12), 945-959.
[http://dx.doi.org/10.1046/j.0742-3071.2001.00638.x] [PMID: 11903393]
[52]
Kunisaki, M.; Bursell, S.E.; Clermont, A.C.; Ishii, H.; Ballas, L.M.; Jirousek, M.R.; Umeda, F.; Nawata, H.; King, G.L. Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway. Am. J. Physiol., 1995, 269(2 Pt 1), E239-E246.
[PMID: 7653541]
[53]
Yasunari, K.; Maeda, K.; Minami, M.; Yoshikawa, J. HMG-CoA reductase inhibitors prevent migration of human coronary smooth muscle cells through suppression of increase in oxidative stress. Arterioscler. Thromb. Vasc. Biol., 2001, 21(6), 937-942.
[http://dx.doi.org/10.1161/01.ATV.21.6.937] [PMID: 11397700]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy