Meta-Analysis

相关内皮循环生物标记物在2019冠状病毒疾病中的作用:系统综述与meta-分析

卷 29, 期 21, 2022

发表于: 27 December, 2021

页: [3790 - 3805] 页: 16

弟呕挨: 10.2174/0929867328666211026124033

价格: $65

摘要

背景:多项研究揭示了2019年冠状病毒病(2019冠状病毒疾病)与内皮功能障碍之间的联系。为了更好地了解这种关系的全球模式,我们对与2019冠状病毒疾病严重程度相关的内皮生物标志物进行了meta-分析。 方法:我们系统地检索截至2021 年3月10日的文献,研究2019冠状病毒疾病严重程度与以下内皮生物标志物之间的关系:细胞间粘附分子1(ICAM-1)、血管细胞粘附分子1(VCAM-1)、E-选择素、P-选择素、血管性血友病因子抗原(VWFAg)、可溶性血栓调节蛋白(sTM),中区肾上腺髓质中段肽(MR-proADM)和血管生成素-2(Ang-2)。并列出了每个生物标志物的汇总估计值和平均差异(PMD)。 结果:共纳入27项研究(2213名患者)。与非危重病患者相比,危重患者表现出较高的MR proADM水平(PMD:0.71 nmol/L,95%CI:0.22至1.20 nmol/L,p=0.02),E-选择素(PMD:13,32 pg/ml,95%CI:4,89至21,75 pg/ml,p=0.008),VCAM-1(PMD:479 ng/ml,95%CI:64至896 ng/ml,p=0.03),VWF-Ag(PMD:110.5 IU/dl,95%CI:44.8至176.1 IU/dl,p=0.03.04)和Ang-2(PMD:2388 pg/ml,95%可信区间:1121至3655 pg/ml,p=0.003),ICAM-1、P-选择素和血栓调节蛋白在两组之间没有差异(P>0.05)。 结论:2019冠状病毒疾病患者的内皮生物标志物显示出明显的异质性,MR-proADM、E-选择素、VCAM-1、VWF-Ag和Ang-2水平升高与严重程度增加相关。这些发现加强了内皮功能障碍在疾病进展中的关键作用的证据的可靠性。

关键词: 2019冠状病毒疾病,SARS-CoV-2,内皮功能障碍,生物标志物,粘附分子,疾病严重程度

[1]
WHO. WHO Director-General’s opening remarks at the media briefing on COVID-19. 2020. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (Accessed: Apr 24, 2021).
[2]
WHO; WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int (Accessed: Apr 24, 2021).
[3]
Zaim, S.; Chong, J.H.; Sankaranarayanan, V.; Harky, A. COVID-19 and multiorgan response. Curr. Probl. Cardiol., 2020, 45(8), 100618.
[http://dx.doi.org/10.1016/j.cpcardiol.2020.100618] [PMID: 32439197]
[4]
Mokhtari, T.; Hassani, F.; Ghaffari, N.; Ebrahimi, B.; Yarahmadi, A.; Hassanzadeh, G. COVID-19 and multiorgan failure: A narrative review on potential mechanisms. J. Mol. Histol., 2020, 51(6), 613-628.
[http://dx.doi.org/10.1007/s10735-020-09915-3] [PMID: 33011887]
[5]
Darif, D.; Hammi, I.; Kihel, A.; El Idrissi Saik, I.; Guessous, F.; Akarid, K. The pro-inflammatory cytokines in COVID-19 pathogenesis: what goes wrong? Microb. Pathog., 2021, 153, 104799.
[http://dx.doi.org/10.1016/j.micpath.2021.104799] [PMID: 33609650]
[6]
Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet, 2020, 395(10234), 1417-1418.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[7]
de Guadiana-Romualdo, L.G.; Nieves, M.D.C.; Mulero, M.D.R.; Alises, I.C.; Olivo, M.H.; Fernández, W.T.; Morales, M.G.; Jiménez, C.B.; Albaladejo-Otón, M.D.; Ovalle, H.F.; Hernández, A.C.; Manrique, E.A.; Consuegra-Sánchez, L.; Martín, L.N.; Zamora, P.C.; Andaluz-Ojeda, D. MR-proADM as marker of endotheliitis predicts COVID-19 severity. Eur. J. Clin. Invest., 2021, 51(5), e13511.
[http://dx.doi.org/10.1111/eci.13511] [PMID: 33569769]
[8]
Leite, A.R.; Borges-Canha, M.; Cardoso, R.; Neves, J.S.; Castro-Ferreira, R.; Leite-Moreira, A. Novel biomarkers for evaluation of endothelial dysfunction. Angiology, 2020, 71(5), 397-410.
[http://dx.doi.org/10.1177/0003319720903586] [PMID: 32077315]
[9]
Tong, M.; Jiang, Y.; Xia, D.; Xiong, Y.; Zheng, Q.; Chen, F.; Zou, L.; Xiao, W.; Zhu, Y. Elevated expression of serum endothelial cell adhesion molecules in COVID-19 patients. J. Infect. Dis., 2020, 222(6), 894-898.
[http://dx.doi.org/10.1093/infdis/jiaa349] [PMID: 32582936]
[10]
Agrati, C.; Bordoni, V.; Sacchi, A.; Petrosillo, N.; Nicastri, E.; Del Nonno, F.; D’Offizi, G.; Palmieri, F.; Marchioni, L.; Capobianchi, M.R.; Antinori, A.; Ippolito, G.; Bibas, M. Elevated P-selectin in severe Covid-19: considerations for therapeutic options. Mediterr. J. Hematol. Infect. Dis., 2021, 13(1), e2021016.
[http://dx.doi.org/10.4084/mjhid.2021.016] [PMID: 33747397]
[11]
Philippe, A.; Chocron, R.; Gendron, N.; Bory, O.; Beauvais, A.; Peron, N.; Khider, L.; Guerin, C.L.; Goudot, G.; Levasseur, F.; Peronino, C.; Duchemin, J.; Brichet, J.; Sourdeau, E.; Desvard, F.; Bertil, S.; Pene, F.; Cheurfa, C.; Szwebel, T.A.; Planquette, B.; Rivet, N.; Jourdi, G.; Hauw-Berlemont, C.; Hermann, B.; Gaussem, P.; Mirault, T.; Terrier, B.; Sanchez, O.; Diehl, J.L.; Fontenay, M.; Smadja, D.M. Circulating Von Willebrand factor and high molecular weight multimers as markers of endothelial injury predict COVID-19 in-hospital mortality. Angiogenesis, 2021, 24(3), 505-517.
[http://dx.doi.org/10.1007/s10456-020-09762-6] [PMID: 33449299]
[12]
Cugno, M.; Meroni, P.L.; Gualtierotti, R.; Griffini, S.; Grovetti, E.; Torri, A.; Lonati, P.; Grossi, C.; Borghi, M.O.; Novembrino, C.; Boscolo, M.; Uceda Renteria, S.C.; Valenti, L.; Lamorte, G.; Manunta, M.; Prati, D.; Pesenti, A.; Blasi, F.; Costantino, G.; Gori, A.; Bandera, A.; Tedesco, F.; Peyvandi, F. Complement activation and endothelial perturbation parallel COVID-19 severity and activity. J. Autoimmun., 2021, 116, 102560.
[http://dx.doi.org/10.1016/j.jaut.2020.102560] [PMID: 33139116]
[13]
Goshua, G.; Pine, A.B.; Meizlish, M.L.; Chang, C-H.; Zhang, H.; Bahel, P.; Baluha, A.; Bar, N.; Bona, R.D.; Burns, A.J.; Dela Cruz, C.S.; Dumont, A.; Halene, S.; Hwa, J.; Koff, J.; Menninger, H.; Neparidze, N.; Price, C.; Siner, J.M.; Tormey, C.; Rinder, H.M.; Chun, H.J.; Lee, A.I. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol., 2020, 7(8), e575-e582.
[http://dx.doi.org/10.1016/S2352-3026(20)30216-7] [PMID: 32619411]
[14]
Bouck, E.G.; Denorme, F.; Holle, L.A.; Middelton, E.A.; Blair, A.M.; de Laat, B.; Schiffman, J.D.; Yost, C.C.; Rondina, M.T.; Wolberg, A.S.; Campbell, R.A. COVID-19 and sepsis are associated with different abnormalities in plasma procoagulant and fibrinolytic activity. Arterioscler. Thromb. Vasc. Biol., 2021, 41(1), 401-414.
[http://dx.doi.org/10.1161/ATVBAHA.120.315338] [PMID: 33196292]
[15]
Sozio, E.; Tascini, C.; Fabris, M.; D’Aurizio, F.; De Carlo, C.; Graziano, E.; Bassi, F.; Sbrana, F.; Ripoli, A.; Pagotto, A.; Giacinta, A.; Gerussi, V.; Visentini, D.; De Stefanis, P.; Merelli, M.; Saeed, K.; Curcio, F. MR-proADM as prognostic factor of outcome in COVID-19 patients. Sci. Rep., 2021, 11(1), 5121.
[http://dx.doi.org/10.1038/s41598-021-84478-1] [PMID: 33664308]
[16]
Gregoriano, C.; Koch, D.; Kutz, A.; Haubitz, S.; Conen, A.; Bernasconi, L.; Hammerer-Lercher, A.; Saeed, K.; Mueller, B.; Schuetz, P. The vasoactive peptide MR-pro-adrenomedullin in COVID-19 patients: An observational study. Clin. Chem. Lab. Med., 2021, 59(5), 995-1004.
[http://dx.doi.org/10.1515/cclm-2020-1295] [PMID: 33554516]
[17]
Pine, A.B.; Meizlish, M.L.; Goshua, G.; Chang, C-H.; Zhang, H.; Bishai, J.; Bahel, P.; Patel, A.; Gbyli, R.; Kwan, J.M.; Won, C.H.; Price, C.; Dela Cruz, C.S.; Halene, S.; van Dijk, D.; Hwa, J.; Lee, A.I.; Chun, H.J. Circulating markers of angiogenesis and endotheliopathy in COVID-19. Pulm. Circ., 2020, 10(4), 2045894020966547.
[http://dx.doi.org/10.1177/2045894020966547] [PMID: 33282193]
[18]
Vassiliou, A.G.; Keskinidou, C.; Jahaj, E.; Gallos, P.; Dimopoulou, I.; Kotanidou, A.; Orfanos, S.E. ICU admission levels of endothelial biomarkers as predictors of mortality in critically ill COVID-19 patients. Cells, 2021, 10(1), 186.
[http://dx.doi.org/10.3390/cells10010186] [PMID: 33477776]
[19]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med., 2009, 6(7), e1000097.
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[20]
Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses; Oxford, 2000.
[21]
Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol., 2014, 14, 135.
[http://dx.doi.org/10.1186/1471-2288-14-135] [PMID: 25524443]
[22]
Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med., 2002, 21(11), 1539-1558.
[http://dx.doi.org/10.1002/sim.1186] [PMID: 12111919]
[23]
Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ, 1997, 315(7109), 629-634.
[http://dx.doi.org/10.1136/bmj.315.7109.629] [PMID: 9310563]
[24]
Abers, M.S.; Delmonte, O.M.; Ricotta, E.E.; Fintzi, J.; Fink, D.L.; de Jesus, A.A.A.; Zarember, K.A.; Alehashemi, S.; Oikonomou, V.; Desai, J.V.; Canna, S.W.; Shakoory, B.; Dobbs, K.; Imberti, L.; Sottini, A.; Quiros-Roldan, E.; Castelli, F.; Rossi, C.; Brugnoni, D.; Biondi, A.; Bettini, L.R.; D’Angio’, M.; Bonfanti, P.; Castagnoli, R.; Montagna, D.; Licari, A.; Marseglia, G.L.; Gliniewicz, E.F.; Shaw, E.; Kahle, D.E.; Rastegar, A.T.; Stack, M.; Myint-Hpu, K.; Levinson, S.L.; DiNubile, M.J.; Chertow, D.W.; Burbelo, P.D.; Cohen, J.I.; Calvo, K.R.; Tsang, J.S.; Su, H.C.; Gallin, J.I.; Kuhns, D.B.; Goldbach-Mansky, R.; Lionakis, M.S.; Notarangelo, L.D. An immune-based biomarker signature is associated with mortality in COVID-19 patients. JCI Insight, 2021, 6(1), 144455.
[http://dx.doi.org/10.1172/jci.insight.144455] [PMID: 33232303]
[25]
Bauer, W.; Ulke, J.; Galtung, N.; Strasser-Marsik, L.C.; Neuwinger, N.; Tauber, R.; Somasundaram, R.; Kappert, K. Role of cell adhesion molecules for prognosis of disease development of patients with and without COVID-19 in the emergency department. J. Infect. Dis., 2021, 223(8), 1497-1499.
[http://dx.doi.org/10.1093/infdis/jiab042] [PMID: 33502532]
[26]
Bazzan, M.; Montaruli, B.; Sciascia, S.; Cosseddu, D.; Norbiato, C.; Roccatello, D. Low ADAMTS 13 plasma levels are predictors of mortality in COVID-19 patients. Intern. Emerg. Med., 2020, 15(5), 861-863.
[http://dx.doi.org/10.1007/s11739-020-02394-0] [PMID: 32557383]
[27]
Bermejo-Martin, J.F.; González-Rivera, M.; Almansa, R.; Micheloud, D.; Tedim, A.P.; Domínguez-Gil, M.; Resino, S.; Martín-Fernández, M.; Ryan Murua, P.; Pérez-García, F.; Tamayo, L.; Lopez-Izquierdo, R.; Bustamante, E.; Aldecoa, C.; Gómez, J.M.; Rico-Feijoo, J.; Orduña, A.; Méndez, R.; Fernández Natal, I.; Megías, G.; González-Estecha, M.; Carriedo, D.; Doncel, C.; Jorge, N.; Ortega, A.; de la Fuente, A.; Del Campo, F.; Fernández-Ratero, J.A.; Trapiello, W.; González-Jiménez, P.; Ruiz, G.; Kelvin, A.A.; Ostadgavahi, A.T.; Oneizat, R.; Ruiz, L.M.; Miguéns, I.; Gargallo, E.; Muñoz, I.; Pelegrin, S.; Martín, S.; García Olivares, P.; Cedeño, J.A.; Ruiz Albi, T.; Puertas, C.; Berezo, J.Á.; Renedo, G.; Herrán, R.; Bustamante-Munguira, J.; Enríquez, P.; Cicuendez, R.; Blanco, J.; Abadia, J.; Gómez Barquero, J.; Mamolar, N.; Blanca-López, N.; Valdivia, L.J.; Fernández Caso, B.; Mantecón, M.Á.; Motos, A.; Fernandez-Barat, L.; Ferrer, R.; Barbé, F.; Torres, A.; Menéndez, R.; Eiros, J.M.; Kelvin, D.J. Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID-19. Crit. Care, 2020, 24(1), 691.
[http://dx.doi.org/10.1186/s13054-020-03398-0] [PMID: 33317616]
[28]
Campo, G.; Contoli, M.; Fogagnolo, A.; Vieceli Dalla Sega, F.; Zucchetti, O.; Ronzoni, L.; Verri, M.; Fortini, F.; Pavasini, R.; Morandi, L. Over time relationship between platelet reactivity, myocardial injury and mortality in patients with SARS-CoV-2-associated respiratory failure. Platelets, 2020, 32(4), 1-8.
[http://dx.doi.org/10.1080/09537104.2020.1852543] [PMID: 33270471]
[29]
De Jongh, R.; Ninivaggi, M.; Mesotten, D.; Bai, C.; Marcus, B.; Huskens, D.; Stragier, H.; Miszta, A.; Verbruggen, J.; de Laat-Kremers, R.M.W. Vascular activation is a strong predictor of mortality in coronavirus disease 2019 patients on the ICU. Blood Coagul. Fibrinolysis, 2021, 32(4), 290-293.
[http://dx.doi.org/10.1097/MBC.0000000000001007]
[30]
Dupont, A.; Rauch, A.; Staessens, S.; Moussa, M.; Rosa, M.; Corseaux, D.; Jeanpierre, E.; Goutay, J.; Caplan, M.; Varlet, P.; Lefevre, G.; Lassalle, F.; Bauters, A.; Faure, K.; Lambert, M.; Duhamel, A.; Labreuche, J.; Garrigue, D.; De Meyer, S.F.; Staels, B.; Vincent, F.; Rousse, N.; Kipnis, E.; Lenting, P.; Poissy, J.; Susen, S. Vascular endothelial damage in the pathogenesis of organ injury in severe COVID-19. Arterioscler. Thromb. Vasc. Biol., 2021, 41(5), 1760-1773.
[http://dx.doi.org/10.1161/ATVBAHA.120.315595] [PMID: 33626910]
[31]
Guervilly, C.; Burtey, S.; Sabatier, F.; Cauchois, R.; Lano, G.; Abdili, E.; Daviet, F.; Arnaud, L.; Brunet, P.; Hraiech, S.; Jourde-Chiche, N.; Koubi, M.; Lacroix, R.; Pietri, L.; Berda, Y.; Robert, T.; Degioanni, C.; Velier, M.; Papazian, L.; Kaplanski, G.; Dignat-George, F. Circulating endothelial cells as a marker of endothelial injury in severe COVID -19. J. Infect. Dis., 2020, 222(11), 1789-1793.
[http://dx.doi.org/10.1093/infdis/jiaa528] [PMID: 32812049]
[32]
Henry, B.M.; Vikse, J.; Benoit, S.; Favaloro, E.J.; Lippi, G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin. Chim. Acta, 2020, 507, 167-173.
[http://dx.doi.org/10.1016/j.cca.2020.04.027] [PMID: 32348783]
[33]
Ladikou, E.E.; Sivaloganathan, H.; Milne, K.M.; Arter, W.E.; Ramasamy, R.; Saad, R.; Stoneham, S.M.; Philips, B.; Eziefula, A.C.; Chevassut, T. Von Willebrand Factor (vWF): marker of endothelial damage and thrombotic risk in COVID-19? Clin. Med. (Lond.), 2020, 20(5), e178-e182.
[http://dx.doi.org/10.7861/clinmed.2020-0346] [PMID: 32694169]
[34]
Mancini, I.; Baronciani, L.; Artoni, A.; Colpani, P.; Biganzoli, M.; Cozzi, G.; Novembrino, C.; Boscolo Anzoletti, M.; De Zan, V.; Pagliari, M.T.; Gualtierotti, R.; Aliberti, S.; Panigada, M.; Grasselli, G.; Blasi, F.; Peyvandi, F. The ADAMTS13-von Willebrand factor axis in COVID-19 patients. J. Thromb. Haemost., 2021, 19(2), 513-521.
[http://dx.doi.org/10.1111/jth.15191] [PMID: 33230904]
[35]
Montrucchio, G.; Sales, G.; Rumbolo, F.; Palmesino, F.; Fanelli, V.; Urbino, R.; Filippini, C.; Mengozzi, G.; Brazzi, L. Effectiveness of mid-regional pro-adrenomedullin (MR-proADM) as prognostic marker in COVID-19 critically ill patients: an observational prospective study. PLoS One, 2021, 16(2), e0246771.
[http://dx.doi.org/10.1371/journal.pone.0246771] [PMID: 33556140]
[36]
Rauch, A.; Labreuche, J.; Lassalle, F.; Goutay, J.; Caplan, M.; Charbonnier, L.; Rohn, A.; Jeanpierre, E.; Dupont, A.; Duhamel, A.; Faure, K.; Lambert, M.; Kipnis, E.; Garrigue, D.; Lenting, P.J.; Poissy, J.; Susen, S. Coagulation biomarkers are independent predictors of increased oxygen requirements in COVID-19. J. Thromb. Haemost., 2020, 18(11), 2942-2953.
[http://dx.doi.org/10.1111/jth.15067] [PMID: 32881304]
[37]
Rodríguez Rodríguez, M.; Castro Quismondo, N.; Zafra Torres, D.; Gil Alos, D.; Ayala, R.; Martinez-Lopez, J. Increased von Willebrand factor antigen and low ADAMTS13 activity are related to poor prognosis in covid-19 patients. Int. J. Lab. Hematol., 2021, 43(4), O152-O155.
[http://dx.doi.org/10.1111/ijlh.13476] [PMID: 33502080]
[38]
Rovas, A.; Osiaevi, I.; Buscher, K.; Sackarnd, J.; Tepasse, P-R.; Fobker, M.; Kühn, J.; Braune, S.; Göbel, U.; Thölking, G.; Gröschel, A.; Pavenstädt, H.; Vink, H.; Kümpers, P. Microvascular dysfunction in COVID-19: The MYSTIC study. Angiogenesis, 2021, 24(1), 145-157.
[http://dx.doi.org/10.1007/s10456-020-09753-7] [PMID: 33058027]
[39]
Smadja, D.M.; Guerin, C.L.; Chocron, R.; Yatim, N.; Boussier, J.; Gendron, N.; Khider, L.; Hadjadj, J.; Goudot, G.; Debuc, B.; Juvin, P.; Hauw-Berlemont, C.; Augy, J.L.; Peron, N.; Messas, E.; Planquette, B.; Sanchez, O.; Charbit, B.; Gaussem, P.; Duffy, D.; Terrier, B.; Mirault, T.; Diehl, J.L. Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis, 2020, 23(4), 611-620.
[http://dx.doi.org/10.1007/s10456-020-09730-0] [PMID: 32458111]
[40]
Spadaro, S.; Fogagnolo, A.; Campo, G.; Zucchetti, O.; Verri, M.; Ottaviani, I.; Tunstall, T.; Grasso, S.; Scaramuzzo, V.; Murgolo, F.; Marangoni, E.; Vieceli Dalla Sega, F.; Fortini, F.; Pavasini, R.; Rizzo, P.; Ferrari, R.; Papi, A.; Volta, C.A.; Contoli, M. Markers of endothelial and epithelial pulmonary injury in mechanically ventilated COVID-19 ICU patients. Crit. Care, 2021, 25(1), 74.
[http://dx.doi.org/10.1186/s13054-021-03499-4] [PMID: 33608030]
[41]
Villa, E.; Critelli, R.; Lasagni, S.; Melegari, A.; Curatolo, A.; Celsa, C.; Romagnoli, D.; Melegari, G.; Pivetti, A.; Di Marco, L.; Casari, F.; Arioli, D.; Turrini, F.; Zuccaro, V.; Cassaniti, I.; Riefolo, M.; de Santis, E.; Bernabucci, V.; Bianchini, M.; Lei, B.; De Maria, N.; Carulli, L.; Schepis, F.; Gozzi, C.; Malaguti, S.; Del Buono, M.; Brugioni, L.; Torricelli, P.; Trenti, T.; Pinelli, G.; Bertellini, E.; Bruno, R.; Cammà, C.; d’Errico, A. Dynamic angiopoietin-2 assessment predicts survival and chronic course in hospitalized patients with COVID-19. Blood Adv., 2021, 5(3), 662-673.
[http://dx.doi.org/10.1182/bloodadvances.2020003736] [PMID: 33560382]
[42]
Sandoo, A.; van Zanten, J.J.C.S.V.; Metsios, G.S.; Carroll, D.; Kitas, G.D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J., 2010, 4, 302-312.
[http://dx.doi.org/10.2174/1874192401004010302] [PMID: 21339899]
[43]
Vischer, U.M. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J. Thromb. Haemost., 2006, 4(6), 1186-1193.
[http://dx.doi.org/10.1111/j.1538-7836.2006.01949.x] [PMID: 16706957]
[44]
Albini, A.; Di Guardo, G.; Noonan, D.M.; Lombardo, M. The SARS-CoV-2 receptor, ACE-2, is expressed on many different cell types: implications for ACE-inhibitor- and angiotensin II receptor blocker-based cardiovascular therapies. Intern. Emerg. Med., 2020, 15(5), 759-766.
[http://dx.doi.org/10.1007/s11739-020-02364-6] [PMID: 32430651]
[45]
Galley, H.F.; Webster, N.R. Physiology of the endothelium. Br. J. Anaesth., 2004, 93(1), 105-113.
[http://dx.doi.org/10.1093/bja/aeh163] [PMID: 15121728]
[46]
Lip, G.Y.H.; Blann, A. von Willebrand factor: A marker of endothelial dysfunction in vascular disorders? Cardiovasc. Res., 1997, 34(2), 255-265.
[http://dx.doi.org/10.1016/S0008-6363(97)00039-4] [PMID: 9205537]
[47]
Dhanesha, N.; Prakash, P.; Doddapattar, P.; Khanna, I.; Pollpeter, M.J.; Nayak, M.K.; Staber, J.M.; Chauhan, A.K. Endothelial cell-derived von Willebrand factor is the major determinant that mediates von Willebrand factor-dependent acute ischemic stroke by promoting postischemic thrombo-inflammation. Arterioscler. Thromb. Vasc. Biol., 2016, 36(9), 1829-1837.
[http://dx.doi.org/10.1161/ATVBAHA.116.307660] [PMID: 27444201]
[48]
Panigada, M.; Bottino, N.; Tagliabue, P.; Grasselli, G.; Novembrino, C.; Chantarangkul, V.; Pesenti, A.; Peyvandi, F.; Tripodi, A. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemost., 2020, 18(7), 1738-1742.
[http://dx.doi.org/10.1111/jth.14850] [PMID: 32302438]
[49]
Taus, F.; Salvagno, G.; Canè, S.; Fava, C.; Mazzaferri, F.; Carrara, E.; Petrova, V.; Barouni, R.M.; Dima, F.; Dalbeni, A.; Romano, S.; Poli, G.; Benati, M.; De Nitto, S.; Mansueto, G.; Iezzi, M.; Tacconelli, E.; Lippi, G.; Bronte, V.; Minuz, P. Platelets promote thromboinflammation in SARS-CoV-2 pneumonia. Arterioscler. Thromb. Vasc. Biol., 2020, 40(12), 2975-2989.
[http://dx.doi.org/10.1161/ATVBAHA.120.315175] [PMID: 33052054]
[50]
Manne, B.K.; Denorme, F.; Middleton, E.A.; Portier, I.; Rowley, J.W.; Stubben, C.; Petrey, A.C.; Tolley, N.D.; Guo, L.; Cody, M.; Weyrich, A.S.; Yost, C.C.; Rondina, M.T.; Campbell, R.A. Platelet gene expression and function in patients with COVID-19. Blood, 2020, 136(11), 1317-1329.
[http://dx.doi.org/10.1182/blood.2020007214] [PMID: 32573711]
[51]
Hottz, E.D.; Azevedo-Quintanilha, I.G.; Palhinha, L.; Teixeira, L.; Barreto, E.A.; Pão, C.R.R.; Righy, C.; Franco, S.; Souza, T.M.L.; Kurtz, P.; Bozza, F.A.; Bozza, P.T. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood, 2020, 136(11), 1330-1341.
[http://dx.doi.org/10.1182/blood.2020007252] [PMID: 32678428]
[52]
Zaid, Y.; Puhm, F.; Allaeys, I.; Naya, A.; Oudghiri, M.; Khalki, L.; Limami, Y.; Zaid, N.; Sadki, K.; Ben El Haj, R.; Mahir, W.; Belayachi, L.; Belefquih, B.; Benouda, A.; Cheikh, A.; Langlois, M.A.; Cherrah, Y.; Flamand, L.; Guessous, F.; Boilard, E. Platelets can associate with SARS-Cov-2 RNA and are hyperactivated in COVID-19. Circ. Res., 2020, 127(11), 1404-1418.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317703] [PMID: 32938299]
[53]
Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Fagot Gandet, F.; Fafi-Kremer, S.; Castelain, V.; Schneider, F.; Grunebaum, L.; Anglés-Cano, E.; Sattler, L.; Mertes, P.M.; Meziani, F. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med., 2020, 46(6), 1089-1098.
[http://dx.doi.org/10.1007/s00134-020-06062-x] [PMID: 32367170]
[54]
Boffa, M.C.; Karmochkine, M. Thrombomodulin: an overview and potential implications in vascular disorders. Lupus, 1998, 7(Suppl. 2), S120-S125.
[http://dx.doi.org/10.1177/096120339800700227] [PMID: 9814688]
[55]
Martin, F.A.; Murphy, R.P.; Cummins, P.M. Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. Am. J. Physiol. Heart Circ. Physiol., 2013, 304(12), H1585-H1597.
[http://dx.doi.org/10.1152/ajpheart.00096.2013] [PMID: 23604713]
[56]
Miwa, K.; Igawa, A.; Inoue, H. Soluble E-selectin, ICAM-1 and VCAM-1 levels in systemic and coronary circulation in patients with variant angina. Cardiovasc. Res., 1997, 36(1), 37-44.
[http://dx.doi.org/10.1016/S0008-6363(97)00143-0] [PMID: 9415270]
[57]
Muller, W.A. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol., 2003, 24(6), 327-334.
[http://dx.doi.org/10.1016/S1471-4906(03)00117-0] [PMID: 12810109]
[58]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[59]
Carsana, L.; Sonzogni, A.; Nasr, A.; Rossi, R.S.; Pellegrinelli, A.; Zerbi, P.; Rech, R.; Colombo, R.; Antinori, S.; Corbellino, M.; Galli, M.; Catena, E.; Tosoni, A.; Gianatti, A.; Nebuloni, M. Pulmonary post-mortem findings in a series of COVID-19 cases from Northern Italy: A two-centre descriptive study. Lancet Infect. Dis., 2020, 20(10), 1135-1140.
[http://dx.doi.org/10.1016/S1473-3099(20)30434-5] [PMID: 32526193]
[60]
Davì, G.; Romano, M.; Mezzetti, A.; Procopio, A.; Iacobelli, S.; Antidormi, T.; Bucciarelli, T.; Alessandrini, P.; Cuccurullo, F.; Bittolo Bon, G. Increased levels of soluble P-selectin in hypercholesterolemic patients. Circulation, 1998, 97(10), 953-957.
[http://dx.doi.org/10.1161/01.CIR.97.10.953] [PMID: 9529262]
[61]
Raitakari, O.T.; Celermajer, D.S. Testing for endothelial dysfunction. Ann. Med., 2000, 32(5), 293-304.
[http://dx.doi.org/10.3109/07853890008995931] [PMID: 10949060]
[62]
McEver, R.P. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc. Res., 2015, 107(3), 331-339.
[http://dx.doi.org/10.1093/cvr/cvv154] [PMID: 25994174]
[63]
de la Sierra, A.; Larrousse, M. Endothelial dysfunction is associated with increased levels of biomarkers in essential hypertension. J. Hum. Hypertens., 2010, 24(6), 373-379.
[http://dx.doi.org/10.1038/jhh.2009.91] [PMID: 19960026]
[64]
Culmer, D.L.; Dunbar, M.L.; Hawley, A.E.; Sood, S.; Sigler, R.E.; Henke, P.K.; Wakefield, T.W.; Magnani, J.L.; Myers, Jr.D.D. E-selectin inhibition with GMI-1271 decreases venous thrombosis without profoundly affecting tail vein bleeding in a mouse model. Thromb. Haemost., 2017, 117(6), 1171-1181.
[http://dx.doi.org/10.1160/TH16-04-0323] [PMID: 28300869]
[65]
Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect., 2020, 80(6), 607-613.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[66]
Hu, W.; Zhou, P-H.; Zhang, X-B.; Xu, C-G.; Wang, W. Plasma concentrations of adrenomedullin and natriuretic peptides in patients with essential hypertension. Exp. Ther. Med., 2015, 9(5), 1901-1908.
[http://dx.doi.org/10.3892/etm.2015.2345] [PMID: 26136912]
[67]
Spoto, S.; Agrò, F.E.; Sambuco, F.; Travaglino, F.; Valeriani, E.; Fogolari, M.; Mangiacapra, F.; Costantino, S.; Ciccozzi, M.; Angeletti, S. High value of mid-regional proadrenomedullin in COVID-19: a marker of widespread endothelial damage, disease severity, and mortality. J. Med. Virol., 2021, 93(5), 2820-2827.
[http://dx.doi.org/10.1002/jmv.26676] [PMID: 33200824]
[68]
Pourafkari, L.; Tajlil, A.; Nader, N.D. Biomarkers in diagnosing and treatment of acute heart failure. Biomarkers Med., 2019, 13(14), 1235-1249.
[http://dx.doi.org/10.2217/bmm-2019-0134] [PMID: 31580155]
[69]
Akwii, R.G.; Sajib, M.S.; Zahra, F.T.; Mikelis, C.M. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells, 2019, 8(5), E471.
[http://dx.doi.org/10.3390/cells8050471] [PMID: 31108880]
[70]
El-Banawy, H.S.; Gaber, E.W.; Maharem, D.A.; Matrawy, K.A. Angiopoietin-2, endothelial dysfunction and renal involvement in patients with systemic lupus erythematosus. J. Nephrol., 2012, 25(4), 541-550.
[http://dx.doi.org/10.5301/jn.5000030] [PMID: 21956768]
[71]
Chang, F-C.; Chiang, W-C.; Tsai, M-H.; Chou, Y-H.; Pan, S-Y.; Chang, Y-T.; Yeh, P-Y.; Chen, Y-T.; Chiang, C-K.; Chen, Y-M.; Chu, T.S.; Wu, K.D.; Lin, S.L. Angiopoietin-2-induced arterial stiffness in CKD. J. Am. Soc. Nephrol., 2014, 25(6), 1198-1209.
[http://dx.doi.org/10.1681/ASN.2013050542] [PMID: 24511140]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy