Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design, Synthesis, and Apoptosis-Promoting Effect Evaluation of Chalcone Derivatives Containing Aminoguanidine Units

Author(s): Ying Wang, Longzhu Li , Tao Ma, Xiu Cheng and Dachuan Liu *

Volume 22, Issue 11, 2022

Published on: 10 January, 2022

Page: [2116 - 2124] Pages: 9

DOI: 10.2174/1871520621666211026091226

Price: $65

Abstract

Background: Chalcones are precursors of flavonoids or isoflavonoids, and they are abundant in edible plants. Chalcones constitute an important group of natural and synthetic products with a wide range of pharmacological activities.

Objective: To determine the seeds of the anti-tumor agents, we focused on the potential bioactive materials obtained from chalcone derivatives.

Methods: Two series of chalcone derivatives containing aminoguanidine or bis-chalone were designed, synthesized, and screened for their cytotoxicity, proliferation inhibition, and apoptosis-promoting activity in vitro against a panel of human tumor cell lines.

Results: Among the various compounds studied in this work, 2-((E)-4-((E)-3-oxo-3-(p-tolyl)prop-1-en-1- yl)benzylidene)hydrazine-1-carboximidamide (5f) was the most potent, with IC50 values of 7.17 μM and 3.05 μM antiproliferative activity in vitro against human hepatocarcinoma HepG2 cells and SMMC-7721 cells, respectively. This result showed that the compound possessed a certain degree of selectivity for human hepatocarcinoma cells, especially for SMMC-7721. Then, Annexin V/PI flow cytometry assay was used to investigate different concentrations of compound 5f to demonstrate the ability of compound 5f in inducing apoptosis of SMMC-7721 cells in a concentrationdependent manner. Finally, these results were further verified by Western blot analysis.

Conclusion: Based on the collective results, compound 5f may be a promising anti-cancer compound, and may play a significant role in subsequent research.

Keywords: Synthesis, chalcone, aminoguanidine, anticancer, apoptosis, derivatives.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Mattiuzzi, C.; Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health, 2019, 9(4), 217-222.
[http://dx.doi.org/10.2991/jegh.k.191008.001] [PMID: 31854162]
[3]
Dallavalle, S.; Dobričić, V.; Lazzarato, L.; Gazzano, E.; Machuqueiro, M.; Pajeva, I.; Tsakovska, I.; Zidar, N.; Fruttero, R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist. Updat., 2020, 50, 100682.
[http://dx.doi.org/10.1016/j.drup.2020.100682] [PMID: 32087558]
[4]
Hua, X.; Sun, Y.; Chen, J.; Wu, Y.; Sha, J.; Han, S.; Zhu, X. Circular RNAs in drug resistant tumors. Biomed. Pharmacother., 2019, 118, 109233.
[http://dx.doi.org/10.1016/j.biopha.2019.109233] [PMID: 31351436]
[5]
Perego, P. Editorial: Targeting drug-resistant and metastatic tumors by interference with tumor and microenvironment-related alterations. Curr. Med. Chem., 2017, 24(26), 2808.
[http://dx.doi.org/10.2174/092986732426170914124127] [PMID: 28911301]
[6]
Namee, N.M.; O’Driscoll, L. Extracellular vesicles and anti-cancer drug resistance. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(2), 123-136.
[http://dx.doi.org/10.1016/j.bbcan.2018.07.003] [PMID: 30003999]
[7]
Aleksakhina, S.N.; Kashyap, A.; Imyanitov, E.N. Mechanisms of acquired tumor drug resistance. Biochim. Biophys. Acta Rev. Cancer, 2019, 1872(2), 188310.
[http://dx.doi.org/10.1016/j.bbcan.2019.188310] [PMID: 31442474]
[8]
Dinić, J.; Efferth, T.; García-Sosa, A.T.; Grahovac, J.; Padrón, J.M.; Pajeva, I.; Rizzolio, F.; Saponara, S.; Spengler, G.; Tsakovska, I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist. Updat., 2020, 52, 100713.
[http://dx.doi.org/10.1016/j.drup.2020.100713] [PMID: 32615525]
[9]
Mali, A.V.; Padhye, S.B.; Anant, S.; Hegde, M.V.; Kadam, S.S. Anticancer and antimetastatic potential of enterolactone: Clinical, preclinical and mechanistic perspectives. Eur. J. Pharmacol., 2019, 852, 107-124.
[http://dx.doi.org/10.1016/j.ejphar.2019.02.022] [PMID: 30771348]
[10]
Frattaruolo, L.; Brindisi, M.; Curcio, R.; Marra, F.; Dolce, V.; Cappello, A.R. Targeting the mitochondrial metabolic network: A promising strategy in cancer treatment. Int. J. Mol. Sci., 2020, 21(17), 6014.
[http://dx.doi.org/10.3390/ijms21176014] [PMID: 32825551]
[11]
Ruiz-Torres, V.; Encinar, J.A.; Herranz-López, M.; Pérez-Sánchez, A.; Galiano, V.; Barrajón-Catalán, E.; Micol, V. An Updated Review on Marine Anticancer Compounds: The use of virtual screening for the discovery of small-molecule cancer drugs. Molecules, 2017, 22(7), 1037.
[http://dx.doi.org/10.3390/molecules22071037] [PMID: 28644406]
[12]
Utsugi, T. New challenges and inspired answers for anticancer drug discovery and development. Jpn. J. Clin. Oncol., 2013, 43(10), 945-953.
[http://dx.doi.org/10.1093/jjco/hyt131] [PMID: 24014883]
[13]
Hameed, R.; Khan, A.; Khan, S.; Perveen, S. Computational approaches towards kinases as attractive targets for anticancer drug discovery and development. Anticancer. Agents Med. Chem., 2019, 19(5), 592-598.
[http://dx.doi.org/10.2174/1871520618666181009163014] [PMID: 30306880]
[14]
Domańska, I.M.; Oledzka, E.; Sobczak, M. Sterilization process of polyester based anticancer-drug delivery systems. Int. J. Pharm., 2020, 587, 119663.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119663] [PMID: 32702451]
[15]
Zhang, C.; Zhang, X.; Zhao, W.; Zeng, C.; Li, W.; Li, B.; Luo, X.; Li, J.; Jiang, J.; Deng, B.; McComb, D.W.; Dong, Y. Chemotherapy drugs derived nanoparticles encapsulating mRNA encoding tumor suppressor proteins to treat triple-negative breast cancer. Nano Res., 2019, 12(4), 855-861.
[http://dx.doi.org/10.1007/s12274-019-2308-9] [PMID: 31737223]
[16]
Tao, L.; Chen, X.; Zheng, Y.; Wu, Y.; Jiang, X.; You, M.; Li, S.; Hu, F. Chinese propolis suppressed pancreatic cancer Panc-1 cells proliferation and migration via hippo-YAP pathway. Molecules, 2021, 26(9), 2803.
[http://dx.doi.org/10.3390/molecules26092803] [PMID: 34068565]
[17]
Yuan, R.; Hou, Y.; Sun, W.; Yu, J.; Liu, X.; Niu, Y.; Lu, J.J.; Chen, X. Natural products to prevent drug resistance in cancer chemotherapy: A review. Ann. N. Y. Acad. Sci., 2017, 1401(1), 19-27.
[http://dx.doi.org/10.1111/nyas.13387] [PMID: 28891091]
[18]
Seca, A.M.L.; Pinto, D.C.G.A. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263.
[http://dx.doi.org/10.3390/ijms19010263] [PMID: 29337925]
[19]
Cherigo, L.; Lopez, D.; Martinez-Luis, S. Marine natural products as breast cancer resistance protein inhibitors. Mar. Drugs, 2015, 13(4), 2010-2029.
[http://dx.doi.org/10.3390/md13042010] [PMID: 25854646]
[20]
Guo, J.; Lin, H.; Wang, J.; Lin, Y.; Zhang, T.; Jiang, Z. Recent advances in bio-affinity chromatography for screening bioactive compounds from natural products. J. Pharm. Biomed. Anal., 2019, 165, 182-197.
[http://dx.doi.org/10.1016/j.jpba.2018.12.009] [PMID: 30553109]
[21]
Boniface, P.K.; Elizabeth, F.I. Flavones as a privileged scaffold in drug discovery: Current developments. Curr. Org. Synth., 2019, 16(7), 968-1001.
[http://dx.doi.org/10.2174/1570179416666190719125730] [PMID: 31984880]
[22]
Wang, D.; Liang, J.; Zhang, J.; Wang, Y.; Chai, X. Natural chalcones in Chinese materia medica. Licorice. Evid. Based Complement. Alternat. Med., 2020, 2020, 3821248.
[http://dx.doi.org/10.1155/2020/3821248] [PMID: 32256642]
[23]
Mathew, B.; Parambi, D.G.T.; Sivasankarapillai, V.S.; Uddin, M.S.; Suresh, J.; Mathew, G.E.; Joy, M.; Marathakam, A.; Gupta, S.V. Perspective design of chalcones for the management of CNS disorders: A mini-review. CNS Neurol. Disord. Drug Targets, 2019, 18(6), 432-445.
[http://dx.doi.org/10.2174/1871527318666190610111246] [PMID: 31187716]
[24]
Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem., 2012, 19(2), 209-225.
[http://dx.doi.org/10.2174/092986712803414132] [PMID: 22320299]
[25]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[26]
Batovska, D.I.; Todorova, I.T. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol., 2010, 5(1), 1-29.
[http://dx.doi.org/10.2174/157488410790410579] [PMID: 19891604]
[27]
de Mello, M.V.P.; Abrahim-Vieira, B.A.; Domingos, T.F.S.; de Jesus, J.B.; de Sousa, A.C.C.; Rodrigues, C.R.; Souza, A.M.T. A comprehensive review of chalcone derivatives as antileishmanial agents. Eur. J. Med. Chem., 2018, 150, 920-929.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.047] [PMID: 29602038]
[28]
Dimmock, J.R.; Elias, D.W.; Beazely, M.A.; Kandepu, N.M. Bioactivities of chalcones. Curr. Med. Chem., 1999, 6(12), 1125-1149.
[PMID: 10519918]
[29]
Benso, B.; Bustos, D.; Zarraga, M.O.; Gonzalez, W.; Caballero, J.; Brauchi, S. Chalcone derivatives as non-canonical ligands of TRPV1. Int. J. Biochem. Cell Biol., 2019, 112, 18-23.
[http://dx.doi.org/10.1016/j.biocel.2019.04.010] [PMID: 31026506]
[30]
Vazquez-Rodriguez, S.; Vilar, S.; Kachler, S.; Klotz, K.N.; Uriarte, E.; Borges, F.; Matos, M.J. Adenosine receptor ligands: Coumarin-chalcone hybrids as modulating agents on the activity of hARs. Molecules, 2020, 25(18), 4306.
[http://dx.doi.org/10.3390/molecules25184306] [PMID: 32961824]
[31]
Lu, C.F.; Wang, S.H.; Pang, X.J.; Zhu, T.; Li, H.L.; Li, Q.R.; Li, Q.Y.; Gu, Y.F.; Mu, Z.Y.; Jin, M.J.; Li, Y.R.; Hu, Y.Y.; Zhang, Y.B.; Song, J.; Zhang, S.Y. Synthesis and biological evaluation of amino chalcone derivatives as antiproliferative agents. Molecules, 2020, 25(23), 5530.
[http://dx.doi.org/10.3390/molecules25235530] [PMID: 33255804]
[32]
Gomes, M.N.; Muratov, E.N.; Pereira, M.; Peixoto, J.C.; Rosseto, L.P.; Cravo, P.V.L.; Andrade, C.H.; Neves, B.J. Chalcone derivatives: Promising starting points for drug design. Molecules, 2017, 22(8), 1210.
[http://dx.doi.org/10.3390/molecules22081210] [PMID: 28757583]
[33]
Ducki, S. Antimitotic chalcones and related compounds as inhibitors of tubulin assembly. Anticancer. Agents Med. Chem., 2009, 9(3), 336-347.
[http://dx.doi.org/10.2174/1871520610909030336] [PMID: 19275525]
[34]
Chouiter, M.I.; Boulebd, H.; Pereira, D.M.; Valentão, P.; Andrade, P.B.; Belfaitah, A.; Silva, A.M. New chalcone-type compounds and 2-pyrazoline derivatives: synthesis and caspase-dependent anticancer activity. Future Med. Chem., 2020, 12(6), 493-509.
[http://dx.doi.org/10.4155/fmc-2019-0342] [PMID: 32100558]
[35]
Zhang, J.; Yang, F.; Qiao, Z.; Zhu, M.; Zhou, H. Chalcone-benzoxaborole hybrids as novel anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26(23), 5797-5801.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.024] [PMID: 28327308]
[36]
Kamal, A.; Kashi Reddy, M.; Viswanath, A. The design and development of imidazothiazole-chalcone derivatives as potential anticancer drugs. Expert Opin. Drug Discov., 2013, 8(3), 289-304.
[http://dx.doi.org/10.1517/17460441.2013.758630] [PMID: 23317445]
[37]
Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem., 2014, 85, 65-76.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.087] [PMID: 25078311]
[38]
Hsieh, H.K.; Lee, T.H.; Wang, J.P.; Wang, J.J.; Lin, C.N. Synthesis and anti-inflammatory effect of chalcones and related compounds. Pharm. Res., 1998, 15(1), 39-46.
[http://dx.doi.org/10.1023/A:1011940401754] [PMID: 9487544]
[39]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem., 2017, 17(28), 3146-3169.
[http://dx.doi.org/10.2174/1568026617666170914160446] [PMID: 28914193]
[40]
Tang, Y.L.; Zheng, X.; Qi, Y.; Pu, X.J.; Liu, B.; Zhang, X.; Li, X.S.; Xiao, W.L.; Wan, C.P.; Mao, Z.W. Synthesis and anti-inflammatory evaluation of new chalcone derivatives bearing bispiperazine linker as IL-1β inhibitors. Bioorg. Chem., 2020, 98, 103748.
[http://dx.doi.org/10.1016/j.bioorg.2020.103748] [PMID: 32179281]
[41]
Murakami, S.; Muramatsu, M.; Aihara, H.; Otomo, S. Inhibition of gastric H+, K(+)-ATPase by the anti-ulcer agent, sofalcone. Biochem. Pharmacol., 1991, 42(7), 1447-1451.
[http://dx.doi.org/10.1016/0006-2952(91)90458-H] [PMID: 1656986]
[42]
Tanaka, H.; Nakamura, S.; Onda, K.; Tazaki, T.; Hirano, T. Sofalcone, an anti-ulcer chalcone derivative, suppresses inflammatory crosstalk between macrophages and adipocytes and adipocyte differentiation: Implication of heme-oxygenase-1 induction. Biochem. Biophys. Res. Commun., 2009, 381(4), 566-571.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.086] [PMID: 19239904]
[43]
Higgs, J.; Wasowski, C.; Marcos, A.; Jukič, M.; Paván, C.H.; Gobec, S.; de Tezanos Pinto, F.; Colettis, N.; Marder, M. Chalcone derivatives: Synthesis, in vitro and in vivo evaluation of their anti-anxiety, anti-depression and analgesic effects. Heliyon, 2019, 5(3), e01376.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01376] [PMID: 30949609]
[44]
Viana, G.S.; Bandeira, M.A.; Matos, F.J. Analgesic and antiinflammatory effects of chalcones isolated from Myracrodruon urundeuva allemão. Phytomedicine, 2003, 10(2-3), 189-195.
[http://dx.doi.org/10.1078/094471103321659924] [PMID: 12725575]
[45]
Wu, J.H.; Wang, X.H.; Yi, Y.H.; Lee, K.H. Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorg. Med. Chem. Lett., 2003, 13(10), 1813-1815.
[http://dx.doi.org/10.1016/S0960-894X(03)00197-5] [PMID: 12729671]
[46]
Zhou, D.; Xie, D.; He, F.; Song, B.; Hu, D. Antiviral properties and interaction of novel chalcone derivatives containing a purine and benzenesulfonamide moiety. Bioorg. Med. Chem. Lett., 2018, 28(11), 2091-2097.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.042] [PMID: 29724588]
[47]
Lee, J.S.; Bukhari, S.N.; Fauzi, N.M. Effects of chalcone derivatives on players of the immune system. Drug Des. Devel. Ther., 2015, 9, 4761-4778.
[PMID: 26316713]
[48]
López, S.N.; Castelli, M.V.; Zacchino, S.A.; Domínguez, J.N.; Lobo, G.; Charris-Charris, J.; Cortés, J.C.; Ribas, J.C.; Devia, C.; Rodríguez, A.M.; Enriz, R.D. In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorg. Med. Chem., 2001, 9(8), 1999-2013.
[http://dx.doi.org/10.1016/S0968-0896(01)00116-X] [PMID: 11504637]
[49]
Gupta, D.; Jain, D.K. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity. J. Adv. Pharm. Technol. Res., 2015, 6(3), 114-117.
[http://dx.doi.org/10.4103/2231-4040.161507] [PMID: 26317075]
[50]
Qin, H.L.; Zhang, Z.W.; Lekkala, R.; Alsulami, H.; Rakesh, K.P. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur. J. Med. Chem., 2020, 193, 112215.
[http://dx.doi.org/10.1016/j.ejmech.2020.112215] [PMID: 32179331]
[51]
Cheng, P.; Yang, L.; Huang, X.; Wang, X.; Gong, M. Chalcone hybrids and their antimalarial activity. Arch. Pharm. (Weinheim), 2020, 353(4), e1900350.
[http://dx.doi.org/10.1002/ardp.201900350] [PMID: 32003489]
[52]
Liu, M.; Wilairat, P.; Go, M.L. Antimalarial alkoxylated and hydroxylated chalcones [corrected]: structure-activity relationship analysis. J. Med. Chem., 2001, 44(25), 4443-4452.
[http://dx.doi.org/10.1021/jm0101747] [PMID: 11728189]
[53]
Bekhit, A.A.; Habib, N.S.; el-Din, A.; Bekhit, A. Synthesis and antimicrobial evaluation of chalcone and syndrome derivatives of 4(3H)-quinazolinone. Boll. Chim. Farm., 2001, 140(5), 297-301.
[PMID: 11680081]
[54]
Ferraz, C.A.N.; Tintino, S.R.; Teixeira, A.M.R.; Bandeira, P.N.; Santos, H.S.; Cruz, B.G.; Nogueira, C.E.S.; Moura, T.F.; Pereira, R.L.S.; Sena, D.M., Jr; Freitas, T.S.; Rocha, J.E.; Coutinho, H.D.M. Potentiation of antibiotic activity by chalcone (E)-1-(4'-aminophenyl)-3-(furan-2-yl)-prop-2-en-1-one against gram-positive and gram-negative MDR strains. Microb. Pathog., 2020, 148, 104453.
[http://dx.doi.org/10.1016/j.micpath.2020.104453] [PMID: 32828903]
[55]
de Souza, A.C.A.; Mori, M.; Sens, L.; Rocha, R.F.; Tizziani, T.; de Souza, L.F.S.; Domeneghini Chiaradia-Delatorre, L.; Botta, M.; Nunes, R.J.; Terenzi, H.; Menegatti, A.C.O. A chalcone derivative binds a putative allosteric site of YopH: Inhibition of a virulence factor of Yersinia. Bioorg. Med. Chem. Lett., 2020, 30(16), 127350.
[http://dx.doi.org/10.1016/j.bmcl.2020.127350] [PMID: 32631548]
[56]
Gadad, A.K.; Mahajanshetti, C.S.; Nimbalkar, S.; Raichurkar, A. Synthesis and antibacterial activity of some 5-guanylhydrazone/thiocyanato-6-arylimidazo[2,1-b]-1,3, 4-thiadiazole-2-sulfonamide derivatives. Eur. J. Med. Chem., 2000, 35(9), 853-857.
[http://dx.doi.org/10.1016/S0223-5234(00)00166-5] [PMID: 11006486]
[57]
Pasero, C.; D’Agostino, I.; De Luca, F.; Zamperini, C.; Deodato, D.; Truglio, G.I.; Sannio, F.; Del Prete, R.; Ferraro, T.; Visaggio, D.; Mancini, A.; Guglielmi, M.B.; Visca, P.; Docquier, J.D.; Botta, M. Alkyl-guanidine compounds as potent broad-spectrum antibacterial agents: Chemical library extension and biological characterization. J. Med. Chem., 2018, 61(20), 9162-9176.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00619] [PMID: 30265809]
[58]
Garcia, I.M.; Rodrigues, S.B.; Leitune, V.C.B.; Collares, F.M. Antibacterial, chemical and physical properties of sealants with polyhexamethylene guanidine hydrochloride. Braz. Oral Res., 2019, 33, e019.
[http://dx.doi.org/10.1590/1807-3107bor-2019.vol33.0019] [PMID: 30892413]
[59]
Xu, H.; Wang, Y.Y. Antifungal agents. Part 5: synthesis and antifungal activities of aminoguanidine derivatives of N-arylsulfonyl-3-acylindoles. Bioorg. Med. Chem. Lett., 2010, 20(24), 7274-7277.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.084] [PMID: 21067926]
[60]
Choi, H.; Kim, K.J.; Lee, D.G. Antifungal activity of the cationic antimicrobial polymer-polyhexamethylene guanidine hydrochloride and its mode of action. Fungal Biol., 2017, 121(1), 53-60.
[http://dx.doi.org/10.1016/j.funbio.2016.09.001] [PMID: 28007216]
[61]
Li, Y.R.; Li, C.; Liu, J.C.; Guo, M.; Zhang, T.Y.; Sun, L.P.; Zheng, C.J.; Piao, H.R. Synthesis and biological evaluation of 1,3-diaryl pyrazole derivatives as potential antibacterial and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2015, 25(22), 5052-5057.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.028] [PMID: 26490095]
[62]
Cameron, A.R.; Morrison, V.L.; Levin, D.; Mohan, M.; Forteath, C.; Beall, C.; McNeilly, A.D.; Balfour, D.J.; Savinko, T.; Wong, A.K.; Viollet, B.; Sakamoto, K.; Fagerholm, S.C.; Foretz, M.; Lang, C.C.; Rena, G. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ. Res., 2016, 119(5), 652-665.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308445] [PMID: 27418629]
[63]
Das, A.; Trousdale, M.D.; Ren, S.; Lien, E.J. Inhibition of herpes simplex virus type 1 and adenovirus type 5 by heterocyclic Schiff bases of aminohydroxyguanidine tosylate. Antiviral Res., 1999, 44(3), 201-208.
[http://dx.doi.org/10.1016/S0166-3542(99)00070-4] [PMID: 10651071]
[64]
Wang, W.; Xu, C.; Zhang, J.; Wang, J.; Yu, R.; Wang, D.; Yin, R.; Li, W.; Jiang, T. Guanidine modifications enhance the anti-herpes simplex virus activity of (E,E)-4,6-bis(styryl)-pyrimidine derivatives in vitro and in vivo. Br. J. Pharmacol., 2020, 177(7), 1568-1588.
[http://dx.doi.org/10.1111/bph.14918] [PMID: 31709511]
[65]
Huang, Y.; Hu, H.; Yan, R.; Lin, L.; Song, M.; Yao, X. Synthesis and evaluation of antimicrobial and anticancer activities of 3-phenyl-1-phenylsulfonyl pyrazoles containing an aminoguanidine moiety. Arch. Pharm. (Weinheim), 2021, 354(2), e2000165.
[http://dx.doi.org/10.1002/ardp.202000165] [PMID: 33047391]
[66]
Ren, S.; Wang, R.; Komatsu, K.; Bonaz-Krause, P.; Zyrianov, Y.; McKenna, C.E.; Csipke, C.; Tokes, Z.A.; Lien, E.J. Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of new Schiff bases of hydroxysemicarbazide as potential antitumor agents. J. Med. Chem., 2002, 45(2), 410-419.
[http://dx.doi.org/10.1021/jm010252q] [PMID: 11784145]
[67]
Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Farruggia, G.; Stefanelli, C.; Masotti, L.; Kunkel, M.W. Synthesis and antitumor activity of guanylhydrazones from 6-(2,4-dichloro-5-nitrophenyl)imidazo[2,1-b]thiazoles and 6-pyridylimidazo[2,1-b]thiazoles(1). J. Med. Chem., 2006, 49(26), 7897-7901.
[http://dx.doi.org/10.1021/jm061077m] [PMID: 17181173]
[68]
Ben Sahra, I.; Laurent, K.; Loubat, A.; Giorgetti-Peraldi, S.; Colosetti, P.; Auberger, P.; Tanti, J.F.; Le Marchand-Brustel, Y.; Bost, F. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene, 2008, 27(25), 3576-3586.
[http://dx.doi.org/10.1038/sj.onc.1211024] [PMID: 18212742]
[69]
Zhang, H.Z.; Crogan-Grundy, C.; May, C.; Drewe, J.; Tseng, B.; Cai, S.X. Discovery and structure-activity relationships of (2-(arylthio)benzylideneamino)guanidines as a novel series of potent apoptosis inducers. Bioorg. Med. Chem., 2009, 17(7), 2852-2858.
[http://dx.doi.org/10.1016/j.bmc.2009.02.029] [PMID: 19282188]
[70]
Nagle, P.S.; Rodriguez, F.; Kahvedzić, A.; Quinn, S.J.; Rozas, I. Asymmetrical diaromatic guanidinium/2-aminoimidazolinium derivatives: Synthesis and DNA affinity. J. Med. Chem., 2009, 52(22), 7113-7121.
[http://dx.doi.org/10.1021/jm901017t] [PMID: 19873979]
[71]
Li, W.T.; Hwang, D.R.; Song, J.S.; Chen, C.P.; Chuu, J.J.; Hu, C.B.; Lin, H.L.; Huang, C.L.; Huang, C.Y.; Tseng, H.Y.; Lin, C.C.; Chen, T.W.; Lin, C.H.; Wang, H.S.; Shen, C.C.; Chang, C.M.; Chao, Y.S.; Chen, C.T. Synthesis and biological activities of 2-amino-1-arylidenamino imidazoles as orally active anticancer agents. J. Med. Chem., 2010, 53(6), 2409-2417.
[http://dx.doi.org/10.1021/jm901501s] [PMID: 20170097]
[72]
Ferreira, E.G.; Wilke, D.V.; Jimenez, P.C.; de Oliveira, J.R.; Pessoa, O.D.L.; Silveira, E.R.; Viana, F.A.; Pessoa, C.; de Moraes, M.O.; Hajdu, E.; Costa‐Lotufo, L.V. Guanidine alkaloids from Monanchora arbuscula: Chemistry and antitumor potential. Chem. Biodivers., 2011, 8, 1433-1445.
[http://dx.doi.org/10.1002/cbdv.201000161]
[73]
Silva, F.P.; Dantas, B.B.; Faheina Martins, G.V.; de Araújo, D.A.; Vasconcellos, M.L. Synthesis and anticancer activities of novel guanylhydrazone and aminoguanidine tetrahydropyran derivatives. Molecules, 2016, 21(6), 671.
[http://dx.doi.org/10.3390/molecules21060671] [PMID: 27338323]
[74]
Wu, J.; Zhang, Z.H.; Zhang, L.H.; Jin, X.J.; Ma, J.; Piao, H.R. Design, synthesis, and screening of novel ursolic acid derivatives as potential anti-cancer agents that target the HIF-1α pathway. Bioorg. Med. Chem. Lett., 2019, 29(6), 853-858.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.060] [PMID: 30728113]
[75]
Liu, D.C.; Gao, M.J.; Huo, Q.; Ma, T.; Wang, Y.; Wu, C.Z. Design, synthesis, and apoptosis-promoting effect evaluation of novel pyrazole with benzo[d]thiazole derivatives containing aminoguanidine units. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 829-837.
[http://dx.doi.org/10.1080/14756366.2019.1591391] [PMID: 30915869]
[76]
Deng, X.; Song, M. Synthesis, antibacterial and anticancer activity, and docking study of aminoguanidines containing an alkynyl moiety. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 354-364.
[http://dx.doi.org/10.1080/14756366.2019.1702654] [PMID: 31851531]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy