Mini-Review Article

KIR和HLA的相互作用会影响非感染性葡萄膜炎的发展吗?

卷 22, 期 8, 2022

发表于: 21 December, 2021

页: [703 - 716] 页: 14

弟呕挨: 10.2174/1566524021666211027092124

open access plus

摘要

在眼睛中建立免疫耐受性,以防止与免疫细胞浸润引起的角膜和视网膜破坏性损伤相关的永久性失明;因此,免疫反应和随后的炎症被强烈抑制。虽然非感染性葡萄膜炎是由眼部免疫耐受性破坏引起的,但其发病是病因因素累积的结果,包括遗传易感性、环境因素和衰老。许多非感染性葡萄膜炎病例在遗传上倾向于人类白细胞抗原 (HLA) 作为最重要的疾病易感区域。 HLA I 类分子对于自然杀伤 (NK) 细胞区分自身和非自身至关重要。杀伤细胞 Ig 样受体 (KIR) 家族是这些受体的重要组成部分之一。越来越多的证据表明,NK 细胞通过与其他免疫活性细胞相互作用而参与先天性和获得性免疫,从而发展出多种自身免疫性疾病。本综述总结了 KIR 在非感染性葡萄膜炎发展中的可能作用。

关键词: NK 细胞、杀伤细胞 Ig 样受体、葡萄膜炎、人类白细胞抗原、免疫特权部位、Vogt-Koyanagi-Harada 病、Behcet 病、急性前葡萄膜炎、鸟瞰脉络膜视网膜病变。

[1]
Streilein JW, Stein-Streilein J. Does innate immune privilege exist? J Leukoc Biol 2000; 67(4): 479-87.
[http://dx.doi.org/10.1002/jlb.67.4.479] [PMID: 10770279]
[2]
Hou S, Li N, Liao X, Kijlstra A, Yang P. Uveitis genetics. Exp Eye Res 2020; 190: 107853.
[http://dx.doi.org/10.1016/j.exer.2019.107853] [PMID: 31669406]
[3]
Pichi F, Carrai P, Srivastava SK, Lowder CY, Nucci P, Neri P. Genetic of uveitis. Int Ophthalmol 2016; 36(3): 419-33.
[http://dx.doi.org/10.1007/s10792-015-0136-9] [PMID: 26453112]
[4]
Egwuagu CE, Sun L, Kim SH, Dambuza IM. Ocular inflammatory diseases: Molecular pathogenesis and immunotherapy. Curr Mol Med 2015; 15(6): 517-28.
[http://dx.doi.org/10.2174/1566524015666150731095426] [PMID: 26238372]
[5]
López de Castro JA. How ERAP1 and ERAP2 shape the peptidomes of disease-associated MHC-I proteins. Front Immunol 2018; 9(2463): 2463.
[http://dx.doi.org/10.3389/fimmu.2018.02463] [PMID: 30425713]
[6]
López de Castro JA, Alvarez-Navarro C, Brito A, Guasp P, Martín-Esteban A, Sanz-Bravo A. Molecular and pathogenic effects of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in MHC-I-associated inflammatory disorders: towards a unifying view. Mol Immunol 2016; 77: 193-204.
[http://dx.doi.org/10.1016/j.molimm.2016.08.005] [PMID: 27522479]
[7]
Weinstein JE, Pepple KL. Cytokines in uveitis. Curr Opin Ophthalmol 2018; 29(3): 267-74.
[http://dx.doi.org/10.1097/ICU.0000000000000466] [PMID: 29521875]
[8]
Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441(7090): 235-8.
[http://dx.doi.org/10.1038/nature04753] [PMID: 16648838]
[9]
Stockinger B, Veldhoen M, Martin B. Th17 T cells: linking innate and adaptive immunity. Semin Immunol 2007; 19(6): 353-61.
[http://dx.doi.org/10.1016/j.smim.2007.10.008] [PMID: 18023589]
[10]
Tato CM, O’Shea JJ. Immunology: what does it mean to be just 17? Nature 2006; 441(7090): 166-8.
[http://dx.doi.org/10.1038/441166a] [PMID: 16688162]
[11]
Knochelmann HM, Dwyer CJ, Bailey SR, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol 2018; 15(5): 458-69.
[http://dx.doi.org/10.1038/s41423-018-0004-4] [PMID: 29563615]
[12]
Jagger A, Shimojima Y, Goronzy JJ, Weyand CM. Regulatory T cells and the immune aging process: a mini-review. Gerontology 2014; 60(2): 130-7.
[http://dx.doi.org/10.1159/000355303] [PMID: 24296590]
[13]
Kuiper J, Rothova A, de Boer J, Radstake T. The immunopathogenesis of birdshot chorioretinopathy; a bird of many feathers. Prog Retin Eye Res 2015; 44: 99-110.
[http://dx.doi.org/10.1016/j.preteyeres.2014.11.003] [PMID: 25434765]
[14]
Sun L, Hurez VJ, Thibodeaux SR, et al. Aged regulatory T cells protect from autoimmune inflammation despite reduced STAT3 activation and decreased constraint of IL-17 producing T cells. Aging Cell 2012; 11(3): 509-19.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00812.x] [PMID: 22372596]
[15]
Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care 2013; 16(1): 14-20.
[http://dx.doi.org/10.1097/MCO.0b013e32835ada13] [PMID: 23132168]
[16]
Khakoo SI, Carrington M. KIR and disease: a model system or system of models? Immunol Rev 2006; 214: 186-201.
[http://dx.doi.org/10.1111/j.1600-065X.2006.00459.x] [PMID: 17100885]
[17]
Ljunggren HG, Kärre K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 1990; 11(7): 237-44.
[http://dx.doi.org/10.1016/0167-5699(90)90097-S] [PMID: 2201309]
[18]
Hsu KC, Liu XR, Selvakumar A, Mickelson E, O’Reilly RJ, Dupont B. Killer Ig-like receptor haplotype analysis by gene content: evidence for genomic diversity with a minimum of six basic framework haplotypes, each with multiple subsets. J Immunol 2002; 169(9): 5118-29.
[http://dx.doi.org/10.4049/jimmunol.169.9.5118] [PMID: 12391228]
[19]
Yawata M, Yawata N, Abi-Rached L, Parham P. Variation within the human killer cell immunoglobulin-like receptor (KIR) gene family. Crit Rev Immunol 2002; 22(5-6): 463-82.
[PMID: 12803322]
[20]
Yawata M, Yawata N, McQueen KL, et al. Predominance of group A KIR haplotypes in Japanese associated with diverse NK cell repertoires of KIR expression. Immunogenetics 2002; 54(8): 543-50.
[http://dx.doi.org/10.1007/s00251-002-0497-x] [PMID: 12439616]
[21]
Yawata M, Yawata N, Draghi M, Partheniou F, Little AM, Parham P. MHC class I-specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response. Blood 2008; 112(6): 2369-80.
[http://dx.doi.org/10.1182/blood-2008-03-143727] [PMID: 18583565]
[22]
Shi FD, Ljunggren HG, La Cava A, Van Kaer L. Organ-specific features of natural killer cells. Nat Rev Immunol 2011; 11(10): 658-71.
[http://dx.doi.org/10.1038/nri3065] [PMID: 21941294]
[23]
Kuroki K, Furukawa A, Maenaka K. Molecular recognition of paired receptors in the immune system. Front Microbiol 2012; 3: 429.
[http://dx.doi.org/10.3389/fmicb.2012.00429] [PMID: 23293633]
[24]
Faure M, Long EO. KIR2DL4 (CD158d), an NK cell-activating receptor with inhibitory potential. J Immunol 2002; 168(12): 6208-14.
[http://dx.doi.org/10.4049/jimmunol.168.12.6208] [PMID: 12055234]
[25]
Parham P, Moffett A. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat Rev Immunol 2013; 13(2): 133-44.
[http://dx.doi.org/10.1038/nri3370] [PMID: 23334245]
[26]
Rajalingam R. Human diversity of killer cell immunoglobulin-like receptors and disease. Korean J Hematol 2011; 46(4): 216-28.
[http://dx.doi.org/10.5045/kjh.2011.46.4.216] [PMID: 22259627]
[27]
Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol 2018; 18(1): 46-61.
[http://dx.doi.org/10.1038/nri.2017.106] [PMID: 29063907]
[28]
Schmidt D, Martens PB, Weyand CM, Goronzy JJ. The repertoire of CD4+ CD28- T cells in rheumatoid arthritis. Mol Med 1996; 2(5): 608-18.
[http://dx.doi.org/10.1007/BF03401644] [PMID: 8898376]
[29]
Snyder MR, Muegge LO, Offord C, et al. Formation of the killer Ig-like receptor repertoire on CD4+CD28null T cells. J Immunol 2002; 168(8): 3839-46.
[http://dx.doi.org/10.4049/jimmunol.168.8.3839] [PMID: 11937537]
[30]
van Bergen J, Kooy-Winkelaar EM, van Dongen H, et al. Functional killer Ig-like receptors on human memory CD4+ T cells specific for cytomegalovirus. J Immunol 2009; 182(7): 4175-82.
[http://dx.doi.org/10.4049/jimmunol.0800455] [PMID: 19299715]
[31]
Ferlazzo G, Pack M, Thomas D, et al. Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci USA 2004; 101(47): 16606-11.
[http://dx.doi.org/10.1073/pnas.0407522101] [PMID: 15536127]
[32]
Ghiringhelli F, Ménard C, Martin F, Zitvogel L. The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunol Rev 2006; 214: 229-38.
[http://dx.doi.org/10.1111/j.1600-065X.2006.00445.x] [PMID: 17100888]
[33]
Martín-Fontecha A, Thomsen LL, Brett S, et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 2004; 5(12): 1260-5.
[http://dx.doi.org/10.1038/ni1138] [PMID: 15531883]
[34]
Flodström-Tullberg M, Bryceson YT, Shi FD, Höglund P, Ljunggren HG. Natural killer cells in human autoimmunity. Curr Opin Immunol 2009; 21(6): 634-40.
[http://dx.doi.org/10.1016/j.coi.2009.09.012] [PMID: 19892538]
[35]
Goto H, Mochizuki M, Yamaki K, Kotake S, Usui M, Ohno S. Epidemiological survey of intraocular inflammation in Japan. Jpn J Ophthalmol 2007; 51(1): 41-4.
[http://dx.doi.org/10.1007/s10384-006-0383-4] [PMID: 17295139]
[36]
Lavezzo MM, Sakata VM, Morita C, et al. Vogt-Koyanagi-Harada disease: review of a rare autoimmune disease targeting antigens of melanocytes. Orphanet J Rare Dis 2016; 11: 29.
[http://dx.doi.org/10.1186/s13023-016-0412-4] [PMID: 27008848]
[37]
Norose K, Yano A. Melanoma specific Th1 cytotoxic T lymphocyte lines in Vogt-Koyanagi-Harada disease. Br J Ophthalmol 1996; 80(11): 1002-8.
[http://dx.doi.org/10.1136/bjo.80.11.1002] [PMID: 8976730]
[38]
Sugita S, Takase H, Kawaguchi T, Taguchi C, Mochizuki M. Cross-reaction between tyrosinase peptides and cytomegalovirus antigen by T cells from patients with Vogt-Koyanagi-Harada disease. Int Ophthalmol 2007; 27(2-3): 87-95.
[http://dx.doi.org/10.1007/s10792-006-9020-y] [PMID: 17253112]
[39]
Sugita S, Takase H, Taguchi C, et al. Ocular infiltrating CD4+ T cells from patients with Vogt-Koyanagi-Harada disease recognize human melanocyte antigens. Invest Ophthalmol Vis Sci 2006; 47(6): 2547-54.
[http://dx.doi.org/10.1167/iovs.05-1547] [PMID: 16723469]
[40]
Fang W, Yang P. Vogt-Koyanagi-Harada syndrome. Curr Eye Res 2008; 33(7): 517-23.
[http://dx.doi.org/10.1080/02713680802233968] [PMID: 18600484]
[41]
Rao NA. Pathology of Vogt-Koyanagi-Harada disease. Int Ophthalmol 2007; 27(2-3): 81-5.
[http://dx.doi.org/10.1007/s10792-006-9029-2] [PMID: 17435969]
[42]
Sakata VM, da Silva FT, Hirata CE, de Carvalho JF, Yamamoto JH. Diagnosis and classification of Vogt-Koyanagi-Harada disease. Autoimmun Rev 2014; 13(4-5): 550-5.
[http://dx.doi.org/10.1016/j.autrev.2014.01.023] [PMID: 24440284]
[43]
Lowder CY, Char DH. Uveitis. A review. West J Med 1984; 140(3): 421-32.
[PMID: 6369795]
[44]
Shi T, Lv W, Zhang L, Chen J, Chen H. Association of HLA-DR4/HLA-DRB1*04 with Vogt-Koyanagi-Harada disease: a systematic review and meta-analysis. Sci Rep 2014; 4: 6887.
[http://dx.doi.org/10.1038/srep06887] [PMID: 25382027]
[45]
Shindo Y, Ohno S, Yamamoto T, Nakamura S, Inoko H. Complete association of the HLA-DRB1*04 and -DQB1*04 alleles with Vogt-Koyanagi-Harada’s disease. Hum Immunol 1994; 39(3): 169-76.
[http://dx.doi.org/10.1016/0198-8859(94)90257-7] [PMID: 8026985]
[46]
Hou S, Du L, Lei B, et al. Genome-wide association analysis of Vogt-Koyanagi-Harada syndrome identifies two new susceptibility loci at 1p31.2 and 10q21.3. Nat Genet 2014; 46(9): 1007-11.
[http://dx.doi.org/10.1038/ng.3061] [PMID: 25108386]
[47]
Burton PR, Clayton DG, Cardon LR, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007; 39(11): 1329-37.
[http://dx.doi.org/10.1038/ng.2007.17] [PMID: 17952073]
[48]
Mizuki N, Meguro A, Ota M, et al. Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet’s disease susceptibility loci. Nat Genet 2010; 42(8): 703-6.
[http://dx.doi.org/10.1038/ng.624] [PMID: 20622879]
[49]
Remmers EF, Cosan F, Kirino Y, et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behçet’s disease. Nat Genet 2010; 42(8): 698-702.
[http://dx.doi.org/10.1038/ng.625] [PMID: 20622878]
[50]
Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314(5804): 1461-3.
[http://dx.doi.org/10.1126/science.1135245] [PMID: 17068223]
[51]
Núñez C, Dema B, Cénit MC, et al. IL23R: a susceptibility locus for celiac disease and multiple sclerosis? Genes Immun 2008; 9(4): 289-93.
[http://dx.doi.org/10.1038/gene.2008.16] [PMID: 18368064]
[52]
Levinson RD, Du Z, Luo L, et al. KIR and HLA gene combinations in Vogt-Koyanagi-Harada disease. Hum Immunol 2008; 69(6): 349-53.
[http://dx.doi.org/10.1016/j.humimm.2008.04.005] [PMID: 18571006]
[53]
Levinson RD, Okada AA, Ashouri E, Keino H, Rajalingam R. Killer cell immunoglobulin-like receptor gene-cluster 3DS1-2DL5-2DS1-2DS5 predisposes susceptibility to Vogt-Koyanagi-Harada syndrome in Japanese individuals. Hum Immunol 2010; 71(2): 192-4.
[http://dx.doi.org/10.1016/j.humimm.2009.11.001] [PMID: 19897003]
[54]
Levinson RD, Yung M, Meguro A, et al. KIR and HLA genotypes implicated in reduced killer lymphocytes immunity are associated with Vogt-Koyanagi-Harada disease. PLoS One 2016; 11(8): e0160392.
[http://dx.doi.org/10.1371/journal.pone.0160392] [PMID: 27490240]
[55]
Sheereen A, Gaafar A, Iqneibi A, et al. A study of KIR genes and HLA-C in Vogt-Koyanagi-Harada disease in Saudi Arabia. Mol Vis 2011; 17: 3523-8.
[PMID: 22219647]
[56]
Saunders PM, Pymm P, Pietra G, et al. Killer cell immunoglobulin-like receptor 3DL1 polymorphism defines distinct hierarchies of HLA class I recognition. J Exp Med 2016; 213(5): 791-807.
[http://dx.doi.org/10.1084/jem.20152023] [PMID: 27045007]
[57]
Jiang Y, Arase N, Kohyama M, et al. Transport of misfolded endoplasmic reticulum proteins to the cell surface by MHC class II molecules. Int Immunol 2013; 25(4): 235-46.
[http://dx.doi.org/10.1093/intimm/dxs155] [PMID: 23334921]
[58]
Meusser B, Hirsch C, Jarosch E, Sommer T. ERAD: the long road to destruction. Nat Cell Biol 2005; 7(8): 766-72.
[http://dx.doi.org/10.1038/ncb0805-766] [PMID: 16056268]
[59]
Jin H, Arase N, Hirayasu K, et al. Autoantibodies to IgG/HLA class II complexes are associated with rheumatoid arthritis susceptibility. Proc Natl Acad Sci USA 2014; 111(10): 3787-92.
[http://dx.doi.org/10.1073/pnas.1401105111] [PMID: 24567378]
[60]
Tanimura K, Jin H, Suenaga T, et al. β2-Glycoprotein I/HLA class II complexes are novel autoantigens in antiphospholipid syndrome. Blood 2015; 125(18): 2835-44.
[http://dx.doi.org/10.1182/blood-2014-08-593624] [PMID: 25733579]
[61]
Monnet D, Breban M, Hudry C, Dougados M, Brézin AP. Ophthalmic findings and frequency of extraocular manifestations in patients with HLA-B27 uveitis: a study of 175 cases. Ophthalmology 2004; 111(4): 802-9.
[http://dx.doi.org/10.1016/j.ophtha.2003.07.011] [PMID: 15051216]
[62]
Wakefield D, Yates W, Amjadi S, McCluskey P. HLA-B27 anterior uveitis: immunology and immunopathology. Ocul Immunol Inflamm 2016; 24(4): 450-9.
[http://dx.doi.org/10.3109/09273948.2016.1158283] [PMID: 27245590]
[63]
Chung YM, Liao HT, Lin KC, et al. Prevalence of spondyloarthritis in 504 Chinese patients with HLA-B27-associated acute anterior uveitis. Scand J Rheumatol 2009; 38(2): 84-90.
[http://dx.doi.org/10.1080/03009740802385423] [PMID: 18821178]
[64]
Martin TM, Rosenbaum JT. An update on the genetics of HLA B27-associated acute anterior uveitis. Ocul Immunol Inflamm 2011; 19(2): 108-14.
[http://dx.doi.org/10.3109/09273948.2011.559302] [PMID: 21428748]
[65]
Robinson PC, Claushuis TA, Cortes A, et al. Genetic dissection of acute anterior uveitis reveals similarities and differences in associations observed with ankylosing spondylitis. Arthritis Rheumatol 2015; 67(1): 140-51.
[http://dx.doi.org/10.1002/art.38873] [PMID: 25200001]
[66]
Keidel S, Chen L, Pointon J, Wordsworth P. ERAP1 and ankylosing spondylitis. Curr Opin Immunol 2013; 25(1): 97-102.
[http://dx.doi.org/10.1016/j.coi.2012.11.002] [PMID: 23452840]
[67]
Levinson RD, Martin TM, Luo L, et al. Killer cell immunoglobulin-like receptors in HLA-B27-associated acute anterior uveitis, with and without axial spondyloarthropathy. Invest Ophthalmol Vis Sci 2010; 51(3): 1505-10.
[http://dx.doi.org/10.1167/iovs.09-4232] [PMID: 19850842]
[68]
Parham P, Guethlein LA. Genetics of natural killer cells in human health, disease, and survival. Annu Rev Immunol 2018; 36: 519-48.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053149] [PMID: 29394121]
[69]
Moon SJ, Oh EJ, Kim Y, et al. Diversity of killer cell immunoglobulin-like receptor genes in uveitis associated with autoimmune diseases: ankylosing spondylitis and Behçet disease. Ocul Immunol Inflamm 2013; 21(2): 135-43.
[http://dx.doi.org/10.3109/09273948.2012.754905] [PMID: 23697859]
[70]
Liu YX, Guo N, Xu MH, Ren GF. Association of killer cell immunoglobulin-like receptor and human leukocyte antigen-C genotype with HLA-B27 associated acute anterior uveitis and idiopathic acute anterior uveitis in a chinese han population. Ocul Immunol Inflamm 2020; •••: 1-6.
[http://dx.doi.org/10.1080/09273948.2020.1808228] [PMID: 32946319]
[71]
Vendelbosch S, Heslinga SC, John M, et al. Study on the protective effect of the KIR3DL1 gene in ankylosing spondylitis. Arthritis Rheumatol 2015; 67(11): 2957-65.
[http://dx.doi.org/10.1002/art.39288] [PMID: 26238044]
[72]
Benjamin R, Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today 1990; 11(4): 137-42.
[http://dx.doi.org/10.1016/0167-5699(90)90051-A] [PMID: 2187471]
[73]
Bowness P. HLA-B27. Annu Rev Immunol 2015; 33: 29-48.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112110] [PMID: 25861975]
[74]
Colbert RA, DeLay ML, Klenk EI, Layh-Schmitt G. From HLA-B27 to spondyloarthritis: a journey through the ER. Immunol Rev 2010; 233(1): 181-202.
[http://dx.doi.org/10.1111/j.0105-2896.2009.00865.x] [PMID: 20193000]
[75]
Mear JP, Schreiber KL, Münz C, et al. Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol 1999; 163(12): 6665-70.
[PMID: 10586062]
[76]
Bowness P, Ridley A, Shaw J, et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J Immunol 2011; 186(4): 2672-80.
[http://dx.doi.org/10.4049/jimmunol.1002653] [PMID: 21248258]
[77]
Cauli A, Piga M, Dessole G, et al. Killer-cell immunoglobulin-like receptors (KIR) and HLA-class I heavy chains in ankylosing spondylitis. Drug Dev Res 2014; 75(Suppl. 1): S15-9.
[http://dx.doi.org/10.1002/ddr.21187] [PMID: 25381967]
[78]
Shaw J, Hatano H, Kollnberger S. The biochemistry and immunology of non-canonical forms of HLA-B27. Mol Immunol 2014; 57(1): 52-8.
[http://dx.doi.org/10.1016/j.molimm.2013.05.243] [PMID: 23910730]
[79]
Beringer A, Noack M, Miossec P. IL-17 in chronic inflammation: from discovery to targeting. Trends Mol Med 2016; 22(3): 230-41.
[http://dx.doi.org/10.1016/j.molmed.2016.01.001] [PMID: 26837266]
[80]
Fauriat C, Andersson S, Björklund AT, et al. Estimation of the size of the alloreactive NK cell repertoire: studies in individuals homozygous for the group A KIR haplotype. J Immunol 2008; 181(9): 6010-9.
[http://dx.doi.org/10.4049/jimmunol.181.9.6010] [PMID: 18941190]
[81]
Valiante NM, Uhrberg M, Shilling HG, et al. Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 1997; 7(6): 739-51.
[http://dx.doi.org/10.1016/S1074-7613(00)80393-3] [PMID: 9430220]
[82]
Hansasuta P, Dong T, Thananchai H, et al. Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific. Eur J Immunol 2004; 34(6): 1673-9.
[http://dx.doi.org/10.1002/eji.200425089] [PMID: 15162437]
[83]
Sivori S, Falco M, Carlomagno S, et al. A novel KIR-associated function: evidence that CpG DNA uptake and shuttling to early endosomes is mediated by KIR3DL2. Blood 2010; 116(10): 1637-47.
[http://dx.doi.org/10.1182/blood-2009-12-256586] [PMID: 20147700]
[84]
Gül A. Behçet’s disease as an autoinflammatory disorder. Curr Drug Targets Inflamm Allergy 2005; 4(1): 81-3.
[http://dx.doi.org/10.2174/1568010053622894] [PMID: 15720240]
[85]
de Menthon M, Lavalley MP, Maldini C, Guillevin L, Mahr A. HLA-B51/B5 and the risk of Behçet’s disease: a systematic review and meta-analysis of case-control genetic association studies. Arthritis Rheum 2009; 61(10): 1287-96.
[http://dx.doi.org/10.1002/art.24642] [PMID: 19790126]
[86]
Kirino Y, Bertsias G, Ishigatsubo Y, et al. Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1. Nat Genet 2013; 45(2): 202-7.
[http://dx.doi.org/10.1038/ng.2520] [PMID: 23291587]
[87]
Kappen JH, Medina-Gomez C, van Hagen PM, et al. Genome-wide association study in an admixed case series reveals IL12A as a new candidate in Behçet disease. PLoS One 2015; 10(3): e0119085.
[http://dx.doi.org/10.1371/journal.pone.0119085] [PMID: 25799145]
[88]
Takeuchi M, Mizuki N, Meguro A, et al. Dense genotyping of immune-related loci implicates host responses to microbial exposure in Behçet’s disease susceptibility. Nat Genet 2017; 49(3): 438-43.
[http://dx.doi.org/10.1038/ng.3786] [PMID: 28166214]
[89]
Giza M, Koftori D, Chen L, Bowness P. Is Behçet’s disease a ‘class 1-opathy’? The role of HLA-B*51 in the pathogenesis of Behçet’s disease. Clin Exp Immunol 2018; 191(1): 11-8.
[http://dx.doi.org/10.1111/cei.13049] [PMID: 28898393]
[90]
Takeuchi M, Ombrello MJ, Kirino Y, et al. A single endoplasmic reticulum aminopeptidase-1 protein allotype is a strong risk factor for Behçet’s disease in HLA-B*51 carriers. Ann Rheum Dis 2016; 75(12): 2208-11.
[http://dx.doi.org/10.1136/annrheumdis-2015-209059] [PMID: 27217550]
[91]
Roberts AR, Appleton LH, Cortes A, et al. ERAP1 association with ankylosing spondylitis is attributable to common genotypes rather than rare haplotype combinations. Proc Natl Acad Sci USA 2017; 114(3): 558-61.
[http://dx.doi.org/10.1073/pnas.1618856114] [PMID: 28049827]
[92]
Gül A, Uyar FA, Inanç M, et al. A weak association of HLA-B*2702 with Behçet’s disease. Genes Immun 2002; 3(6): 368-72.
[http://dx.doi.org/10.1038/sj.gene.6363863] [PMID: 12209364]
[93]
Petrushkin H, Hasan MS, Stanford MR, Fortune F, Wallace GR. Behçet’s disease: do natural killer cells play a significant role? Front Immunol 2015; 6: 134.
[http://dx.doi.org/10.3389/fimmu.2015.00134] [PMID: 25852697]
[94]
Sanjanwala B, Draghi M, Norman PJ, Guethlein LA, Parham P. Polymorphic sites away from the Bw4 epitope that affect interaction of Bw4+ HLA-B with KIR3DL1. J Immunol 2008; 181(9): 6293-300.
[http://dx.doi.org/10.4049/jimmunol.181.9.6293] [PMID: 18941220]
[95]
Ombrello MJ, Kirino Y, de Bakker PI, Gül A, Kastner DL, Remmers EF. Behçet disease-associated MHC class I residues implicate antigen binding and regulation of cell-mediated cytotoxicity. Proc Natl Acad Sci USA 2014; 111(24): 8867-72.
[http://dx.doi.org/10.1073/pnas.1406575111] [PMID: 24821759]
[96]
Cifaldi L, Romania P, Falco M, et al. ERAP1 regulates natural killer cell function by controlling the engagement of inhibitory receptors. Cancer Res 2015; 75(5): 824-34.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1643] [PMID: 25592150]
[97]
Reeves E, Colebatch-Bourn A, Elliott T, Edwards CJ, James E. Functionally distinct ERAP1 allotype combinations distinguish individuals with Ankylosing Spondylitis. Proc Natl Acad Sci USA 2014; 111(49): 17594-9.
[http://dx.doi.org/10.1073/pnas.1408882111] [PMID: 25422414]
[98]
Reeves E, Edwards CJ, Elliott T, James E. Naturally occurring ERAP1 haplotypes encode functionally distinct alleles with fine substrate specificity. J Immunol 2013; 191(1): 35-43.
[http://dx.doi.org/10.4049/jimmunol.1300598] [PMID: 23733883]
[99]
Arayssi TK, El Hajj N, Shamseddine W, et al. Killer cell immunoglobulin-like receptor genotypes in Behçet’s disease patients: any role for the 3DP1*001/002 pseudogene? Genet Test Mol Biomarkers 2009; 13(3): 319-24.
[http://dx.doi.org/10.1089/gtmb.2008.0108] [PMID: 19405872]
[100]
Middleton D, Meenagh A, Sleator C, et al. No association of KIR genes with Behcet’s disease. Tissue Antigens 2007; 70(5): 435-8.
[http://dx.doi.org/10.1111/j.1399-0039.2007.00929.x] [PMID: 17868255]
[101]
Mohammad-Ebrahim H, Kamali-Sarvestani E, Mahmoudi M, et al. Association of killer cell immunoglobulin-like receptor (KIR) genes and their HLA ligands with susceptibility to Behçet’s disease. Scand J Rheumatol 2018; 47(2): 155-63.
[http://dx.doi.org/10.1080/03009742.2017.1340510] [PMID: 28862099]
[102]
Saruhan-Direskeneli G, Uyar FA, Cefle A, et al. Expression of KIR and C-type lectin receptors in Behcet’s disease. Rheumatology (Oxford) 2004; 43(4): 423-7.
[http://dx.doi.org/10.1093/rheumatology/keh063] [PMID: 14679294]
[103]
Erer B, Takeuchi M, Ustek D, et al. Evaluation of KIR3DL1/KIR3DS1 polymorphism in Behçet’s disease. Genes Immun 2016; 17(7): 396-9.
[http://dx.doi.org/10.1038/gene.2016.36] [PMID: 27708262]
[104]
Castaño-Núñez Á, Montes-Cano MA, García-Lozano JR, et al. Association of functional polymorphisms of KIR3DL1/DS1 with Behçet’s disease. Front Immunol 2019; 10: 2755.
[http://dx.doi.org/10.3389/fimmu.2019.02755] [PMID: 31849952]
[105]
Pando MJ, Gardiner CM, Gleimer M, McQueen KL, Parham P. The protein made from a common allele of KIR3DL1 (3DL1*004) is poorly expressed at cell surfaces due to substitution at positions 86 in Ig domain 0 and 182 in Ig domain 1. J Immunol 2003; 171(12): 6640-9.
[http://dx.doi.org/10.4049/jimmunol.171.12.6640] [PMID: 14662867]
[106]
Petrushkin H, Norman PJ, Lougee E, et al. KIR3DL1/S1 allotypes contribute differentially to the development of Behçet disease. J Immunol 2019; 203(6): 1629-35.
[http://dx.doi.org/10.4049/jimmunol.1801178] [PMID: 31405953]
[107]
Yang Y, Tan H, Deng B, et al. Genetic polymorphisms of C-type lectin receptors in Behcet’s disease in a Chinese Han population. Sci Rep 2017; 7(1): 5348.
[http://dx.doi.org/10.1038/s41598-017-05877-x] [PMID: 28706259]
[108]
Dixon AL, Liang L, Moffatt MF, et al. A genome-wide association study of global gene expression. Nat Genet 2007; 39(10): 1202-7.
[http://dx.doi.org/10.1038/ng2109] [PMID: 17873877]
[109]
Kim DK, Kabat J, Borrego F, Sanni TB, You CH, Coligan JE. Human NKG2F is expressed and can associate with DAP12. Mol Immunol 2004; 41(1): 53-62.
[http://dx.doi.org/10.1016/j.molimm.2004.01.004] [PMID: 15140575]
[110]
Parkes MD, Halloran PF, Hidalgo LG. Mechanistic sharing between NK cells in ABMR and effector T cells in TCMR. Am J Transplant 2018; 18(1): 63-73.
[http://dx.doi.org/10.1111/ajt.14410] [PMID: 28654216]
[111]
Weigt SS, Wang X, Palchevskiy V, et al. Usefulness of gene expression profiling of bronchoalveolar lavage cells in acute lung allograft rejection. J Heart Lung Transplant 2019; 38(8): 845-55.
[http://dx.doi.org/10.1016/j.healun.2019.05.001] [PMID: 31122726]
[112]
Brézin AP, Monnet D, Cohen JH, Levinson RD. HLA-A29 and birdshot chorioretinopathy. Ocul Immunol Inflamm 2011; 19(6): 397-400.
[http://dx.doi.org/10.3109/09273948.2011.619295] [PMID: 22106906]
[113]
Shah KH, Levinson RD, Yu F, et al. Birdshot chorioretinopathy. Surv Ophthalmol 2005; 50(6): 519-41.
[http://dx.doi.org/10.1016/j.survophthal.2005.08.004] [PMID: 16263368]
[114]
Cao K, Hollenbach J, Shi X, Shi W, Chopek M, Fernández-Viña MA. Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. Hum Immunol 2001; 62(9): 1009-30.
[http://dx.doi.org/10.1016/S0198-8859(01)00298-1] [PMID: 11543903]
[115]
Kuiper JJ, Van Setten J, Ripke S, et al. A genome-wide association study identifies a functional ERAP2 haplotype associated with birdshot chorioretinopathy. Hum Mol Genet 2014; 23(22): 6081-7.
[http://dx.doi.org/10.1093/hmg/ddu307] [PMID: 24957906]
[116]
Kuiper JJW, Setten JV, Devall M, et al. Functionally distinct ERAP1 and ERAP2 are a hallmark of HLA-A29-(Birdshot) Uveitis. Hum Mol Genet 2018; 27(24): 4333-43.
[http://dx.doi.org/10.1093/hmg/ddy319] [PMID: 30215709]
[117]
Alvarez-Navarro C, Martín-Esteban A, Barnea E, Admon A, López de Castro JA. Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) polymorphism relevant to inflammatory disease shapes the peptidome of the birdshot chorioretinopathy-associated HLA-A*29:02 antigen. Mol Cell Proteomics 2015; 14(7): 1770-80.
[http://dx.doi.org/10.1074/mcp.M115.048959] [PMID: 25892735]
[118]
Gaudio PA, Kaye DB, Crawford JB. Histopathology of birdshot retinochoroidopathy. Br J Ophthalmol 2002; 86(12): 1439-41.
[http://dx.doi.org/10.1136/bjo.86.12.1439] [PMID: 12446382]
[119]
Pulido JS, Canal I, Salomão D, Kravitz D, Bradley E, Vile R. Histological findings of birdshot chorioretinopathy in an eye with ciliochoroidal melanoma. Eye (Lond) 2012; 26(6): 862-5.
[http://dx.doi.org/10.1038/eye.2012.10] [PMID: 22402699]
[120]
Kuiper JJW, Rothova A, Schellekens PA, Ossewaarde-van Norel A, Bloem AC, Mutis T. Detection of choroid- and retina-antigen reactive CD8(+) and CD4(+) T lymphocytes in the vitreous fluid of patients with birdshot chorioretinopathy. Hum Immunol 2014; 75(6): 570-7.
[http://dx.doi.org/10.1016/j.humimm.2014.02.012] [PMID: 24530754]
[121]
Kuiper JJ, Mutis T, de Jager W, de Groot-Mijnes JD, Rothova A. Intraocular interleukin-17 and proinflammatory cytokines in HLA-A29-associated birdshot chorioretinopathy. Am J Ophthalmol 2011; 152(2): 177-182.e1.
[http://dx.doi.org/10.1016/j.ajo.2011.01.031] [PMID: 21570674]
[122]
Yang P, Foster CS. Interleukin 21, interleukin 23, and transforming growth factor β1 in HLA-A29-associated birdshot retinochoroidopathy. Am J Ophthalmol 2013; 156(2): 400-406.e2.
[http://dx.doi.org/10.1016/j.ajo.2013.03.004] [PMID: 23622563]
[123]
Levinson RD, Du Z, Luo L, et al. Combination of KIR and HLA gene variants augments the risk of developing birdshot chorioretinopathy in HLA-A*29-positive individuals. Genes Immun 2008; 9(3): 249-58.
[http://dx.doi.org/10.1038/gene.2008.13] [PMID: 18340360]
[124]
Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 2008; 36(Suppl. 2): W509-12.
[http://dx.doi.org/10.1093/nar/gkn202] [PMID: 18463140]
[125]
Minos E, Barry RJ, Southworth S, et al. Birdshot chorioretinopathy: current knowledge and new concepts in pathophysiology, diagnosis, monitoring and treatment. Orphanet J Rare Dis 2016; 11(1): 61.
[http://dx.doi.org/10.1186/s13023-016-0429-8] [PMID: 27175923]
[126]
Keino H, Horie S, Sugita S. Immune privilege and eye-derived T-regulatory cells. J Immunol Res 2018; 2018: 1679197.
[http://dx.doi.org/10.1155/2018/1679197] [PMID: 29888291]
[127]
Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 2010; 11(1): 7-13.
[http://dx.doi.org/10.1038/ni.1818] [PMID: 20016504]
[128]
Workman CJ, Szymczak-Workman AL, Collison LW, Pillai MR, Vignali DA. The development and function of regulatory T cells. Cell Mol Life Sci 2009; 66(16): 2603-22.
[http://dx.doi.org/10.1007/s00018-009-0026-2] [PMID: 19390784]
[129]
Chen L, Yang P, Zhou H, et al. Diminished frequency and function of CD4+CD25high regulatory T cells associated with active uveitis in Vogt-Koyanagi-Harada syndrome. Invest Ophthalmol Vis Sci 2008; 49(8): 3475-82.
[http://dx.doi.org/10.1167/iovs.08-1793] [PMID: 18421089]
[130]
Yeh S, Li Z, Forooghian F, et al. CD4+Foxp3+ T-regulatory cells in noninfectious uveitis. Arch Ophthalmol 2009; 127(4): 407-13.
[http://dx.doi.org/10.1001/archophthalmol.2009.32] [PMID: 19365016]
[131]
Carrington M, Martin MP. The impact of variation at the KIR gene cluster on human disease. Curr Top Microbiol Immunol 2006; 298: 225-57.
[http://dx.doi.org/10.1007/3-540-27743-9_12] [PMID: 16329188]
[132]
Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 2005; 5(3): 201-14.
[http://dx.doi.org/10.1038/nri1570] [PMID: 15719024]
[133]
Williams AP, Bateman AR, Khakoo SI. Hanging in the balance. KIR and their role in disease. Mol Interv 2005; 5(4): 226-40.
[http://dx.doi.org/10.1124/mi.5.4.6] [PMID: 16123537]
[134]
Levinson RD. Killer immunoglobulin-like receptor genes in uveitis. Ocul Immunol Inflamm 2011; 19(3): 192-201.
[http://dx.doi.org/10.3109/09273948.2010.538798] [PMID: 21595535]
[135]
Nakamura J, Meguro A, Ishii G, et al. The association analysis between HLA-A*26 and Behçet’s disease. Sci Rep 2019; 9(1): 4426.
[http://dx.doi.org/10.1038/s41598-019-40824-y] [PMID: 30872678]
[136]
Malinowski SM, Pulido JS, Folk JC. Long-term visual outcome and complications associated with pars planitis. Ophthalmology 1993; 100(6): 818-24.
[http://dx.doi.org/10.1016/S0161-6420(93)31567-8] [PMID: 8510893]
[137]
Levinson RD, Park MS, Rikkers SM, et al. Strong associations between specific HLA-DQ and HLA-DR alleles and the tubulointerstitial nephritis and uveitis syndrome. Invest Ophthalmol Vis Sci 2003; 44(2): 653-7.
[http://dx.doi.org/10.1167/iovs.02-0376] [PMID: 12556395]
[138]
Mackensen F, David F, Schwenger V, et al. HLA-DRB1*0102 is associated with TINU syndrome and bilateral, sudden-onset anterior uveitis but not with interstitial nephritis alone. Br J Ophthalmol 2011; 95(7): 971-5.
[http://dx.doi.org/10.1136/bjo.2010.187955] [PMID: 21059595]
[139]
Kilmartin DJ, Wilson D, Liversidge J, et al. Immunogenetics and clinical phenotype of sympathetic ophthalmia in British and Irish patients. Br J Ophthalmol 2001; 85(3): 281-6.
[http://dx.doi.org/10.1136/bjo.85.3.281] [PMID: 11222331]
[140]
Shindo Y, Inoko H, Yamamoto T, Ohno S. HLA-DRB1 typing of Vogt-Koyanagi-Harada’s disease by PCR-RFLP and the strong association with DRB1*0405 and DRB1*0410. Br J Ophthalmol 1994; 78(3): 223-6.
[http://dx.doi.org/10.1136/bjo.78.3.223] [PMID: 7908535]
[141]
Darlington P, Tallstedt L, Padyukov L, et al. HLA-DRB1* alleles and symptoms associated with Heerfordt’s syndrome in sarcoidosis. Eur Respir J 2011; 38(5): 1151-7.
[http://dx.doi.org/10.1183/09031936.00025011] [PMID: 21565911]
[142]
Sato H, Woodhead FA, Ahmad T, et al. Sarcoidosis HLA class II genotyping distinguishes differences of clinical phenotype across ethnic groups. Hum Mol Genet 2010; 19(20): 4100-11.
[http://dx.doi.org/10.1093/hmg/ddq325] [PMID: 20685690]
[143]
Angeles-Han ST, McCracken C, Yeh S, et al. HLA Associations in a Cohort of children with juvenile idiopathic arthritis with and without uveitis. Invest Ophthalmol Vis Sci 2015; 56(10): 6043-8.
[http://dx.doi.org/10.1167/iovs.15-17168] [PMID: 26393471]

© 2025 Bentham Science Publishers | Privacy Policy