Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

A Review on the In Vitro Evaluation of the Anticholinesterase Activity Based on Ellman’s Method

Author(s): Raquel Bianca Marchesine de Almeida, Rebecca Lustosa Silva de Almeida Luz, Franco Henrique Andrade Leite and Mariana Borges Botura*

Volume 22, Issue 13, 2022

Published on: 07 January, 2022

Page: [1803 - 1813] Pages: 11

DOI: 10.2174/1389557521666211027104638

Price: $65

Abstract

Inhibition of cholinesterases is a common strategy for the treatment of several disorders, especially Alzheimer´s disease. In vitro assays represent a critical step towards identifying molecules with potential anticholinesterase effect. This study aimed at providing a comprehensive review of the methodologies used in vitro for the anticholinesterase activity based on the spectrophotometry of Ellman’s method. This work used two databases (PubMed and ScienceDirect) to search for original articles and selected publications between 1961 and 2019, which reported in vitro spectrophotometry assays for anticholinesterase activity. After the search process and the selection of publications, the final sample consisted of 146 articles published in several journals submitted by researchers from different countries. Although the studies analyzed in this work are all within the same conception of in vitro tests based on Ellman’s method, one can observe a wide divergence in the origin and concentration of enzyme, the choice and pH of the buffer, the concentration of the substrate, the sample diluent, incubation time, temperature, and time of the spectrophotometric reading interval. There is no consensus in the methodology of studies with in vitro tests for anticholinesterase assessment. The methodological variations related to kinetic parameters may interfere in the characterization of cholinesterase inhibitors.

Keywords: Anticholinesterase activity, Ellman’s method, In vitro assays, spectrophotometry assays, acetylcholinesterase, butyrylcholinesterase.

« Previous
Graphical Abstract

[1]
Lazarevic-Pasti, T.; Leskovac, A.; Momic, T.; Petrovic, S.; Vasic, V. Modulators of acetylcholinesterase activity: from Alzheimer’s disea-se to anti-cancer drugs. Curr. Med. Chem., 2017, 24(30), 3283-3309.
[http://dx.doi.org/10.2174/0929867324666170705123509] [PMID: 28685687]
[2]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: pharmacology and toxico-logy. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[3]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[4]
Haam, J.; Yakel, J.L. Cholinergic modulation of the hippocampal region and memory function. J. Neurochem., 2017, 142(Suppl. 2), 111-121.
[http://dx.doi.org/10.1111/jnc.14052] [PMID: 28791706]
[5]
Maurer, S.V.; Williams, C.L. The cholinergic system modulates memory and hippocampal plasticity via its interactions with non-neuronal cells. Front. Immunol., 2017, 8, 1489.
[http://dx.doi.org/10.3389/fimmu.2017.01489] [PMID: 29167670]
[6]
Doytchinova, I.; Atanasova, M.; Valkova, I.; Stavrakov, G.; Philipova, I.; Zhivkova, Z.; Zheleva-Dimitrova, D.; Konstantinov, S.; Dimi-trov, I. Novel hits for acetylcholinesterase inhibition derived by docking-based screening on ZINC database. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 768-776.
[http://dx.doi.org/10.1080/14756366.2018.1458031] [PMID: 29651876]
[7]
Jońca, J.; Żuk, M.; Wasąg, B.; Janaszak-Jasiecka, A.; Lewandowski, K.; Wielgomas, B.; Waleron, K.; Jasiecki, J. New Insights into butyryl-cholinesterase activity assay: serum dilution factor as a crucial parameter. PLoS One, 2015, 10(10), e0139480.
[http://dx.doi.org/10.1371/journal.pone.0139480] [PMID: 26444431]
[8]
Darvesh, S. Butyrylcholinesterase as a diagnostic and therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res., 2016, 13(10), 1173-1177.
[http://dx.doi.org/10.2174/1567205013666160404120542] [PMID: 27040140]
[9]
Dos Santos, T.C.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; Paes, A.M.A. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Front. Pharmacol., 2018, 9, 1192.
[http://dx.doi.org/10.3389/fphar.2018.01192] [PMID: 30405413]
[10]
Habtemariam, S. Natural products in Alzheimer’s disease therapy: would old therapeutic approaches fix the broken promise of modern medicines? Molecules, 2019, 24(8), 1519.
[http://dx.doi.org/10.3390/molecules24081519] [PMID: 30999702]
[11]
Jang, C.; Yadav, D.K.; Subedi, L.; Venkatesan, R.; Venkanna, A.; Afzal, S.; Lee, E.; Yoo, J.; Ji, E.; Kim, S.Y.; Kim, M.H. Identification of novel acetylcholinesterase inhibitors designed by pharmacophore-based virtual screening, molecular docking and bioassay. Sci. Rep., 2018, 8(1), 14921.
[http://dx.doi.org/10.1038/s41598-018-33354-6] [PMID: 30297729]
[12]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[13]
Zinatloo-Ajabshir, Z.; Zinatloo-Ajabshir, S. Preparation and characterization of curcumin niosomal nanoparticles via a simple and eco-friendly route. J. Nanostruct., 2019, 9, 784-790.
[http://dx.doi.org/10.22052/JNS.2019.04.020]
[14]
Zinatloo-Ajabshir, S.; Ghasemian, N.; Mousavi-Kamazani, M.; Salavati-Niasari, M. Effect of zirconia on improving NOx reduction effi-ciency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrason. Sonochem., 2021, 71, 105376.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105376] [PMID: 33142222]
[15]
Zinatloo-Ajabshira, S.; Mousavi-Kamazanib, M. Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanos-tructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int., 2020, 46, 26548-26556.
[http://dx.doi.org/10.1016/j.ceramint.2020.07.121]
[16]
Zinatloo-Ajabshira, S.; Morassaeib, M.S.; Amiric, O.; Salavati-Niasarib, M.; Foong, L.K. Nd2Sn2O7 nanostructures: Green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int., 2020, 46, 17186-17196.
[http://dx.doi.org/10.1016/j.ceramint.2020.03.014]
[17]
Zinatloo-Ajabshir, S.; Salehi, Z.; Amiri, O.; Salavati-Niasari, M. Simple fabrication of Pr2Ce2O7 nanostructures via a new and ecofriendly route; a potential electrochemical hydrogen storage material. J. Alloys Compd., 2019, 791, 792-799.
[http://dx.doi.org/10.1016/j.jallcom.2019.04.005]
[18]
Ghodratia, M.; Mousavi-Kamazania, M.; Zinatloo-Ajabshirb, S. Zn3V3O8 nanostructures: Facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage. Ceram. Int., 2020, 46, 28894-28902.
[http://dx.doi.org/10.1016/j.ceramint.2020.08.057]
[19]
Zinatloo-Ajabshir, S.; Morassaei, M.S.; Salavati-Niasari, M. Simple approach for the synthesis of Dy2Sn2O7 nanostructures as a hydrogen storage material from banana juice. J. Clean. Prod., 2019, 222, 103-110.
[http://dx.doi.org/10.1016/j.jclepro.2019.03.023]
[20]
Heidari-Asil, S.A.; Zinatloo-Ajabshir, S.; Amiri, O.; Salavati-Niasari, M. Amino acid assisted-synthesis and characterization of magneti-cally retrievable ZnCo2O4-Co3O4 nanostructures as high activity visible-light-driven photocatalyst. Int. J. Hydrogen Energy, 2020, 45, 22761-22774.
[http://dx.doi.org/10.1016/j.ijhydene.2020.06.122]
[21]
Zaki, A.G.; El-Sayed, E.R.; Abd Elkodous, M.; El-Sayyad, G.S. Microbial acetylcholinesterase inhibitors for Alzheimer’s therapy: Recent trends on extraction, detection, irradiation-assisted production improvement and nano-structured drug delivery. Appl. Microbiol. Biotechnol., 2020, 104(11), 4717-4735.
[http://dx.doi.org/10.1007/s00253-020-10560-9] [PMID: 32285176]
[22]
Deng, Y.; Liu, K.; Liu, Y.; Dong, H.; Li, S. An novel acetylcholinesterase biosensor based on nano-porous pseudo carbon paste electrode modified with gold nanoparticles for detection of methyl parathion. J. Nanosci. Nanotechnol., 2016, 16, 9460-9467.
[http://dx.doi.org/10.1166/jnn.2016.13059]
[23]
Wang, M.; Gu, X.; Zhang, G.; Zhang, D.; Zhu, D. Continuous colorimetric assay for acetylcholinesterase and inhibitor screening with gold nanoparticles. Langmuir, 2009, 25(4), 2504-2507.
[http://dx.doi.org/10.1021/la803870v] [PMID: 19154124]
[24]
Masondo, N.A.; Stafford, G.I.; Aremu, A.O.; Makunga, N.P. Acetylcholinesterase inhibitors from southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer’s disease treatment. S. Afr. J. Bot., 2019, 120, 39-64.
[http://dx.doi.org/10.1016/j.sajb.2018.09.011]
[25]
Barzu, T.; Cuparencu, B.; Cardan, E. The anticholinesterase activity of pancuronium bromide (Pavulon). Biochem. Pharmacol., 1974, 23(1), 166-168.
[http://dx.doi.org/10.1016/0006-2952(74)90323-2] [PMID: 4811057]
[26]
Holas, O.; Musilek, K.; Pohanka, M.; Kuca, K. The progress in the cholinesterase quantification methods. Expert Opin. Drug Discov., 2012, 7(12), 1207-1223.
[http://dx.doi.org/10.1517/17460441.2012.729037] [PMID: 23013366]
[27]
Raimondo, F.M.; Smeriglio, A.; Denaro, M.; Trombetta, D.; Xiao, J.; Alloisio, S.; Cornara, L. Essential oil of Citrus lumia Risso: Phyto-chemical profile, antioxidant properties. Food Chem. Toxicol., 2018, 119, 407-416.
[http://dx.doi.org/10.1016/j.fct.2017.12.053]
[28]
Xiang, C.P.; Han, J.X.; Li, X.C.; Li, Y.H.; Zhang, Y.; Chen, L.; Qu, Y.; Hao, C.Y.; Li, H.Z.; Yang, C.R.; Zhao, S.J.; Xu, M. Chemical com-position and acetylcholinesterase inhibitory activity of essential oils from piper species. J. Agric. Food Chem., 2017, 65(18), 3702-3710.
[http://dx.doi.org/10.1021/acs.jafc.7b01350] [PMID: 28436658]
[29]
Wiesner, J.; Kříž, Z.; Kuča, K.; Jun, D.; Koča, J. Acetylcholinesterases--the structural similarities and differences. J. Enzyme Inhib. Med. Chem., 2007, 22(4), 417-424.
[http://dx.doi.org/10.1080/14756360701421294] [PMID: 17847707]
[30]
Ziemianin, A.; Ronco, C.; Dolé, R.; Jean, L.; Renard, P.Y.; Lange, C.M. Screening of new huprines--inhibitors of acetylcholinesterases by electrospray ionization ion trap mass spectrometry. J. Pharm. Biomed. Anal., 2012, 70, 1-5.
[http://dx.doi.org/10.1016/j.jpba.2012.01.038] [PMID: 22677656]
[31]
da Cunha Xavier Soares, S.F.; Vieira, A.A.; Delfino, R.T.; Figueroa-Villar, J.D. NMR determination of Electrophorus electricus acetylcholi-nesterase inhibition and reactivation by neutral oximes. Bioorg. Med. Chem., 2013, 21(18), 5923-5930.
[http://dx.doi.org/10.1016/j.bmc.2013.05.063] [PMID: 23916150]
[32]
Lockridge, O.; Bartels, C.F.; Vaughan, T.A.; Wong, C.K.; Norton, S.E.; Johnson, L.L. Complete amino acid sequence of human serum cholinesterase. J. Biol. Chem., 1987, 262(2), 549-557.
[http://dx.doi.org/10.1016/S0021-9258(19)75818-9] [PMID: 3542989]
[33]
Moorad, D.; Chunyuan, L.; Ashima, S.; Bhupendra, D.; Gregory, G. Purification and determination of the amino acid sequence of equine serum butyrylcholinesterase. Toxicol. Mech. Methods, 1999, 9, 219-227.
[http://dx.doi.org/10.1080/105172399242573]
[34]
Wierdl, M.; Morton, C.L.; Danks, M.K.; Potter, P.M. Isolation and characterization of a cDNA encoding a horse liver butyrylcholinestera-se: Evidence for CPT-11 drug activation. Biochem. Pharmacol., 2000, 59(7), 773-781.
[http://dx.doi.org/10.1016/S0006-2952(99)00389-5] [PMID: 10718335]
[35]
Biberoglu, K.; Schopfer, L.M.; Tacal, O.; Lockridge, O. The proline-rich tetramerization peptides in equine serum butyrylcholinesterase. FEBS J., 2012, 279(20), 3844-3858.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08744.x] [PMID: 22889087]
[36]
Nelson, D.L.; Cox, M.M. princípios de bioquímica de lehninger. Art Med., 2014.
[37]
Fersht, A.R. Catalysis, Binding and Enzyme-Substrate. Complementarity. Proc. R. Soc. Lond. B, 1974, 187, 397-407.
[http://dx.doi.org/10.1098/rspb.1974.0084]
[38]
Rastegari, A.; Nadri, H.; Mahdavi, M.; Moradi, A.; Mirfazli, S.S.; Edraki, N.; Moghadam, F.H.; Larijani, B.; Akbarzadeh, T.; Saeedi, M. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg. Chem., 2019, 83, 391-401.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.065] [PMID: 30412794]
[39]
Karakaya, S.; Yılmaz, S.V.; Koca, M.; Demircic´, B.; Sytar, O. Screening of non-alkaloid acetylcholinesterase inhibitors from extracts and essential oils of Anthriscus nemorosa (M.Bieb.) Spreng. (Apiaceae). S. Afr. J. Bot., 2019, 125, 261-269.
[http://dx.doi.org/10.1016/j.sajb.2019.07.031]
[40]
Robinson, P.K. Enzymes: Principles and biotechnological applications. Essays Biochem., 2015, 59, 1-41.
[http://dx.doi.org/10.1042/bse0590001] [PMID: 26504249]
[41]
Wittig, U.; Kania, R.; Bittkowski, M.; Wetsch, E.; Shi, L.; Jong, L.; Golebiewski, M.; Rey, M.; Weidemann, A.; Rojas, I.; Müller, W. Data extraction for the reaction kinetics database SABIO-RK. Perspect. Sci., 2014, 1, 33-40.
[http://dx.doi.org/10.1016/j.pisc.2014.02.004]
[42]
Ramsay, R.R.; Tipton, K.F. Assessment of enzyme inhibition: A review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules, 2017, 22(7), 1192.
[http://dx.doi.org/10.3390/molecules22071192] [PMID: 28714881]
[43]
Page, M.I.; Jencks, W.P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc. Natl. Acad. Sci. USA, 1971, 68(8), 1678-1683.
[http://dx.doi.org/10.1073/pnas.68.8.1678] [PMID: 5288752]
[44]
Delaune, K.P.; Alsayouri, K. Physiology, Noncompetitive Inhibitor; StatPearls, 2020.
[45]
Michaelis, L.; Menten, M.M.L. Die Kinetik der Invertinwirkung. Biochem. Z., 1913, 49, 333-369.
[46]
Bisswanger, H. Enzyme Assays. Perspectives in Science, 2014, 1, 41-55.
[http://dx.doi.org/10.1016/j.pisc.2014.02.005]
[47]
Fukui, S.; Tanaka, A. Enzymatic reactions in organic solvents. Endeavour, 1985, 9(1), 10-17.
[http://dx.doi.org/10.1016/0160-9327(85)90004-3] [PMID: 2581765]
[48]
Ishak, S.N.H.; Masomian, M.; Kamarudin, N.H.A.; Ali, M.S.M.; Leow, T.C.; Rahman, R.N.Z.R.A. Changes of thermostability, organic solvent, and pH stability in Geobacillus zalihae HT1 and its mutant by calcium ion. Int. J. Mol. Sci., 2019, 20(10), 2561.
[http://dx.doi.org/10.3390/ijms20102561] [PMID: 31137725]
[49]
Shin, S.; Wu, P.; Chen, C.H. Biochemical studies of the actions of ethanol on acetylcholinesterase activity: ethanol-enzyme-solvent interac-tion. Int. J. Biochem., 1991, 23(2), 169-174.
[http://dx.doi.org/10.1016/0020-711X(91)90185-P] [PMID: 1999262]
[50]
Obregon, A.D.C.; Schetinger, M.R.C.; Correa, M.M.; Morsch, V.M.; da Silva, J.E.; Martins, M.A.P.; Bonacorso, H.G.; Zanatta, N. Effects per se of organic solvents in the cerebral acetylcholinesterase of rats. Neurochem. Res., 2005, 30(3), 379-384.
[http://dx.doi.org/10.1007/s11064-005-2612-5] [PMID: 16018582]
[51]
Komersova, A.; Komersa, K. ; Cˇegan, A. New findings about Ellman’s method to determine cholinesterase activity 2007, 62, 150-154.
[http://dx.doi.org/10.1515/znc-2007-1-225M]
[52]
Lv, J.; He, B.; Wang, N.; Li, M.; Lin, Y. A gold nanoparticle based colorimetric and fluorescent dual-channel probe for acetylcholinestera-se detection and inhibitor screening. RSC Advances, 2018, 8, 32893-32898.
[http://dx.doi.org/10.1039/C8RA06165C]
[53]
Saa, L.; Grinyte, R.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Pavlov, V. Blocked enzymatic etching of gold nanorods: application to colo-rimetric detection of acetylcholinesterase activity and its inhibitors. ACS Appl. Mater. Interfaces, 2016, 8(17), 11139-11146.
[http://dx.doi.org/10.1021/acsami.6b01834] [PMID: 27070402]
[54]
Liu, D.; Chen, W.; Tian, Y.; He, S.; Zheng, W.; Sun, J.; Wang, Z.; Jiang, X. A highly sensitive gold-nanoparticle-based assay for acetylcho-linesterase in cerebrospinal fluid of transgenic mice with Alzheimer’s disease. Adv. Healthc. Mater., 2012, 1(1), 90-95.
[http://dx.doi.org/10.1002/adhm.201100002] [PMID: 23184691]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy