Review Article

神经发育中的小胶质细胞激活:叙事回顾

卷 22, 期 8, 2022

发表于: 12 January, 2022

页: [722 - 734] 页: 13

弟呕挨: 10.2174/1566524021666211018112757

价格: $65

摘要

小胶质细胞是在中枢神经系统 (CNS) 中发现的免疫细胞,参与感染战斗和细胞碎片清洁。这些神经胶质细胞通过与神经元和其他神经胶质细胞的相互作用参与大脑发育过程中的突触发生。这些关系与信号分子的分泌有关,例如趋化因子和神经营养因子。小胶质细胞在发育的不同阶段影响突触和神经元形态。此外,其他系统,例如肠道微生物群,间接影响小胶质细胞的功能和形态。不同发育时期可能发生的几个因素,包括成年后的宫内发育,可能会影响小胶质细胞。这些细胞的损伤可能与某些精神疾病的发展有关,例如精神分裂症、自闭症谱系障碍 (ASD) 和抑郁症。这篇综述的重点是描述小胶质细胞在维持中枢神经系统中的功能,以及它们如何与其他系统相关联,如肠道微生物群脑轴和环境压力源,如压力、母亲剥夺、睡眠剥夺、免疫激活和乙醇暴露,它们会影响小胶质细胞在神经发育过程中的功能。

关键词: 肠道-微生物-脑轴、突触发生、母体剥夺、小胶质细胞激活、神经发育、环境压力源。

[1]
Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med 2017; 23(9): 1018-27.
[http://dx.doi.org/10.1038/nm.4397] [PMID: 28886007]
[2]
Marín-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron 2004; 41(4): 535-47.
[http://dx.doi.org/10.1016/S0896-6273(04)00069-8] [PMID: 14980203]
[3]
Pont-Lezica L, Beumer W, Colasse S, Drexhage H, Versnel M, Bessis A. Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation. Eur J Neurosci 2014; 39(10): 1551-7.
[http://dx.doi.org/10.1111/ejn.12508] [PMID: 24593277]
[4]
Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011; 333(6048): 1456-8.
[http://dx.doi.org/10.1126/science.1202529] [PMID: 21778362]
[5]
Schafer DP, Lehrman EK, Kautzman AG, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74(4): 691-705.
[http://dx.doi.org/10.1016/j.neuron.2012.03.026] [PMID: 22632727]
[6]
Bilbo SD, Smith SH, Schwarz JM. A lifespan approach to neuroinflammatory and cognitive disorders: a critical role for glia. J Neuroimmune Pharmacol 2012; 7(1): 24-41.
[http://dx.doi.org/10.1007/s11481-011-9299-y] [PMID: 21822589]
[7]
Gomez-Nicola D, Perry VH. Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist 2015; 21(2): 169-84.
[http://dx.doi.org/10.1177/1073858414530512] [PMID: 24722525]
[8]
Wake H, Moorhouse AJ, Miyamoto A, Nabekura J. Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 2013; 36(4): 209-17.
[http://dx.doi.org/10.1016/j.tins.2012.11.007] [PMID: 23260014]
[9]
Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol 2014; 32: 367-402.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120240] [PMID: 24471431]
[10]
Pío DR. El tercer elemento de los centros nerviosos. Biol Soc Esp Biol 1919; 9: 69-129.
[11]
Stertz L, Magalhães PV, Kapczinski F. Is bipolar disorder an inflammatory condition? The relevance of microglial activation. Curr Opin Psychiatry 2013; 26(1): 19-26.
[http://dx.doi.org/10.1097/YCO.0b013e32835aa4b4] [PMID: 23196997]
[12]
Bessis A, Béchade C, Bernard D, Roumier A. Microglial control of neuronal death and synaptic properties. Glia 2007; 55(3): 233-8.
[http://dx.doi.org/10.1002/glia.20459] [PMID: 17106878]
[13]
Sanagi T, Yuasa S, Nakamura Y, et al. Appearance of phagocytic microglia adjacent to motoneurons in spinal cord tissue from a presymptomatic transgenic rat model of amyotrophic lateral sclerosis. J Neurosci Res 2010; 88(12): 2736-46.
[http://dx.doi.org/10.1002/jnr.22424] [PMID: 20648658]
[14]
Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005; 8(6): 752-8.
[http://dx.doi.org/10.1038/nn1472] [PMID: 15895084]
[15]
Ladeby R, Wirenfeldt M, Garcia-Ovejero D, et al. Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev 2005; 48(2): 196-206.
[http://dx.doi.org/10.1016/j.brainresrev.2004.12.009] [PMID: 15850658]
[16]
Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308(5726): 1314-8.
[http://dx.doi.org/10.1126/science.1110647] [PMID: 15831717]
[17]
Gao Y, Xu X, Chang S, et al. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction. Toxicol Appl Pharmacol 2015; 289(2): 142-54.
[http://dx.doi.org/10.1016/j.taap.2015.10.001] [PMID: 26440581]
[18]
Bhatia HS, Baron J, Hagl S, Eckert GP, Fiebich BL. Rice bran derivatives alleviate microglia activation: Possible involvement of MAPK pathway. J Neuroinflammation 2016; 13: 148.
[19]
Hanisch UK. Microglia as a source and target of cytokines. Glia 2002; 40(2): 140-55.
[http://dx.doi.org/10.1002/glia.10161] [PMID: 12379902]
[20]
Zhang F, Liu J, Shi JS. Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation. Eur J Pharmacol 2010; 636(1-3): 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.043] [PMID: 20361959]
[21]
Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330(6005): 841-5.
[http://dx.doi.org/10.1126/science.1194637] [PMID: 20966214]
[22]
Kaur C, Wu CH, Wen CY, Ling EA. The effects of subcutaneous injections of glucocorticoids on amoeboid microglia in postnatal rats. Arch Histol Cytol 1994; 57(5): 449-59.
[http://dx.doi.org/10.1679/aohc.57.449] [PMID: 7734174]
[23]
Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 2011; 11(11): 775-87.
[http://dx.doi.org/10.1038/nri3086] [PMID: 22025055]
[24]
Inoue K, Ozaki S, Shiga T, et al. Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat Neurosci 2002; 5(10): 946-54.
[http://dx.doi.org/10.1038/nn925] [PMID: 12352981]
[25]
Zusso M, Methot L, Lo R, Greenhalgh AD, David S, Stifani S. Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1. J Neurosci 2012; 32(33): 11285-98.
[http://dx.doi.org/10.1523/JNEUROSCI.6182-11.2012] [PMID: 22895712]
[26]
Rodriguez-Pallares J, Rey P, Parga JA, Muñoz A, Guerra MJ, Labandeira-Garcia JL. Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiol Dis 2008; 31(1): 58-73.
[http://dx.doi.org/10.1016/j.nbd.2008.03.003] [PMID: 18499466]
[27]
Slyepchenko A, Brunoni AR, McIntyre RS, Quevedo J, Carvalho AF. The adverse effects of smoking on health outcomes in bipolar disorder: a review and synthesis of biological mechanisms. Curr Mol Med 2016; 16(2): 187-205.
[http://dx.doi.org/10.2174/1566524016666160126144601] [PMID: 26812916]
[28]
Qiao H, An SC, Xu C, Ma XM. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression. Brain Res 2017; 1663: 29-37.
[http://dx.doi.org/10.1016/j.brainres.2017.02.020] [PMID: 28284898]
[29]
Duman CH, Duman RS. Spine synapse remodeling in the pathophysiology and treatment of depression. Neurosci Lett 2015; 601: 20-9.
[http://dx.doi.org/10.1016/j.neulet.2015.01.022] [PMID: 25582786]
[30]
Lim SH, Park E, You B, et al. Neuronal synapse formation induced by microglia and interleukin 10. PLoS One 2013; 8(11): e81218.
[http://dx.doi.org/10.1371/journal.pone.0081218] [PMID: 24278397]
[31]
Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 2014; 34(6): 2231-43.
[http://dx.doi.org/10.1523/JNEUROSCI.1619-13.2014] [PMID: 24501362]
[32]
Nicholas RS, Wing MG, Compston A. Nonactivated microglia promote oligodendrocyte precursor survival and maturation through the transcription factor NF-kappa B. Eur J Neurosci 2001; 13(5): 959-67.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01470.x] [PMID: 11264668]
[33]
Heese K, Fiebich BL, Bauer J, Otten U. NF-kappaB modulates lipopolysaccharide-induced microglial nerve growth factor expression. Glia 1998; 22(4): 401-7.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199804)22:4<401:AID-GLIA9>3.0.CO;2-5] [PMID: 9517572]
[34]
Peng J, Wang P, Ge H, Qu X, Jin X. Effects of cordycepin on the microglia-overactivation-induced impairments of growth and development of hippocampal cultured neurons. PLoS One 2015; 10(5): e0125902.
[http://dx.doi.org/10.1371/journal.pone.0125902] [PMID: 25932642]
[35]
Kim HJ, Cho MH, Shim WH, et al. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry 2017; 22(11): 1576-84.
[http://dx.doi.org/10.1038/mp.2016.103] [PMID: 27400854]
[36]
Parkhurst CN, Yang G, Ninan I, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 2013; 155(7): 1596-609.
[http://dx.doi.org/10.1016/j.cell.2013.11.030] [PMID: 24360280]
[37]
Zhang Y, Xu H, Wang J, et al. Transient upregulation of immune activity induced by adolescent social stress is involved in cognitive deficit in adult male mice and early intervention with minocycline. Behav Brain Res 2019; 374: 112136.
[http://dx.doi.org/10.1016/j.bbr.2019.112136] [PMID: 31381975]
[38]
Weinhard L, Neniskyte U, Vadisiute A, et al. Sexual dimorphism of microglia and synapses during mouse postnatal development. Dev Neurobiol 2018; 78(6): 618-26.
[http://dx.doi.org/10.1002/dneu.22568] [PMID: 29239126]
[39]
Org E, Mehrabian M, Parks BW, et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 2016; 7(4): 313-22.
[http://dx.doi.org/10.1080/19490976.2016.1203502] [PMID: 27355107]
[40]
Kiliaan AJ, Saunders PR, Bijlsma PB, et al. Stress stimulates transepithelial macromolecular uptake in rat jejunum. Am J Physiol 1998; 275(5): G1037-44.
[http://dx.doi.org/10.1152/ajpgi.1998.275.5.G1037] [PMID: 9815034]
[41]
Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161(2): 264-76. [Erratum in. Cell 2015; 161(2): 264-76. [Erratum in: Cell. 2015;163:258. PMID: 25860609; PMCID: PMC4393509].
[http://dx.doi.org/10.1016/j.cell.2015.02.047] [PMID: 25860609]
[42]
Douglas-Escobar M, Elliott E, Neu J. Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr 2013; 167(4): 374-9.
[http://dx.doi.org/10.1001/jamapediatrics.2013.497] [PMID: 23400224]
[43]
Selkrig J, Wong P, Zhang X, Pettersson S. Metabolic tinkering by the gut microbiome: Implications for brain development and function. Gut Microbes 2014; 5(3): 369-80.
[http://dx.doi.org/10.4161/gmic.28681] [PMID: 24685620]
[44]
Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107(26): 11971-5.
[http://dx.doi.org/10.1073/pnas.1002601107] [PMID: 20566857]
[45]
Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486(7402): 222-7.
[http://dx.doi.org/10.1038/nature11053] [PMID: 22699611]
[46]
Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457(7228): 480-4.
[http://dx.doi.org/10.1038/nature07540] [PMID: 19043404]
[47]
Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015; 17(5): 690-703. [Erratum in: Cell Host Microbe. 2015;17]. [6]. [:852. Jun, Wang ]. [corrected to Wang, Jun]. [. Erratum in: Cell Host Microbe. 2015;17]. [6]. [:852. PMID: 25974306].
[http://dx.doi.org/10.1016/j.chom.2015.04.004] [PMID: 25974306]
[48]
Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 2011; 108(Suppl. 1): 4586-91.
[http://dx.doi.org/10.1073/pnas.1000097107]
[49]
Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 2010; 5(5): e10667. [Erratum in: PLoS One. 2010;5].
[http://dx.doi.org/10.1371/journal.pone.0010667] [PMID: 20498852]
[50]
Cryan JF, Dinan TG. Gut microbiota: Microbiota and neuroimmune signalling-Metchnikoff to microglia. Nat Rev Gastroenterol Hepatol 2015; 12(9): 494-6.
[http://dx.doi.org/10.1038/nrgastro.2015.127] [PMID: 26215386]
[51]
Henning SJ, Hird FJ. Transport of acetate and butyrate in the hind-gut of rabbits. Biochem J 1972; 130(3): 791-6.
[http://dx.doi.org/10.1042/bj1300791] [PMID: 4664933]
[52]
Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004; 558(Pt 1): 263-75.
[http://dx.doi.org/10.1113/jphysiol.2004.063388] [PMID: 15133062]
[53]
Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18(6): 666-73.
[http://dx.doi.org/10.1038/mp.2012.77] [PMID: 22688187]
[54]
Forsythe P, Kunze WA. Voices from within: gut microbes and the CNS. Cell Mol Life Sci 2013; 70(1): 55-69.
[http://dx.doi.org/10.1007/s00018-012-1028-z] [PMID: 22638926]
[55]
Erny D. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18(7): 965-77.
[http://dx.doi.org/10.1038/nn.4030] [PMID: 26030851]
[56]
Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010; 16(2): 228-31.
[http://dx.doi.org/10.1038/nm.2087] [PMID: 20081863]
[57]
Chourbaji S, Urani A, Inta I, et al. IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol Dis 2006; 23(3): 587-94.
[http://dx.doi.org/10.1016/j.nbd.2006.05.001] [PMID: 16843000]
[58]
Yue N, Huang H, Zhu X, et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation 2017; 14(1): 102.
[http://dx.doi.org/10.1186/s12974-017-0865-y] [PMID: 28486969]
[59]
Fagundes CP, Glaser R, Hwang BS, Malarkey WB, Kiecolt-Glaser JK. Depressive symptoms enhance stress-induced inflammatory responses. Brain Behav Immun 2013; 31: 172-6.
[http://dx.doi.org/10.1016/j.bbi.2012.05.006] [PMID: 22634107]
[60]
Chen MH, Li CT, Lin WC, et al. Rapid inflammation modulation and antidepressant efficacy of a low-dose ketamine infusion in treatment-resistant depression: A randomized, double-blind control study. Psychiatry Res 2018; 269: 207-11.
[http://dx.doi.org/10.1016/j.psychres.2018.08.078] [PMID: 30153598]
[61]
Réus GZ, Fernandes GC, de Moura AB, et al. Early life experience contributes to the developmental programming of depressive-like behaviour, neuroinflammation and oxidative stress. J Psychiatr Res 2017; 95: 196-207.
[http://dx.doi.org/10.1016/j.jpsychires.2017.08.020] [PMID: 28886447]
[62]
Réus GZ, Silva RH, de Moura AB, et al. Early maternal deprivation induces microglial activation, alters glial fibrillary acidic protein immunoreactivity and indoleamine 2,3-dioxygenase during the development of offspring rats. Mol Neurobiol 2019; 56(2): 1096-108.
[http://dx.doi.org/10.1007/s12035-018-1161-2] [PMID: 29873040]
[63]
Réus GZ, Carlessi AS, Titus SE, et al. A single dose of S-ketamine induces long-term antidepressant effects and decreases oxidative stress in adulthood rats following maternal deprivation. Dev Neurobiol 2015; 75(11): 1268-81.
[http://dx.doi.org/10.1002/dneu.22283] [PMID: 25728399]
[64]
Réus GZ, Maciel AL, Abelaira HM, et al. Nutrition 2018; 53: 120-33.
[http://dx.doi.org/10.1016/j.nut.2018.03.006] [PMID: 29783176]
[65]
Evans GW, Schamberg MA. Childhood poverty, chronic stress, and adult working memory. Proc Natl Acad Sci USA 2009; 106(16): 6545-9.
[http://dx.doi.org/10.1073/pnas.0811910106] [PMID: 19332779]
[66]
Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 2016; 22(3): 238-49.
[http://dx.doi.org/10.1038/nm.4050] [PMID: 26937618]
[67]
Bell KFS, Al-Mubarak B, Martel M-A, et al. Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat Commun 2015; 6: 7066.
[http://dx.doi.org/10.1038/ncomms8066] [PMID: 25967870]
[68]
Lucchina L, Depino AM. Altered peripheral and central inflammatory responses in a mouse model of autism. Autism Res 2014; 7(2): 273-89.
[http://dx.doi.org/10.1002/aur.1338] [PMID: 24124122]
[69]
Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun 2014; 42: 50-9.
[http://dx.doi.org/10.1016/j.bbi.2014.05.007] [PMID: 24858659]
[70]
Lima-Ojeda JM, Rupprecht R, Baghai TC. Neurobiology of depression: A neurodevelopmental approach. World J Biol Psychiatry 2018; 19(5): 349-59.
[http://dx.doi.org/10.1080/15622975.2017.1289240] [PMID: 28155577]
[71]
Costa JC. Neurodesenvolvimento e os primeiros anos de vida: genética vs. ambiente. RELAdEI 2018; 7: 52-60.
[72]
Ueno M, Fujita Y, Tanaka T, et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 2013; 16(5): 543-51.
[http://dx.doi.org/10.1038/nn.3358] [PMID: 23525041]
[73]
Abud EM, Ramirez RN, Martinez ES, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 2017; 94(2): 278-93.
[http://dx.doi.org/10.1016/j.neuron.2017.03.042] [PMID: 28426964]
[74]
Thion MS, Low D, Silvin A, et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell 2018; 172(3): 500-16.
[http://dx.doi.org/10.1016/j.cell.2017.11.042] [PMID: 29275859]
[75]
Beattie EC, Stellwagen D, Morishita W, et al. Control of synaptic strength by glial TNFalpha. Science 2002; 295(5563): 2282-5.
[http://dx.doi.org/10.1126/science.1067859] [PMID: 11910117]
[76]
Mattei D, Ivanov A, Ferrai C, et al. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Transl Psychiatry 2017; 7(5): e1120.
[http://dx.doi.org/10.1038/tp.2017.80] [PMID: 28485733]
[77]
Frank MG, Thompson BM, Watkins LR, Maier SF. Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses. Brain Behav Immun 2012; 26(2): 337-45.
[http://dx.doi.org/10.1016/j.bbi.2011.10.005] [PMID: 22041296]
[78]
Frank MG, Miguel ZD, Watkins LR, Maier SF. Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain Behav Immun 2010; 24(1): 19-30.
[http://dx.doi.org/10.1016/j.bbi.2009.07.008] [PMID: 19647070]
[79]
Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 2007; 21(1): 47-59.
[http://dx.doi.org/10.1016/j.bbi.2006.03.005] [PMID: 16647243]
[80]
Hinwood M, Morandini J, Day TA, Walker FR. Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex 2012; 22(6): 1442-54.
[http://dx.doi.org/10.1093/cercor/bhr229] [PMID: 21878486]
[81]
Tynan RJ, Naicker S, Hinwood M, et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun 2010; 24(7): 1058-68.
[http://dx.doi.org/10.1016/j.bbi.2010.02.001] [PMID: 20153418]
[82]
Wohleb ES, Hanke ML, Corona AW, Powell ND, Stiner LM, Bailey MT. beta-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci 2011; 31: 6277-88.
[83]
Wohleb ES, McKim DB, Shea DT, Powell ND, Tarr AJ, Sheridan JF. Re-establishment of anxiety in stress-sensitized mice is caused by monocyte trafficking from the spleen to the brain. Biol Psychiatry 2014; 75: 970-81.
[http://dx.doi.org/10.1016/j.biopsych.2013.11.029]
[84]
Wohleb ES, Patterson JM, Sharma V, Quan N, Godbout JP, Sheridan JF. Knockdown of interleukin-1 receptor type-1 on endothelial cells attenuated stress-induced neuroinflammation and prevented anxiety-like behavior. J Neurosci 2014; 34: 2583-91.
[85]
Wohleb ES, Powell ND, Godbout JP, Sheridan JF. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxietylike behavior. J Neurosci 2013; 33: 13820-33.
[86]
Ling Z, Zhu Y, Tong CW, Snyder JA, Lipton JW, Carvey PM. Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Exp Neurol 2006; 199(2): 499-512.
[http://dx.doi.org/10.1016/j.expneurol.2006.01.010] [PMID: 16504177]
[87]
Ling Z, Zhu Y, Tong CW, Snyder JA, Lipton JW, Carvey PM. Prenatal lipopolysaccharide does not accelerate progressive dopamine neuron loss in the rat as a result of normal aging. Exp Neurol 2009; 216(2): 312-20.
[http://dx.doi.org/10.1016/j.expneurol.2008.12.004] [PMID: 19133261]
[88]
Cui K, Ashdown H, Luheshi GN, Boksa P. Effects of prenatal immune activation on hippocampal neurogenesis in the rat. Schizophr Res 2009; 113(2-3): 288-97.
[http://dx.doi.org/10.1016/j.schres.2009.05.003] [PMID: 19464151]
[89]
Baharnoori M, Brake WG, Srivastava LK. Prenatal immune challenge induces developmental changes in the morphology of pyramidal neurons of the prefrontal cortex and hippocampus in rats. Schizophr Res 2009; 107(1): 99-109.
[http://dx.doi.org/10.1016/j.schres.2008.10.003] [PMID: 19004618]
[90]
Kumral A, Baskin H, Yesilirmak DC, et al. Erythropoietin attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain. Neonatology 2007; 92(4): 269-78.
[http://dx.doi.org/10.1159/000105493] [PMID: 17627093]
[91]
Yesilirmak DC, Kumral A, Baskin H, et al. Activated protein C reduces endotoxin-induced white matter injury in the developing rat brain. Brain Res 2007; 1164: 14-23.
[http://dx.doi.org/10.1016/j.brainres.2007.04.083] [PMID: 17644074]
[92]
Makinodan M, Tatsumi K, Manabe T, et al. Maternal immune activation in mice delays myelination and axonal development in the hippocampus of the offspring. J Neurosci Res 2008; 86(10): 2190-200.
[http://dx.doi.org/10.1002/jnr.21673] [PMID: 18438922]
[93]
Delpech JC, Wei L, Hao J, et al. Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain Behav Immun 2016; 57: 79-93.
[http://dx.doi.org/10.1016/j.bbi.2016.06.006] [PMID: 27301858]
[94]
Matcovitch-Natan O, Winter DR, Giladi A, et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 2016; 353(6301): aad8670.
[http://dx.doi.org/10.1126/science.aad8670] [PMID: 27338705]
[95]
Radley JJ, Rocher AB, Janssen WG, Hof PR, McEwen BS, Morrison JH. Reversibility of apical dendritic retraction in the rat medial prefrontal cortex following repeated stress. Exp Neurol 2005; 196(1): 199-203.
[http://dx.doi.org/10.1016/j.expneurol.2005.07.008] [PMID: 16095592]
[96]
Liu RJ, Aghajanian GK. Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc Natl Acad Sci USA 2008; 105(1): 359-64.
[http://dx.doi.org/10.1073/pnas.0706679105] [PMID: 18172209]
[97]
Rajkowska G, Miguel-Hidalgo JJ, Wei J, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45(9): 1085-98.
[http://dx.doi.org/10.1016/S0006-3223(99)00041-4] [PMID: 10331101]
[98]
Hayashi Y, Nihonmatsu-Kikuchi N, Yu X, Ishimoto K, Hisanaga SI, Tatebayashi Y. A novel, rapid, quantitative cell-counting method reveals oligodendroglial reduction in the frontopolar cortex in major depressive disorder. Mol Psychiatry 2011; 16(12): 1155-8.
[http://dx.doi.org/10.1038/mp.2011.152] [PMID: 21747396]
[99]
Hsu JC, Lee YS, Chang CN, Chuang HL, Ling EA, Lan CT. Sleep deprivation inhibits expression of NADPH-d and NOS while activating microglia and astroglia in the rat hippocampus. Cells Tissues Organs 2003; 173(4): 242-54.
[http://dx.doi.org/10.1159/000070380] [PMID: 12766354]
[100]
Bellesi M, de Vivo L, Chini M, Gilli F, Tononi G, Cirelli C. Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J Neurosci 2017; 37(21): 5263-73.
[http://dx.doi.org/10.1523/JNEUROSCI.3981-16.2017] [PMID: 28539349]
[101]
Wisor JP, Schmidt MA, Clegern WC. Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. Sleep (Basel) 2011; 34(3): 261-72.
[http://dx.doi.org/10.1093/sleep/34.3.261] [PMID: 21358843]
[102]
Zhao Q, Peng C, Wu X, Chen Y, Wang C, You Z. Maternal sleep deprivation inhibits hippocampal neurogenesis associated with inflammatory response in young offspring rats. Neurobiol Dis 2014; 68: 57-65.
[http://dx.doi.org/10.1016/j.nbd.2014.04.008] [PMID: 24769004]
[103]
Li Q, Liu D, Pan F, Ho CSH, Ho RCM. Ethanol exposure induces microglia activation and neuroinflammation through TLR4 activation and SENP6 modulation in the adolescent rat hippocampus. Neural Plast 2019; 2019: 1648736.
[http://dx.doi.org/10.1155/2019/1648736] [PMID: 31781182]
[104]
Coleman LG Jr, Zou J, Crews FT. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7. J Neuroinflammation 2017; 14(1): 22.
[http://dx.doi.org/10.1186/s12974-017-0799-4] [PMID: 28118842]
[105]
Sanchez-Alavez M, Nguyen W, Mori S, et al. Time course of blood and brain cytokine/chemokine levels following adolescent alcohol exposure and withdrawal in rats. Alcohol Clin Exp Res 2019; 43(12): 2547-58.
[http://dx.doi.org/10.1111/acer.14209] [PMID: 31589333]
[106]
Walter TJ, Vetreno RP, Crews FT. Alcohol and stress activation of microglia and neurons: brain regional effects. Alcohol Clin Exp Res 2017; 41(12): 2066-81.
[http://dx.doi.org/10.1111/acer.13511] [PMID: 28941277]
[107]
Aghaie CI, Hausknecht KA, Wang R, et al. Prenatal ethanol exposure and postnatal environmental intervention alter dopaminergic neuron and microglia morphology in the ventral tegmental area during adulthood. Alcohol Clin Exp Res 2020; 44(2): 435-44.
[http://dx.doi.org/10.1111/acer.14275] [PMID: 31872887]
[108]
Ren Z, Wang X, Xu M, Frank JA, Luo J. Minocycline attenuates ethanol-induced cell death and microglial activation in the developing spinal cord. Alcohol 2019; 79: 25-35.
[http://dx.doi.org/10.1016/j.alcohol.2018.12.002] [PMID: 30529756]
[109]
Lowe PP, Gyongyosi B, Satishchandran A, et al. Reduced gut microbiome protects from alcohol-induced neuroinflammation and alters intestinal and brain inflammasome expression. J Neuroinflammation 2018; 15(1): 298.
[http://dx.doi.org/10.1186/s12974-018-1328-9] [PMID: 30368255]
[110]
Qi B, Shi C, Meng J, Xu S, Liu J. Resveratrol alleviates ethanol-induced neuroinflammation in vivo and in vitro: Involvement of TLR2-MyD88-NF-κB pathway. Int J Biochem Cell Biol 2018; 103: 56-64.
[http://dx.doi.org/10.1016/j.biocel.2018.07.007] [PMID: 30107238]
[111]
Zhang K, Wang H, Xu M, Frank JA, Luo J. Role of MCP-1 and CCR2 in ethanol-induced neuroinflammation and neurodegeneration in the developing brain. J Neuroinflammation 2018; 15(1): 197.
[http://dx.doi.org/10.1186/s12974-018-1241-2] [PMID: 29976212]
[112]
Laskaris LE, Di Biase MA, Everall I, et al. Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol 2016; 173(4): 666-80.
[http://dx.doi.org/10.1111/bph.13364] [PMID: 26455353]
[113]
Heresi Venegas C. Maternal immune activation and risk of Autism Spectrum Disorder. Rev Chil Pediatr 2019; 90: 555-8.
[114]
Antonson AM, Lawson MA, Caputo MP, Matt SM, Leyshon BJ, Johnson RW. Maternal viral infection causes global alterations in porcine fetal microglia. Proc Natl Acad Sci USA 2019; 116(40): 20190-200.
[http://dx.doi.org/10.1073/pnas.1817014116] [PMID: 31527230]
[115]
Ben-Yehuda H, Matcovitch-Natan O, Kertser A, Spinrad A, Prinz M, Amit I. Maternal Type-I interferon signaling adversely affects the microglia and the behavior of the offspring accompanied by increased sensitivity to stress. Mol Psychiatry 2020; 25: 1050-67.
[http://dx.doi.org/10.1038/s41380-019-0604-0] [PMID: 31772304]
[116]
Zhang Z, Bassam B, Thomas AG, et al. Maternal inflammation leads to impaired glutamate homeostasis and up-regulation of glutamate carboxypeptidase II in activated microglia in the fetal/newborn rabbit brain. Neurobiol Dis 2016; 94: 116-28.
[http://dx.doi.org/10.1016/j.nbd.2016.06.010] [PMID: 27326668]
[117]
Purves-Tyson TD, Weber-Stadlbauer U, Richetto J, Rothmond DA, Labouesse MA, Polesel M, et al. Increased levels of midbrain immune-related transcripts in schizophrenia and in murine offspring after maternal immune activation. Mol Psychiatry 2021; 26: 849-63.
[http://dx.doi.org/10.1038/s41380-019-0434-0] [PMID: 31168068]
[118]
Ashwell K. Development of microglia in the albino rabbit retina. J Comp Neurol 1989; 287(3): 286-301.
[http://dx.doi.org/10.1002/cne.902870303] [PMID: 2674209]
[119]
Ashwell KW, Holländer H, Streit W, Stone J. The appearance and distribution of microglia in the developing retina of the rat. Vis Neurosci 1989; 2(5): 437-48.
[http://dx.doi.org/10.1017/S0952523800012335] [PMID: 2487081]
[120]
Billiards SS, Haynes RL, Folkerth RD, et al. Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 2006; 497(2): 199-208.
[http://dx.doi.org/10.1002/cne.20991] [PMID: 16705680]
[121]
Dalmau I, Vela JM, González B, Finsen B, Castellano B. Dynamics of microglia in the developing rat brain. J Comp Neurol 2003; 458(2): 144-57.
[http://dx.doi.org/10.1002/cne.10572] [PMID: 12596255]
[122]
Sánchez-López A, Cuadros MA, Calvente R, Tassi M, Marín-Teva JL, Navascués J. Radial migration of developing microglial cells in quail retina: a confocal microscopy study. Glia 2004; 46(3): 261-73.
[http://dx.doi.org/10.1002/glia.20007] [PMID: 15048849]
[123]
Rezaie P, Patel K, Male DK. Microglia in the human fetal spinal cord--patterns of distribution, morphology and phenotype. Brain Res Dev Brain Res 1999; 115(1): 71-81.
[http://dx.doi.org/10.1016/S0165-3806(99)00043-7] [PMID: 10366704]
[124]
Rigato C, Buckinx R, Le-Corronc H, Rigo JM, Legendre P. Pattern of invasion of the embryonic mouse spinal cord by microglial cells at the time of the onset of functional neuronal networks. Glia 2011; 59(4): 675-95.
[http://dx.doi.org/10.1002/glia.21140] [PMID: 21305616]
[125]
Mukhamedshina YO, Povysheva TV, Nigmetzyanova MV, et al. Astrocytes and microglia of the mouse spinal cord during hind limb suspension. Dokl Biol Sci 2014; 456(1): 157-9.
[http://dx.doi.org/10.1134/S001249661403003X] [PMID: 24985504]
[126]
Chelyshev YA, Muhamedshina YO, Povysheva TV, et al. Characterization of spinal cord glial cells in a model of hindlimb unloading in mice. Neuroscience 2014; 280: 328-39.
[http://dx.doi.org/10.1016/j.neuroscience.2014.09.004] [PMID: 25218808]
[127]
Kirik OV, Sukhorukova EG, Alekseeva OS. Korzhevskiĭ DÉ. Subependymal microgliocytes of the third ventricle of the brain. Morfologiia 2014; 145(2): 67-9.
[PMID: 25282829]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy