Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Perspective

Sustainable Catalyst-free N-formylation using CO2 as a Carbon Source

Author(s): Zhengyi Li, Song Yang* and Hu Li*

Volume 19, Issue 2, 2022

Published on: 02 December, 2021

Page: [187 - 196] Pages: 10

DOI: 10.2174/1570179418666211022160149

Abstract

The development of new sustainable catalytic conversion methods of carbon dioxide (CO2) is of great interest in the synthesis of valuable chemicals. N-formylation of CO2 with amine nucleophiles as substrates has been studied in depth. The key to benign formylation is to select a suitable reducing agent to activate CO2. This paper showcases the activation modes of CO2 and the construction strategies of sustainable and catalyst-free N-formylation systems. The research progress of catalyst-free N-formylation of amines and CO2 is reviewed. There are two broad prominent categories, namely reductive amidation of CO2 facilitated by organic solvents and ionic liquids in the presence of hydrosilane. Attention is also paid to discussing the involved reaction mechanism with practical applications and identifying the remaining challenges in this field.

Keywords: Carbon dioxide, sustainable chemistry, N-formylation, amines, catalyst-free reaction, reaction mechanism.

Next »
Graphical Abstract

[1]
Bryan, M.C.; Dunn, P.J.; Entwistle, D.; Gallou, F.; Koenig, S.G.; Hayler, J.D.; Hickey, M.R.; Hughes, S.; Kopach, M.E.; Moine, G.; Richardson, P.; Roschangar, F.; Steven, A.; Weiberth, F.J. Key green chemistry research areas from a pharmaceutical manufacturers’ perspective revisited. Green Chem., 2018, 20(22), 5082-5103.
[http://dx.doi.org/10.1039/C8GC01276H]
[2]
Qureshi, M.H.; Smith, D.T.; Delost, M.D.; Njardarson, J.T. Top 200 pharmaceutical products by prescriptions in 2016 2016.Available from:. https://njardarson.lab.arizona.edu/sites/njardarson.lab.arizona.edu/files/2016Top200PharmaceuticalPrescriptionSalesPosterLowResV2.pdf
[3]
Li, C.; Wang, M.; Lu, X.; Zhang, L.; Jiang, J.; Zhang, L. Reusable Brønsted Acidic ionic liquid efficiently catalyzed n-formylation and N-acylation of amines. ACS Sustain. Chem.& Eng., 2020, 8(11), 4353-4361.
[http://dx.doi.org/10.1021/acssuschemeng.9b06591]
[4]
Bao, K.; Zhang, W.; Bu, X.; Song, Z.; Zhang, L.; Cheng, M. A novel type of N-formylation and related reactions of amines via cyanides and esters as formylating agents. Chem. Commun. (Camb.), 2008, (42), 5429-5431.
[http://dx.doi.org/10.1039/b810086a] [PMID: 18985233]
[5]
Brahmachari, G.; Laskar, S. A very simple and highly efficient procedure for N-formylation of primary and secondary amines at room temperature under solvent-free conditions. Tetrahedron Lett., 2010, 51(17), 2319-2322.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.119]
[6]
Olah, G.; Kuhn, S. Formylation with formyl fluoride: A new aldehyde synthesis and formylation method1. J. Am. Chem. Soc., 1960, 82(9), 2380-2382.
[http://dx.doi.org/10.1021/ja01494a065]
[7]
Patre, R.E.; Mal, S.; Nilkanth, P.R.; Ghorai, S.K.; Deshpande, S.H.; El Qacemi, M.; Smejkal, T.; Pal, S.; Manjunath, B.N. First report on bio-catalytic N-formylation of amines using ethyl formate. Chem. Commun. (Camb.), 2017, 53(15), 2382-2385.
[http://dx.doi.org/10.1039/C6CC07679C] [PMID: 28174765]
[8]
Xu, B.; Zhou, L.; Madix, R.J.; Friend, C.M. Highly selective acylation of dimethylamine mediated by oxygen atoms on metallic gold surfaces. Angew. Chem. Int. Ed. Engl., 2010, 49(2), 394-398.
[http://dx.doi.org/10.1002/anie.200905642] [PMID: 19967697]
[9]
Sonawane, R.B.; Rasal, N.K.; Jagtap, S.V. Nickel-(II)-catalyzed n-formylation and N-acylation of amines. Org. Lett., 2017, 19(8), 2078-2081.
[http://dx.doi.org/10.1021/acs.orglett.7b00660] [PMID: 28375017]
[10]
Choi, G.; Hong, S.H. Selective N-formylation and N-methylation of amines using methanol as a sustainable C1 source. ACS Sustain. Chem.& Eng., 2018, 7(1), 716-723.
[http://dx.doi.org/10.1021/acssuschemeng.8b04286]
[11]
Choi, Y-S.; Shim, Y.N.; Lee, J.; Yoon, J.H.; Hong, C.S.; Cheong, M.; Kim, H.S.; Jang, H.G.; Lee, J.S. Ionic liquids as benign catalysts for the carbonylation of amines to formamides. Appl. Catal. A Gen., 2011, 404(1), 87-92.
[http://dx.doi.org/10.1016/j.apcata.2011.07.016]
[12]
Molla, R.A.; Bhanja, P.; Ghosh, K.; Islam, S.S.; Bhaumik, A.; Islam, S.M. Pd nanoparticles decorated on hypercrosslinked microporous polymer: A highly efficient catalyst for the formylation of amines through carbon dioxide fixation. ChemCatChem, 2017, 9(11), 1939-1946.
[http://dx.doi.org/10.1002/cctc.201700069]
[13]
Bhanja, P.; Modak, A.; Bhaumik, A. Supported porous nanomaterials as efficient heterogeneous catalysts for CO2 fixation reactions. Chemistry, 2018, 24(29), 7278-7297.
[http://dx.doi.org/10.1002/chem.201800075] [PMID: 29396871]
[14]
Bhanja, P.; Modak, A.; Bhaumik, A. Porous organic polymers for CO2 storage and conversion reactions. ChemCatChem, 2018, 11(1), 244-257.
[http://dx.doi.org/10.1002/cctc.201801046]
[15]
Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. Chem. Rev., 2014, 114(3), 1709-1742.
[http://dx.doi.org/10.1021/cr4002758] [PMID: 24313306]
[16]
Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun., 2015, 6(1), 5933.
[http://dx.doi.org/10.1038/ncomms6933] [PMID: 25600683]
[17]
Yu, D-G.; He, L-N. Introduction to CO2 utilisation. Green Chem., 2021, 23(10), 3499-3501.
[http://dx.doi.org/10.1039/D1GC90036F]
[18]
Saptal, V.B.; Juneja, G.; Bhanage, B.M.B. (C6F5)3: A robust catalyst for the activation of CO2 and dimethylamine borane for the N-formylation reactions. New J. Chem., 2018, 42(19), 15847-15851.
[http://dx.doi.org/10.1039/C8NJ02816H]
[19]
Shen, Y.; Zheng, Q.; Chen, Z-N.; Wen, D.; Clark, J.H.; Xu, X.; Tu, T. Highly efficient and selective N-formylation of amines with CO2 and H2 catalyzed by porous organometallic polymers. Angew. Chem. Int. Ed. Engl., 2021, 60(8), 4125-4132.
[http://dx.doi.org/10.1002/anie.202011260] [PMID: 33200851]
[20]
Li, H.; Zhao, W.; Saravanamurugan, S.; Dai, W.; He, J.; Meier, S.; Yang, S.; Riisager, A. Control of selectivity in hydrosilane-promoted heterogeneous palladium-catalysed reduction of furfural and aromatic carboxides. Commun. Chem., 2018, 1(1), 1-11.
[http://dx.doi.org/10.1038/s42004-018-0033-z]
[21]
Li, Z.; Yu, Z.; Luo, X.; Li, C.; Wu, H.; Zhao, W.; Li, H.; Yang, S. Recent advances in liquid hydrosilane-mediated catalytic N-formylation of amines with CO2. RSC Adv, 2020, 10(56), 33972-34005.
[http://dx.doi.org/10.1039/D0RA05858K]
[22]
Liu, X.F.; Li, X.Y.; Qiao, C.; Fu, H.C.; He, L.N. Betaine catalysis for hierarchical reduction of CO2 with amines and hydrosilane to form formamides, aminals, and methylamines. Angew. Chem. Int. Ed. Engl., 2017, 56(26), 7425-7429.
[http://dx.doi.org/10.1002/anie.201702734] [PMID: 28470931]
[23]
Li, X-D.; Xia, S-M.; Chen, K-H.; Liu, X-F.; Li, H-R.; He, L-N. Copper catalysis: Ligand-controlled selective N-methylation or N-formylation of amines with CO2 and phenylsilane. Green Chem., 2018, 20(21), 4853-4858.
[http://dx.doi.org/10.1039/C8GC02280A]
[24]
Wang, M-Y.; Wang, N.; Liu, X-F.; Qiao, C.; He, L-N. Tungstate catalysis: Pressure-switched 2- and 6-electron reductive functionalization of CO2 with amines and phenylsilane. Green Chem., 2018, 20(7), 1564-1570.
[http://dx.doi.org/10.1039/C7GC03416D]
[25]
Mömming, C.M.; Otten, E.; Kehr, G.; Fröhlich, R.; Grimme, S.; Stephan, D.W.; Erker, G. Reversible metal-free carbon dioxide binding by frustrated Lewis pairs. Angew. Chem. Int. Ed. Engl., 2009, 48(36), 6643-6646.
[http://dx.doi.org/10.1002/anie.200901636] [PMID: 19569151]
[26]
Stephan, D.W.; Erker, G. Frustrated Lewis pair chemistry: development and perspectives. Angew. Chem. Int. Ed. Engl., 2015, 54(22), 6400-6441.
[http://dx.doi.org/10.1002/anie.201409800] [PMID: 25974714]
[27]
Courtemanche, M-A.; Légaré, M-A.; Maron, L.; Fontaine, F-G. A highly active phosphine-borane organocatalyst for the reduction of CO2 to methanol using hydroboranes. J. Am. Chem. Soc., 2013, 135(25), 9326-9329.
[http://dx.doi.org/10.1021/ja404585p] [PMID: 23750670]
[28]
Courtemanche, M-A.; Pulis, A.P.; Rochette, É.; Légaré, M-A.; Stephan, D.W.; Fontaine, F-G. Intramolecular B/N frustrated Lewis pairs and the hydrogenation of carbon dioxide. Chem. Commun. (Camb.), 2015, 51(48), 9797-9800.
[http://dx.doi.org/10.1039/C5CC03072B] [PMID: 25994329]
[29]
Wang, T.; Stephan, D.W. Carbene-9-BBN ring expansions as a route to intramolecular frustrated Lewis pairs for CO2 reduction. Chemistry, 2014, 20(11), 3036-3039.
[http://dx.doi.org/10.1002/chem.201304870] [PMID: 24677611]
[30]
Wang, T.; Stephan, D.W. Phosphine catalyzed reduction of CO2 with boranes. Chem. Commun. (Camb.), 2014, 50(53), 7007-7010.
[http://dx.doi.org/10.1039/C4CC02103G] [PMID: 24844447]
[31]
Wang, Y-B.; Wang, Y-M.; Zhang, W-Z.; Lu, X-B. Fast CO2 sequestration, activation, and catalytic transformation using N-heterocyclic olefins. J. Am. Chem. Soc., 2013, 135(32), 11996-12003.
[http://dx.doi.org/10.1021/ja405114e] [PMID: 23865980]
[32]
Murphy, L.J.; Robertson, K.N.; Kemp, R.A.; Tuononen, H.M.; Clyburne, J.A.C. Structurally simple complexes of CO2. Chem. Commun. (Camb.), 2015, 51(19), 3942-3956.
[http://dx.doi.org/10.1039/C4CC08510H] [PMID: 25601453]
[33]
Purushothaman, I.; De, S.; Parameswaran, P. CO2 adducts of Lewis acid–base pairs (LBCO2LA; LB = PMe3, NHC and LA = AlH3, AlCl3, BH3)−analogous to carboxylic acids and their derivatives. RSC Adv, 2014, 4(104), 60421-60428.
[http://dx.doi.org/10.1039/C4RA10269J]
[34]
Li, Y.; Fang, X.; Junge, K.; Beller, M. A general catalytic methylation of amines using carbon dioxide. Angew. Chem. Int. Ed. Engl., 2013, 52(36), 9568-9571.
[http://dx.doi.org/10.1002/anie.201301349] [PMID: 23564695]
[35]
Wang, B.; Cao, Z. Sequential covalent bonding activation and general base catalysis: Insight into N-heterocyclic carbene catalyzed formylation of N–H bonds using carbon dioxide and silane. RSC Adv, 2013, 3(33), 14007-14015.
[http://dx.doi.org/10.1039/c3ra41464g]
[36]
The, K.I.; Vande Griend, L.; Whitla, W.A.; Cavell, R.G. Neutral six-coordinate carbamate and thiocarbamate complexes of phosphorus formed by “insertion” reactions of the phosphorus-nitrogen bond. J. Am. Chem. Soc., 1977, 99(22), 7379-7380.
[http://dx.doi.org/10.1021/ja00464a059]
[37]
Hounjet, L.J.; Caputo, C.B.; Stephan, D.W. Phosphorus as a Lewis acid: CO2 sequestration with amidophosphoranes. Angew. Chem. Int. Ed. Engl., 2012, 51(19), 4714-4717.
[http://dx.doi.org/10.1002/anie.201201422] [PMID: 22473879]
[38]
Chong, C.C.; Kinjo, R. Hydrophosphination of CO2 and subsequent formate transfer in the 1,3,2-diazaphospholene-catalyzed N-formylation of amines. Angew. Chem. Int. Ed. Engl., 2015, 54(41), 12116-12120.
[http://dx.doi.org/10.1002/anie.201505244] [PMID: 26276547]
[39]
Abdalla, J.A.B.; Riddlestone, I.M.; Tirfoin, R.; Aldridge, S. Cooperative bond activation and catalytic reduction of carbon dioxide at a group 13 metal center. Angew. Chem. Int. Ed. Engl., 2015, 54(17), 5098-5102.
[http://dx.doi.org/10.1002/anie.201500570] [PMID: 25727568]
[40]
Lu, Z.; Hausmann, H.; Becker, S.; Wegner, H.A. Aromaticity as stabilizing element in the bidentate activation for the catalytic reduction of carbon dioxide. J. Am. Chem. Soc., 2015, 137(16), 5332-5335.
[http://dx.doi.org/10.1021/jacs.5b02905] [PMID: 25871326]
[41]
Mehta, M.; Holthausen, M.H.; Mallov, I.; Pérez, M.; Qu, Z-W.; Grimme, S.; Stephan, D.W. Catalytic ketone hydrodeoxygenation mediated by highly electrophilic phosphonium cations. Angew. Chem. Int. Ed. Engl., 2015, 54(28), 8250-8254.
[http://dx.doi.org/10.1002/anie.201502579] [PMID: 26032844]
[42]
Ménard, G.; Stephan, D.W. CO2 reduction via aluminum complexes of ammonia boranes. Dalton Trans., 2013, 42(15), 5447-5453.
[http://dx.doi.org/10.1039/c3dt00098b] [PMID: 23423186]
[43]
Hulla, M.; Laurenczy, G.; Dyson, P.J. Mechanistic study of the N-formylation of amines with carbon dioxide and hydrosilanes. ACS Catal., 2018, 8(11), 10619-10630.
[http://dx.doi.org/10.1021/acscatal.8b03274]
[44]
Zhang, C.; Lu, Y.; Zhao, R.; Menberu, W.; Guo, J.; Wang, Z.X. A comparative DFT study of TBD-catalyzed reactions of amines with CO2 and hydrosilane: the effect of solvent polarity on the mechanistic preference and the origins of chemoselectivities. Chem. Commun. (Camb.), 2018, 54(77), 10870-10873.
[http://dx.doi.org/10.1039/C8CC05788E] [PMID: 30204174]
[45]
Zhou, Q.; Li, Y. The real role of N-heterocyclic carbene in reductive functionalization of CO2: An alternative understanding from density functional theory study. J. Am. Chem. Soc., 2015, 137(32), 10182-10189.
[http://dx.doi.org/10.1021/jacs.5b03651] [PMID: 26220202]
[46]
Yang, Z.; Yu, B.; Zhang, H.; Zhao, Y.; Ji, G.; Ma, Z.; Gao, X.; Liu, Z.B. (C6F5)3-catalyzed methylation of amines using CO2 as a C1 building block. Green Chem., 2015, 17(8), 4189-4193.
[http://dx.doi.org/10.1039/C5GC01386K]
[47]
Jiang, X.; Huang, Z.; Makha, M.; Du, C-X.; Zhao, D.; Wang, F.; Li, Y. Tetracoordinate borates as catalysts for reductive formylation of amines with carbon dioxide. Green Chem., 2020, 22(16), 5317-5324.
[http://dx.doi.org/10.1039/D0GC01741H]
[48]
Lv, H.; Xing, Q.; Yue, C.; Lei, Z.; Li, F. Solvent-promoted catalyst-free N-formylation of amines using carbon dioxide under ambient conditions. Chem. Commun. (Camb.), 2016, 52(39), 6545-6548.
[http://dx.doi.org/10.1039/C6CC01234E] [PMID: 27101227]
[49]
Song, J.; Zhou, B.; Liu, H.; Xie, C.; Meng, Q.; Zhang, Z.; Han, B. Biomass-derived γ-valerolactone as an efficient solvent and catalyst for the transformation of CO2 to formamides. Green Chem., 2016, 18(14), 3956-3961.
[http://dx.doi.org/10.1039/C6GC01455K]
[50]
Xia, S-M.; Chen, K-H.; Fu, H-C.; He, L-N. Ionic liquids catalysis for carbon dioxide conversion with nucleophiles. Front Chem., 2018, 6(462), 462.
[http://dx.doi.org/10.3389/fchem.2018.00462] [PMID: 30349815]
[51]
Dong, B.; Wang, L.; Zhao, S.; Ge, R.; Song, X.; Wang, Y.; Gao, Y. Immobilization of ionic liquids to covalent organic frameworks for catalyzing the formylation of amines with CO2 and phenylsilane. Chem. Commun. (Camb.), 2016, 52(44), 7082-7085.
[http://dx.doi.org/10.1039/C6CC03058K] [PMID: 27152374]
[52]
Fukaya, Y.; Iizuka, Y.; Sekikawa, K.; Ohno, H. Bio ionic liquids: Room temperature ionic liquids composed wholly of biomaterials. Green Chem., 2007, 9(11), 1155-1157.
[http://dx.doi.org/10.1039/b706571j]
[53]
Zhao, W.; Chi, X.; Li, H.; He, J.; Long, J.; Xu, Y.; Yang, S. Eco-friendly acetylcholine-carboxylate bio-ionic liquids for controllable N-methylation and N-formylation using ambient CO2 at low temperatures. Green Chem., 2019, 21(3), 567-577.
[http://dx.doi.org/10.1039/C8GC03549K]
[54]
Li, X-Y.; Fu, H-C.; Liu, X-F.; Yang, S-H.; Chen, K-H.; He, L-N. Design of Lewis base functionalized ionic liquids for the N-formylation of amines with CO2 and hydrosilane: The cation effects. Catal. Today, 2020, 356, 563-569.
[http://dx.doi.org/10.1016/j.cattod.2020.01.030]
[55]
Hulla, M.; Ortiz, D.; Katsyuba, S.; Vasilyev, D.; Dyson, P.J. Delineation of the critical parameters of salt catalysts in the N-formylation of amines with CO2. Chemistry, 2019, 25(47), 11074-11079.
[http://dx.doi.org/10.1002/chem.201901686] [PMID: 31112339]
[56]
Miura, T.; Funakoshi, Y.; Tanaka, T.; Murakami, M. Direct production of enaminones from terminal alkynes via rhodium-catalyzed reaction of formamides with N-sulfonyl-1,2,3-triazoles. Org. Lett., 2014, 16(10), 2760-2763.
[http://dx.doi.org/10.1021/ol5010774] [PMID: 24773098]
[57]
Wu, J-J.; Li, Y.; Zhou, H-Y.; Wen, A.H.; Lun, C-C.; Yao, S-Y.; Ke, Z.; Ye, B-H. Copper-catalyzed carbamoylation of terminal alkynes with formamides via cross-dehydrogenative coupling. ACS Catal., 2016, 6(2), 1263-1267.
[http://dx.doi.org/10.1021/acscatal.5b02881]
[58]
Knapp, R.R.; Tona, V.; Okada, T.; Sarpong, R.; Garg, N.K. Cyanoamidine cyclization approach to Remdesivir’s Nucleobase. Org. Lett., 2020, 22(21), 8430-8435.
[http://dx.doi.org/10.1021/acs.orglett.0c03052] [PMID: 33085486]
[59]
Shen, Z-Y.; Cheng, J-K.; Wang, C.; Yuan, C.; Loh, T-P.; Hu, X-H. Iron-catalyzed carbamoylation of enamides with formamides as a direct approach to N-acyl enamine amides. ACS Catal., 2019, 9(9), 8128-8135.
[http://dx.doi.org/10.1021/acscatal.9b02635]
[60]
Townsend, T.M.; Bernskoetter, W.H.; Hazari, N.; Mercado, B.Q. Dehydrogenative synthesis of carbamates from formamides and alcohols using a pincer-supported iron catalyst. ACS Catal., 2021, 11(16), 10614-10624.
[http://dx.doi.org/10.1021/acscatal.1c02718]

© 2025 Bentham Science Publishers | Privacy Policy