Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

A Comprehensive Review on Medicinal Herbs and Novel Formulations for the Prevention of Alzheimer’s Disease

Author(s): Balbir Singh, Hasandeep Singh, Brahmjot Singh, Navkaran Kumar, Ankita Rajput, Disha Sidhu, Amandeep Kaur, Saroj Arora and Sarabjit Kaur*

Volume 19, Issue 2, 2022

Published on: 12 January, 2022

Page: [212 - 228] Pages: 17

DOI: 10.2174/1567201818666211015152733

Price: $65

Abstract

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases reported in the aging population across the globe. About 46.8 million people are reported to have dementia, and AD is mainly responsible for dementia in aged people. Alzheimer's disease (AD) is thought to occur due to the accumulation of β-amyloid (Aβ) in the neocortex portion of the brain, nitric oxide mediated dysfunctioning of blood-brain barrier, reduced activity of serine racemase enzyme, cell cycle disturbances, damage of N-methyl-D-aspartate (NMDA) receptors and glutamatergic neurotransmission. Modern treatment methods target the pathways responsible for the disease. To date, solely symptomatic treatments exist for this disease, all making an attempt to counterbalance the neurotransmitter disturbance. Treatments able to prevent or at least effectively modifying the course of AD, referred to as ‘disease-modifying’ drugs, are still under extensive research. Effective treatments entail a better indulgence of the herbal bioactives by novel drug delivery systems. The herbal bioactive administered by novel drug delivery systems have proved beneficial in treating this disease. This review provides detailed information about the role of medicinal plants and their formulations in treating Alzheimer’s disease which will be highly beneficial for the researchers working in this area.

Keywords: Alzheimer's disease, pathophysiology, medicinal plants, herbal bio actives, novel drug delivery systems, medicinal herbs.

Graphical Abstract

[1]
Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, M. The global prevalence of dementia. In: World Alzheimer Report 2015: The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International (ADI): London, 2015; pp. 10-27.
[2]
Sousa, J.C.E.; Santana, A.C.F.; MagalhÃes, G.J.P. Resveratrol in Alzheimer’s disease: A review of pathophysiology and therapeutic potential. Arq. Neuropsiquiatr., 2020, 78(8), 501-511.
[http://dx.doi.org/10.1590/0004-282x20200010] [PMID: 32520230]
[3]
Abeysinghe, A.A.D.T.; Deshapriya, R.D.U.S.; Udawatte, C. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci., 2020, 256, 117996.
[http://dx.doi.org/10.1016/j.lfs.2020.117996] [PMID: 32585249]
[4]
Graham, W.V.; Bonito-Oliva, A.; Sakmar, T.P. Update on Alzheimer’s disease therapy and prevention strategies. Annu. Rev. Med., 2017, 68, 413-430.
[http://dx.doi.org/10.1146/annurev-med-042915-103753] [PMID: 28099083]
[5]
Francis, P.T. The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr., 2005, 10(11)(Suppl. 18), 6-9.
[http://dx.doi.org/10.1017/S1092852900014164] [PMID: 16273023]
[6]
Decker, A.L.; Duncan, K. Acetylcholine and the complex interdependence of memory and attention. Curr. Opin. Behav. Sci., 2020, 32, 21-28.
[http://dx.doi.org/10.1016/j.cobeha.2020.01.013]
[7]
Peng, S.; Zhang, Y.; Zhang, J.; Wang, H.; Ren, B. Glutamate receptors and signal transduction in learning and memory. Mol. Biol. Rep., 2011, 38(1), 453-460.
[http://dx.doi.org/10.1007/s11033-010-0128-9] [PMID: 20364330]
[8]
Snowden, S.G.; Ebshiana, A.A.; Hye, A.; Pletnikova, O.; O’Brien, R.; Yang, A.; Troncoso, J.; Legido-Quigley, C.; Thambisetty, M. Neurotransmitter imbalance in the brain and Alzheimer’s disease pathology. J. Alzheimers Dis., 2019, 72(1), 35-43.
[http://dx.doi.org/10.3233/JAD-190577] [PMID: 31561368]
[9]
Nam, E.; Nam, G.; Lim, M.H. Synaptic copper, amyloid-β, and neurotransmitters in Alzheimer’s disease. Biochem, 2019, 15-17.
[10]
Behl, C.; Davis, J.B.; Lesley, R.; Schubert, D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell, 1994, 77(6), 817-827.
[http://dx.doi.org/10.1016/0092-8674(94)90131-7] [PMID: 8004671]
[11]
Behl, C.; Davis, J.; Cole, G.M.; Schubert, D. Vitamin E protects nerve cells from amyloid β protein toxicity. Biochem. Biophys. Res. Commun., 1992, 186(2), 944-950.
[http://dx.doi.org/10.1016/0006-291X(92)90837-B] [PMID: 1497677]
[12]
Subbarao, K.V.; Richardson, J.S.; Ang, L.C. Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro. J. Neurochem., 1990, 55(1), 342-345.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb08858.x] [PMID: 2355227]
[13]
Padurariu, M.; Ciobica, A.; Hritcu, L.; Stoica, B.; Bild, W.; Stefanescu, C. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett., 2010, 469(1), 6-10.
[http://dx.doi.org/10.1016/j.neulet.2009.11.033] [PMID: 19914330]
[14]
Ferreira, M.E.S.; de Vasconcelos, A.S.; da Costa Vilhena, T.; da Silva, T.L.; da Silva Barbosa, A.; Gomes, A.R.Q.; Dolabela, M.F.; Percário, S. Oxidative stress in Alzheimer’s disease: should we keep trying antioxidant therapies? Cell. Mol. Neurobiol., 2015, 35(5), 595-614.
[http://dx.doi.org/10.1007/s10571-015-0157-y] [PMID: 25616523]
[15]
Yu, C.C.; Du, Y.J.; Wang, S.Q.; Liu, L.B.; Shen, F.; Wang, L.; Lin, Y.F.; Kong, L.H. Experimental evidence of the benefits of acupuncture for Alzheimer’s disease: an updated review. Front. Neurosci., 2020, 14, 549772.
[http://dx.doi.org/10.3389/fnins.2020.549772] [PMID: 33408601]
[16]
Akram, M.; Nawaz, A. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen. Res., 2017, 12(4), 660-670.
[http://dx.doi.org/10.4103/1673-5374.205108] [PMID: 28553349]
[17]
Li, X.; Sundquist, J.; Zöller, B.; Sundquist, K. Dementia and Alzheimer’s disease risks in patients with autoimmune disorders. Geriatr. Gerontol. Int., 2018, 18(9), 1350-1355.
[http://dx.doi.org/10.1111/ggi.13488] [PMID: 30044040]
[18]
Hersi, M.; Irvine, B.; Gupta, P.; Gomes, J.; Birkett, N.; Krewski, D. Risk factors associated with the onset and progression of Alzheimer’s disease: a systematic review of the evidence. Neurotoxicol, 2017, 61, 143-187.
[http://dx.doi.org/10.1016/j.neuro.2017.03.006] [PMID: 28363508]
[19]
Solomon, A.; Mangialasche, F.; Richard, E.; Andrieu, S.; Bennett, D.A.; Breteler, M.; Fratiglioni, L.; Hooshmand, B.; Khachaturian, A.S.; Schneider, L.S.; Skoog, I.; Kivipelto, M. Advances in the prevention of Alzheimer’s disease and dementia. J. Intern. Med., 2014, 275(3), 229-250.
[http://dx.doi.org/10.1111/joim.12178] [PMID: 24605807]
[20]
(a) Defina, P.A.; Moser, R.S.; Glenn, M.; Lichtenstein, J.D.; Fellus, J. Alzheimer’s disease clinical and research update for health care practitioners. J. Aging Res., 2013, 2013, 207178.
[http://dx.doi.org/10.1155/2013/207178] [PMID: 24083026]
(b) Serrano-Pozo, A.; Das, S.; Hyman, B.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol., 2021, 20(1), 68-80.
[http://dx.doi.org/10.1016/S1474-4422(20)30412-9] [PMID: 33340485]
[21]
Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature, 2004, 430(7000), 631-639.
[http://dx.doi.org/10.1038/nature02621] [PMID: 15295589]
[22]
Wang, J.; Gu, B.J.; Masters, C.L.; Wang, Y.J. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol., 2017, 13(10), 612-623.
[http://dx.doi.org/10.1038/nrneurol.2017.111] [PMID: 28960209]
[23]
Lassmann, H.; Weiler, R.; Fischer, P.; Bancher, C.; Jellinger, K.; Floor, E.; Danielczyk, W.; Seitelberger, F.; Winkler, H. Synaptic pathology in Alzheimer’s disease: immunological data for markers of synaptic and large dense-core vesicles. Neuroscience, 1992, 46(1), 1-8.
[http://dx.doi.org/10.1016/0306-4522(92)90003-K] [PMID: 1594095]
[24]
Kumar, A.; Singh, A.; Ekavali, A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[25]
Fernandez, M.A. Sequential proteolysis by γ -secretase and its implications for. Alzheimer’s Dis, 2015, 1-178.
[26]
Alberdi, E.; Wyssenbach, A.; Alberdi, M.; Sánchez-Gómez, M.V.; Cavaliere, F.; Rodríguez, J.J.; Verkhratsky, A.; Matute, C. Ca(2+) -dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid β-treated astrocytes and in a model of Alzheimer’s disease. Aging Cell, 2013, 12(2), 292-302.
[http://dx.doi.org/10.1111/acel.12054] [PMID: 23409977]
[27]
Kumar, V.; Sami, N.; Kashav, T.; Islam, A.; Ahmad, F.; Hassan, M.I. Protein aggregation and neurodegenerative diseases: From theory to therapy. Eur. J. Med. Chem., 2016, 124, 1105-1120.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.054] [PMID: 27486076]
[28]
Stefano, G.B.; Esch, T.; Ptacek, R.; Kream, R.M. Dysregulation of nitric oxide signaling in microglia: multiple points of functional convergence in the complex pathophysiology of Alzheimer Disease. Med. Sci. Monit., 2020, 26, e927739.
[http://dx.doi.org/10.12659/MSM.927739] [PMID: 32975239]
[29]
Morris, G.; Berk, M.; Maes, M.; Puri, B.K. Could Alzheimer’s disease originate in the periphery and if so how so? Mol. Neurobiol., 2019, 56(1), 406-434.
[http://dx.doi.org/10.1007/s12035-018-1092-y] [PMID: 29705945]
[30]
Gold, M.; El Khoury, J. β-amyloid, microglia, and the inflammasome in Alzheimer’s disease. Semin. Immunopathol., 2015, 37(6), 607-611.
[http://dx.doi.org/10.1007/s00281-015-0518-0] [PMID: 26251237]
[31]
Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The role of NMDA receptors in Alzheimer’s disease. Front. Neurosci., 2019, 13, 43.
[http://dx.doi.org/10.3389/fnins.2019.00043] [PMID: 30800052]
[32]
Grutzendler, J.; Morris, J.C. Cholinesterase inhibitors for Alzheimer’s disease. Drugs, 2001, 61(1), 41-52.
[http://dx.doi.org/10.2165/00003495-200161010-00005] [PMID: 11217870]
[33]
Hashimoto, K.; Fukushima, T.; Shimizu, E.; Okada, S.; Komatsu, N.; Okamura, N.; Koike, K.; Koizumi, H.; Kumakiri, C.; Imai, K.; Iyo, M. Possible role of D-serine in the pathophysiology of Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2004, 28(2), 385-388.
[http://dx.doi.org/10.1016/j.pnpbp.2003.11.009] [PMID: 14751437]
[34]
Xu, W.; Xu, Q.; Cheng, H.; Tan, X. The efficacy and pharmacological mechanism of Zn 7 MT3 to protect against Alzheimer’s disease. Sci. Rep., 2017, 7(1), 1-5.
[PMID: 28127051]
[35]
Pereira, C.; Agostinho, P.; Moreira, P.I.; Cardoso, S.M.; Oliveira, C.R. Alzheimer’s disease-associated neurotoxic mechanisms and neuroprotective strategies. Curr. Drug Targets CNS Neurol. Disord., 2005, 4(4), 383-403.
[http://dx.doi.org/10.2174/1568007054546117] [PMID: 16101556]
[36]
Wang, J.Z.; Xia, Y.Y.; Grundke-Iqbal, I.; Iqbal, K. Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J. Alzheimers Dis., 2013, 33(s1)(Suppl. 1), S123-S139.
[http://dx.doi.org/10.3233/JAD-2012-129031] [PMID: 22710920]
[37]
Francis, P.T.; Ramírez, M.J.; Lai, M.K. Neurochemical basis for symptomatic treatment of Alzheimer’s disease. Neuropharmacology, 2010, 59(4-5), 221-229.
[http://dx.doi.org/10.1016/j.neuropharm.2010.02.010] [PMID: 20156462]
[38]
Melnikova, I. Therapies for Alzheimer’s disease. Nat. Rev. Drug Discov., 2007, 6(5), 341-342.
[http://dx.doi.org/10.1038/nrd2314] [PMID: 17539055]
[39]
Kristensson, J.; Hallberg, I.R.; Ekwall, A.K. Frail older adult’s experiences of receiving health care and social services. J. Gerontol. Nurs., 2010, 36(10), 20-28.
[http://dx.doi.org/10.3928/00989134-20100330-08] [PMID: 20438010]
[40]
Godyń, J.; Jończyk, J.; Panek, D.; Malawska, B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep., 2016, 68(1), 127-138.
[http://dx.doi.org/10.1016/j.pharep.2015.07.006] [PMID: 26721364]
[41]
Mehta, M.; Adem, A.; Sabbagh, M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alz Dis, 2012, 2012.
[42]
Santos, M.A.; Chand, K.; Chaves, S. Recent progress in multifunctional metal chelators as potential drugs for Alzheimer’s disease. Coord. Chem. Rev., 2016, 327, 287-303.
[http://dx.doi.org/10.1016/j.ccr.2016.04.013]
[43]
Seltzer, B. Is long-term treatment of Alzheimer’s disease with cholinesterase inhibitor therapy justified? Drugs Aging, 2007, 24(11), 881-890.
[http://dx.doi.org/10.2165/00002512-200724110-00001] [PMID: 17953456]
[44]
Singhal, A.K.; Naithani, V.; Bangar, O.P. Medicinal plants with a potential to treat Alzheimer and associated symptoms. Int. J. Nutr. Pharmacol. Neurol. Dis., 2012, 2(2), 84.
[http://dx.doi.org/10.4103/2231-0738.95927]
[45]
Hassan, M.A.; Balasubramanian, R.; Masoud, A.D.; Burkan, Z.E.; Sughir, A.; Kumar, R.S. Role of medicinal plants in neurodegenerative diseases with special emphasis to Alzheimer’s. Int. J. Phytopharmacol., 2014, 5(6), 454-462.
[46]
Shi, C.; Liu, J.; Wu, F.; Yew, D.T. Ginkgo biloba extract in Alzheimer’s disease: from action mechanisms to medical practice. Int. J. Mol. Sci., 2010, 11(1), 107-123.
[http://dx.doi.org/10.3390/ijms11010107] [PMID: 20162004]
[47]
Gella, A.; Durany, N. Oxidative stress in Alzheimer disease. Cell Adhes. Migr., 2009, 3(1), 88-93.
[http://dx.doi.org/10.4161/cam.3.1.7402] [PMID: 19372765]
[48]
Wu, Y.; Wu, Z.; Butko, P.; Christen, Y.; Lambert, M.P.; Klein, W.L.; Link, C.D.; Luo, Y. Amyloid-β-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J. Neurosci., 2006, 26(50), 13102-13113.
[http://dx.doi.org/10.1523/JNEUROSCI.3448-06.2006] [PMID: 17167099]
[49]
Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: the Indian solid gold. Adv. Exp. Med. Biol., 2007, 595, 1-75.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1] [PMID: 17569205]
[50]
Tang, M.; Taghibiglou, C. The mechanisms of action of curcumin in Alzheimer’s disease. J. Alzheimers Dis., 2017, 58(4), 1003-1016.
[http://dx.doi.org/10.3233/JAD-170188] [PMID: 28527218]
[51]
Zheng, K.; Dai, X.; Xiao, N.; Wu, X.; Wei, Z.; Fang, W.; Zhu, Y.; Zhang, J.; Chen, X. Curcumin ameliorates memory decline via inhibiting BACE1 expression and β-Amyloid pathology in 5× FAD transgenic mice. Mol. Neurobiol., 2017, 54(3), 1967-1977.
[http://dx.doi.org/10.1007/s12035-016-9802-9] [PMID: 26910813]
[52]
Jope, R.S.; Yuskaitis, C.J.; Beurel, E. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem. Res., 2007, 32(4-5), 577-595.
[http://dx.doi.org/10.1007/s11064-006-9128-5] [PMID: 16944320]
[53]
Di Martino, R.M.; De Simone, A.; Andrisano, V.; Bisignano, P.; Bisi, A.; Gobbi, S.; Rampa, A.; Fato, R.; Bergamini, C.; Perez, D.I.; Martinez, A.; Bottegoni, G.; Cavalli, A.; Belluti, F. Versatility of the curcumin scaffold: discovery of potent and balanced dual BACE-1 and GSK-3β inhibitors. J. Med. Chem., 2016, 59(2), 531-544.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00894] [PMID: 26696252]
[54]
Pandey, A.; Bani, S.; Dutt, P.; Kumar Satti, N.; Avtar Suri, K.; Nabi Qazi, G. Multifunctional neuroprotective effect of Withanone, a compound from Withania somnifera roots in alleviating cognitive dysfunction. Cytokine, 2018, 102, 211-221.
[http://dx.doi.org/10.1016/j.cyto.2017.10.019] [PMID: 29108796]
[55]
Zahiruddin, S.; Basist, P.; Parveen, A.; Parveen, R.; Khan, W.; Gaurav, ; Ahmad, S. Ashwagandha in brain disorders: A review of recent developments. J. Ethnopharmacol., 2020, 257, 112876.
[http://dx.doi.org/10.1016/j.jep.2020.112876] [PMID: 32305638]
[56]
Sehgal, N.; Gupta, A.; Valli, R.K.; Joshi, S.D.; Mills, J.T.; Hamel, E.; Khanna, P.; Jain, S.C.; Thakur, S.S.; Ravindranath, V. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc. Natl. Acad. Sci. USA, 2012, 109(9), 3510-3515.
[http://dx.doi.org/10.1073/pnas.1112209109] [PMID: 22308347]
[57]
Ma, X.; Tan, C.; Zhu, D.; Gang, D.R.; Xiao, P.; Huperzine, A. Huperzine A from Huperzia species-an ethnopharmacolgical review. J. Ethnopharmacol., 2007, 113(1), 15-34.
[http://dx.doi.org/10.1016/j.jep.2007.05.030] [PMID: 17644292]
[58]
Wu, T.Y.; Chen, C.P.; Jinn, T.R. Traditional Chinese medicines and Alzheimer’s disease. Taiwan. J. Obstet. Gynecol., 2011, 50(2), 131-135.
[http://dx.doi.org/10.1016/j.tjog.2011.04.004] [PMID: 21791295]
[59]
Wang, R.; Yan, H.; Tang, X.C. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin, 2006, 27, 1e26.
[60]
Yang, C.Y.; Lu, Z.P.; Zheng, C.G. Efficacy and reliability of huperzine A in mild and moderate Alzheimer’s disease. Zhongguo Linchuang Kangfu, 2003, 7, 4258-4259.
[61]
Ohba, T.; Yoshino, Y.; Ishisaka, M.; Abe, N.; Tsuruma, K.; Shimazawa, M.; Oyama, M.; Tabira, T.; Hara, H. Japanese Huperzia serrata extract and the constituent, huperzine A, ameliorate the scopolamine-induced cognitive impairment in mice. Biosci. Biotechnol. Biochem., 2015, 79(11), 1838-1844.
[http://dx.doi.org/10.1080/09168451.2015.1052773] [PMID: 26059088]
[62]
Duke, J.A. The Garden Pharmacy: Rosemary, the herb of remembrance for Alzheimer’s disease. Altern. Complement. Ther., 2007, 13(6), 287-290.
[http://dx.doi.org/10.1089/act.2007.13603]
[63]
Singhal, A.K.; Naithani, V.; Bangar, O.P. Medicinal plants with a potential to treat Alzheimer and associated symptoms. Int. J. Nutr. Pharmacol., 2012, 2(2), 84.
[http://dx.doi.org/10.4103/2231-0738.95927]
[64]
Lopresti, A.L. Salvia (sage): A review of its potential cognitive-enhancing and protective effects. Drugs R D., 2017, 17(1), 53-64.
[http://dx.doi.org/10.1007/s40268-016-0157-5] [PMID: 27888449]
[65]
Luchicchi, A.; Bloem, B.; Viaña, J.N.; Mansvelder, H.D.; Role, L.W. Illuminating the role of cholinergic signaling in circuits of attention and emotionally salient behaviors. Front. Synaptic Neurosci., 2014, 6, 24.
[http://dx.doi.org/10.3389/fnsyn.2014.00024] [PMID: 25386136]
[66]
Smach, M.A.; Hafsa, J.; Charfeddine, B.; Dridi, H.; Limem, K. Effects of sage extract on memory performance in mice and acetylcholinesterase activity. Ann. Pharm. Fr., 2015, 73(4), 281-288.
[http://dx.doi.org/10.1016/j.pharma.2015.03.005] [PMID: 25934446]
[67]
Sanjana, D.; Shailendra, P. Evaluation of traditional herb extract Salvia officinalis in treatment of Alzheimer’s disease. Pharmacogn. J., 2020, 12(1), 131-143.
[http://dx.doi.org/10.5530/pj.2020.12.20]
[68]
Saraf, M.K.; Prabhakar, S.; Khanduja, K.L.; Anand, A. Bacopa monniera attenuates scopolamine-induced impairment of spatial memory in mice. Evid. Based Complement. Alternat. Med., 2011, 2011, 236186.
[http://dx.doi.org/10.1093/ecam/neq038] [PMID: 21607013]
[69]
Mukherjee, S.; Dugad, S.; Bhandare, R.; Pawar, N.; Jagtap, S.; Pawar, P.K.; Kulkarni, O. Evaluation of comparative free-radical quenching potential of Brahmi (Bacopa monnieri) and Mandookparni (Centella asiatica). Ayu, 2011, 32(2), 258-264.
[http://dx.doi.org/10.4103/0974-8520.92549] [PMID: 22408313]
[70]
Chakravarty, A.K.; Sarkar, T.; Masuda, K.; Shiojima, K.; Nakane, T.; Kawahara, N. Bacopaside I and II: two pseudojujubogenin glycosides from Bacopa monniera. Phytochemistry, 2001, 58(4), 553-556.
[http://dx.doi.org/10.1016/S0031-9422(01)00275-8] [PMID: 11576596]
[71]
Limpeanchob, N.; Jaipan, S.; Rattanakaruna, S.; Phrompittayarat, W.; Ingkaninan, K. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J. Ethnopharmacol., 2008, 120(1), 112-117.
[http://dx.doi.org/10.1016/j.jep.2008.07.039] [PMID: 18755259]
[72]
Holcomb, L.A.; Dhanasekaran, M.; Hitt, A.R.; Young, K.A.; Riggs, M.; Manyam, B.V. Bacopa monniera extract reduces amyloid levels in PSAPP mice. J. Alzheimers Dis., 2006, 9(3), 243-251.
[http://dx.doi.org/10.3233/JAD-2006-9303] [PMID: 16914834]
[73]
Abdul Manap, A.S.; Vijayabalan, S.; Madhavan, P.; Chia, Y.Y.; Arya, A.; Wong, E.H.; Rizwan, F.; Bindal, U.; Koshy, S. Bacopa monnieri, a neuroprotective lead in Alzheimer Disease: A review on its properties, mechanisms of action, and preclinical and clinical studies. Drug Target Insights, 2019, 13, 1177392819866412.
[http://dx.doi.org/10.1177/1177392819866412] [PMID: 31391778]
[74]
Rajan, K.E.; Preethi, J.; Singh, H.K. Molecular and functional characterization of Bacopa monniera: A retrospective review. Evid. Based Complement. Alternat. Med., 2015, 2015, 945217.
[http://dx.doi.org/10.1155/2015/945217] [PMID: 26413131]
[75]
Jivad, N.; Rabiei, Z. A review study on medicinal plants used in the treatment of learning and memory impairments. Asian Pac. J. Trop. Biomed., 2014, 4(10), 780-789.
[http://dx.doi.org/10.12980/APJTB.4.2014APJTB-2014-0412]
[76]
Rubio, J.; Dang, H.; Gong, M.; Liu, X.; Chen, S.L.; Gonzales, G.F. Aqueous and hydroalcoholic extracts of Black Maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice. Food Chem. Toxicol., 2007, 45(10), 1882-1890.
[http://dx.doi.org/10.1016/j.fct.2007.04.002] [PMID: 17543435]
[77]
Park, S.J.; Ahn, Y.J.; Lee, H.E.; Hong, E.; Ryu, J.H. Standardized Prunella vulgaris var.lilacina extract enhances cognitive performance in normal naive mice. Phytother. Res., 2015, 29(11), 1814-1821.
[http://dx.doi.org/10.1002/ptr.5449] [PMID: 26376910]
[78]
Robu, S.; Aprotosoaie, A.C.; Spac, A.; Cioancă, O.; Hăncianu, M.; Stănescu, U. Studies regarding chemical composition of lavender volatile oils. Revista medico-chirurgicala a Societatii de Medicisi Naturalisti din Iasi, 2011, 115(2), 584-589.
[79]
Xu, P.; Wang, K.; Lu, C.; Dong, L.; Gao, L.; Yan, M.; Aibai, S.; Yang, Y.; Liu, X. The Protective effect of lavender essential oil and its main component linalool against the cognitive deficits induced by d-galactose and aluminum trichloride in mice. Evid. Based Complement. Alternat. Med., 2017, 2017, 7426538.
[http://dx.doi.org/10.1155/2017/7426538] [PMID: 28529531]
[80]
Zahra, R.; Mohammadreza, H.; Mahmoud, R.K.; Zahra, A. Effect of Cyperus rotundus tubers ethanolic extract on learning and memory in animal model of Alzheimer. Biomed. Aging Pathol., 2013, 3, 185-191.
[http://dx.doi.org/10.1016/j.biomag.2013.08.006]
[81]
Jadhav, R.P.; Kengar, M.D.; Narule, O.V.; Koli, V.W.; Kumbhar, S.B. A review on Alzheimer’s Disease (AD) and its herbal treatment of Alzheimer’s Disease. Asian J Res Pharmac Sci, 2019, 9(2), 112-122.
[http://dx.doi.org/10.5958/2231-5659.2019.00017.1]
[82]
Kirtikar, K.R.; Basu, B.D. Indian Medicinal Plants.49 Leader Road Allahabad, India, 1944, 1, pp. 574-577.
[83]
Singh, N.; Chand, N.; Kohli, R.P. Pharmacological studies on Celastruspaniculata (Malkangni). J. Res. Indian Med., 1974, 9, 1-8.
[84]
George, L.; Kumar, B.P.; Rao, S.N.; Arockiasamy, I.; Karthik, M. Cognitive enhancement and Neuroprotective effect of Celastruspaniculatus Willd. seed oil (Jyothismati oil) on male wistar rats. J. Pharm. Sci. Technol., 2010, 2(2), 130-138.
[85]
Houghton, P.J.; Howes, M.J. Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignals, 2005, 14(1-2), 6-22.
[http://dx.doi.org/10.1159/000085382] [PMID: 15956811]
[86]
Soodi, M.; Naghdi, N.; Hajimehdipoor, H.; Choopani, S.; Sahraei, E. Memory-improving activity of Melissa officinalis extract in naïve and scopolamine-treated rats. Res. Pharm. Sci., 2014, 9(2), 107-114.
[PMID: 25657779]
[87]
Ozarowski, M.; Mikolajczak, P.L.; Piasecka, A.; Kachlicki, P.; Kujawski, R.; Bogacz, A.; Czerny, B. Influence of the Melissa officinalis leaf extract on long-term memory in scopolamine animal model with assessment of mechanism of action. Evid. Based. Complement. Alternat. Med., 2016, 2016, 9729818.
[http://dx.doi.org/10.1155/2016/9729818]
[88]
Muralidharan, P.; Kumar, V.R.; Balamurugan, G. Protective effect of Morinda citrifolia fruits on β-amyloid (25-35) induced cognitive dysfunction in mice: An experimental and biochemical study. Phytother. Res., 2010, 24(2), 252-258.
[http://dx.doi.org/10.1002/ptr.2922] [PMID: 19585480]
[89]
Pachauri, S.D.; Tota, S.; Khandelwal, K.; Verma, P.R.; Nath, C.; Hanif, K.; Shukla, R.; Saxena, J.K.; Dwivedi, A.K. Protective effect of fruits of Morinda citrifolia L. on scopolamine induced memory impairment in mice: A behavioral, biochemical and cerebral blood flow study. J. Ethnopharmacol., 2012, 139(1), 34-41.
[http://dx.doi.org/10.1016/j.jep.2011.09.057] [PMID: 22107832]
[90]
Deng, X.; Zhao, S.; Liu, X.; Han, L.; Wang, R.; Hao, H.; Jiao, Y.; Han, S.; Bai, C. Polygala tenuifolia: A source for anti-Alzheimer’s disease drugs. Pharm. Biol., 2020, 58(1), 410-416.
[http://dx.doi.org/10.1080/13880209.2020.1758732] [PMID: 32429787]
[91]
Jin, M.L.; Lee, D.Y.; Um, Y.; Lee, J.H.; Park, C.G.; Jetter, R.; Kim, O.T. Isolation and characterization of an oxidosqualene cyclase gene encoding a β-amyrin synthase involved in Polygala tenuifolia Willd. saponin biosynthesis. Plant Cell Rep., 2014, 33(3), 511-519.
[http://dx.doi.org/10.1007/s00299-013-1554-7] [PMID: 24420413]
[92]
Zhang, T.Z.; Rong, W.W.; Li, Q.; Bi, K.S. Research progress on Polygalae Radix. Chin. Tradit. Herbal Drugs, 2016, 47, 2381-2389.
[93]
Rabiei, Z.; Rafieian-Kopaei, M.; Heidarian, E.; Saghaei, E.; Mokhtari, S. Effects of Zizyphus jujube extract on memory and learning impairment induced by bilateral electric lesions of the nucleus Basalis of Meynert in rat. Neurochem. Res., 2014, 39(2), 353-360.
[http://dx.doi.org/10.1007/s11064-013-1232-8] [PMID: 24379110]
[94]
Cao, Z.; Wang, F.; Xiu, C.; Zhang, J.; Li, Y. Hypericum perforatum extract attenuates behavioral, biochemical, and neurochemical abnormalities in Aluminum chloride-induced Alzheimer’s disease rats. Biomed. Pharmacother., 2017, 91, 931-937.
[http://dx.doi.org/10.1016/j.biopha.2017.05.022] [PMID: 28514831]
[95]
Smith, J.V.; Luo, Y. Elevation of oxidative free radicals in Alzheimer’s disease models can be attenuated by Ginkgo biloba extract EGb 761. J. Alzheimers Dis., 2003, 5(4), 287-300.
[http://dx.doi.org/10.3233/JAD-2003-5404] [PMID: 14624024]
[96]
Mancuso, C.; Siciliano, R.; Barone, E.; Preziosi, P. Natural substances and Alzheimer’s disease: from preclinical studies to evidence based medicine. Biochim. Biophys. Acta, 2012, 1822(5), 616-624.
[http://dx.doi.org/10.1016/j.bbadis.2011.09.004] [PMID: 21939756]
[97]
Mahmoodi, G.; Amini, S. The effect of Salvia officinalis hydroalcoholic extract on scopolamine-induced memory impairment in adult male mice. J Basic Res Med Sci, 2019, 6(1), 12-20.
[98]
Uabundit, N.; Wattanathorn, J.; Mucimapura, S.; Ingkaninan, K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J. Ethnopharmacol., 2010, 127(1), 26-31.
[http://dx.doi.org/10.1016/j.jep.2009.09.056] [PMID: 19808086]
[99]
Qu, Z.; Zhang, J.; Yang, H.; Gao, J.; Chen, H.; Liu, C.; Gao, W. Prunella vulgaris L., an edible and medicinal plant, attenuates scopolamine-induced memory impairment in rats. J. Agric. Food Chem., 2017, 65(2), 291-300.
[http://dx.doi.org/10.1021/acs.jafc.6b04597] [PMID: 28001065]
[100]
Nedel, S.S.; Branco, J.; Boeck, C.R.; Ourique, A.F. Lavender as treatment of Alzheimer’s disease. Int. J. Innov. Educ. Res., 2020, 8, 12.
[http://dx.doi.org/10.31686/ijier.vol8.iss12.2863]
[101]
Hritcu, L.; Cioanca, O.; Hancianu, M. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats. Phytomedicine, 2012, 19(6), 529-534.
[http://dx.doi.org/10.1016/j.phymed.2012.02.002] [PMID: 22402245]
[102]
Gattu, M.; Boss, K.L.; Terry, A.V., Jr; Buccafusco, J.J. Reversal of scopolamine-induced deficits in navigational memory performance by the seed oil of Celastrus paniculatus. Pharmacol. Biochem. Behav., 1997, 57(4), 793-799.
[http://dx.doi.org/10.1016/S0091-3057(96)00391-7] [PMID: 9259008]
[103]
Zhou, H.; Xue, W.; Chu, S.F.; Wang, Z.Z.; Li, C.J.; Jiang, Y.N.; Luo, L.M.; Luo, P.; Li, G.; Zhang, D.M.; Chen, N.H. Polygalasaponin XXXII, a triterpenoid saponin from Polygalae Radix, attenuates scopolamine-induced cognitive impairments in mice. Acta Pharmacol. Sin., 2016, 37(8), 1045-1053.
[http://dx.doi.org/10.1038/aps.2016.17] [PMID: 27180981]
[104]
Pi, T.; Zhou, X.W.; Cai, L.; Zhang, W.; Su, C.F.; Wu, W.T.; Ren, X.M.; Luo, H.M. PI3K/Akt signaling pathway is involved in the neurotrophic effect of senegenin. Mol. Med. Rep., 2016, 13(2), 1257-1262.
[http://dx.doi.org/10.3892/mmr.2015.4652] [PMID: 26647727]
[105]
Chen, Q.; Chen, Y.Q.; Ye, H.Y.; Yu, J.Q.; Shi, Q.Q.; Huang, Y. The mechanism of tenuigenin for eliminating waste product accumulation in cerebral neurons of Alzheimer’s disease rats via ubiquitin-proteasome pathway. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2015, 35(3), 327-332.
[PMID: 25951639]
[106]
Guo, C.; Shen, J.; Meng, Z.; Yang, X.; Li, F. Neuroprotective effects of polygalacic acid on scopolamine-induced memory deficits in mice. Phytomedicine, 2016, 23(2), 149-155.
[http://dx.doi.org/10.1016/j.phymed.2015.12.009] [PMID: 26926176]
[107]
Liu, Y.M.; Li, Z.Y.; Hu, H.; Xu, S.P.; Chang, Q.; Liao, Y.H.; Pan, R.L.; Liu, X.M. Tenuifolin, a secondary saponin from hydrolysates of polygalasaponins, counteracts the neurotoxicity induced by Aβ25-35 peptides in vitro and in vivo. Pharmacol. Biochem. Behav., 2015, 128, 14-22.
[http://dx.doi.org/10.1016/j.pbb.2014.11.010] [PMID: 25444865]
[108]
El-Sherbiny, D.A.; Khalifa, A.E.; Attia, A.S.; Eldenshary, Eel-D. Hypericum perforatum extract demonstrates antioxidant properties against elevated rat brain oxidative status induced by amnestic dose of scopolamine. Pharmacol. Biochem. Behav., 2003, 76(3-4), 525-533.
[http://dx.doi.org/10.1016/j.pbb.2003.09.014] [PMID: 14643852]
[109]
Singh, A.K.; Gupta, A.; Mishra, A.K.; Gupta, V.; Bansal, P.; Kumar, S. Medicinal plant for curing Alzheimer’s disease. Int. J. Pharm. Biol. Arch., 2010, 1(2), 108-114.
[110]
Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(5), 210-229.
[http://dx.doi.org/10.4314/ajtcam.v10i5.2] [PMID: 24311829]
[111]
Bhattacharya, S.K.; Kumar, A.; Jaiswal, A.K. Effect of Mentat®, a herbal formulation, on experimental models of Alzheimer’s disease and central cholinergic markers in rats. Fitoter, 1995, 66(3), 216-222.
[112]
Mehla, J.; Gupta, P.; Pahuja, M.; Diwan, D.; Diksha, D. Indian medicinal herbs and formulations for Alzheimer’s disease, from traditional knowledge to scientific assessment. Brain Sci., 2020, 10(12), 964.
[http://dx.doi.org/10.3390/brainsci10120964] [PMID: 33321899]
[113]
Bhattacharya, S.K.; Kumar, A. Effect of Trasina, an ayurvedic herbal formulation, on experimental models of Alzheimer’s disease and central cholinergic markers in rats. J. Altern. Complement. Med., 1997, 3(4), 327-336.
[http://dx.doi.org/10.1089/acm.1997.3.327] [PMID: 9449054]
[114]
Andrade, C.; Gowda, S.; Chaturvedi, S.K. Treatment of age-related cognitive decline with a herbal formulation : A double-blind study. Indian J. Psychiatry, 1998, 40(3), 240-246.
[PMID: 21494479]
[115]
Vinekar, A.S.; Andrade, C.; Sriprada, V.T.; George, J.; Joseph, T.; Chandra, J.S. Attenuation of ECS-induced retrograde amnesia by using an herbal formulation. J. ECT, 1998, 14(2), 83-88.
[http://dx.doi.org/10.1097/00124509-199806000-00004] [PMID: 9641803]
[116]
Yadav, K.D.; Reddy, K.R.; Kumar, V. Beneficial effect of Brahmi Ghrita on learning and memory in normal rat. Ayu, 2014, 35(3), 325-329.
[http://dx.doi.org/10.4103/0974-8520.153755] [PMID: 26664242]
[117]
Parle, M.; Vasudevan, M. Memory enhancing activity of Abana®: An Indian ayurvedic poly-herbal formulation. J. Health Sci., 2007, 53(1), 43-52.
[http://dx.doi.org/10.1248/jhs.53.43]
[118]
Mourtas, S.; Lazar, A.N.; Markoutsa, E.; Duyckaerts, C.; Antimisiaris, S.G. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur. J. Med. Chem., 2014, 80, 175-183.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.050] [PMID: 24780594]
[119]
Meng, Q.; Wang, A.; Hua, H.; Jiang, Y.; Wang, Y.; Mu, H.; Wu, Z.; Sun, K. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int. J. Nanomed., 2018, 13, 705-718.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[120]
Lohan, S.; Raza, K.; Mehta, S.K.; Bhatti, G.K.; Saini, S.; Singh, B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int. J. P’Ceutics, 2017, 530(1-2), 263-278.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.080] [PMID: 28774853]
[121]
Kheradmand, E.; Hajizadeh Moghaddam, A.; Zare, M. Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer’s disease. Biomed. Pharmacother., 2018, 97, 1096-1101.
[http://dx.doi.org/10.1016/j.biopha.2017.11.047] [PMID: 29136946]
[122]
Shea, T.B.; Ortiz, D.; Nicolosi, R.J.; Kumar, R.; Watterson, A.C. Nanosphere-mediated delivery of vitamin E increases its efficacy against oxidative stress resulting from exposure to amyloid beta. J. Alzheimers Dis., 2005, 7(4), 297-301.
[http://dx.doi.org/10.3233/JAD-2005-7405] [PMID: 16131731]
[123]
Niki, E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic. Biol. Med., 2014, 66, 3-12.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.03.022] [PMID: 23557727]
[124]
Constantinescu, A.; Han, D.; Packer, L. Vitamin E recycling in human erythrocyte membranes. J. Biol. Chem., 1993, 268(15), 10906-10913.
[http://dx.doi.org/10.1016/S0021-9258(18)82071-3] [PMID: 8388377]
[125]
Browne, D.; McGuinness, B.; Woodside, J.V.; McKay, G.J. Vitamin E and Alzheimer’s disease: what do we know so far? Clin. Interv. Aging, 2019, 14, 1303-1317.
[http://dx.doi.org/10.2147/CIA.S186760] [PMID: 31409980]
[126]
Vedagiri, A.; Thangarajan, S. Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25-35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer’s disease. Neuropeptides, 2016, 58, 111-125.
[http://dx.doi.org/10.1016/j.npep.2016.03.002] [PMID: 27021394]
[127]
Yin, T.; Yang, L.; Liu, Y.; Zhou, X.; Sun, J.; Liu, J. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood-brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater., 2015, 25, 172-183.
[http://dx.doi.org/10.1016/j.actbio.2015.06.035] [PMID: 26143603]
[128]
Zhou, X.; Sun, J.; Yin, T.; Le, F.; Yang, L.; Liu, Y.; Liu, J. Enantiomers of cysteine-modified SeNPs (d/lSeNPs) as inhibitors of metal-induced Aβ aggregation in Alzheimer’s disease. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(39), 7764-7774.
[http://dx.doi.org/10.1039/C5TB00731C] [PMID: 32264585]
[129]
Koynova, R.; Tenchov, B. Natural product formulations for the prevention and treatment of Alzheimer’s disease: A patent review. Recent Pat. Drug Deliv. Formul., 2018, 12(1), 23-39.
[http://dx.doi.org/10.2174/1872211312666171207152326] [PMID: 29219064]
[130]
Madhu, S.; Komala, M.; Pandian, P. Formulation development and characterization of withaferin-A loaded polymeric nanoparticles for Alzheimer’s disease. Bio Nano Sci, 2021, 1-8.
[131]
Ansari, S.A.; Satar, R.; Perveen, A.; Ashraf, G.M. Current opinion in Alzheimer’s disease therapy by nanotechnology-based approaches. Curr. Opin. Psychol., 2017, 30(2), 128-135.
[http://dx.doi.org/10.1097/YCO.0000000000000310] [PMID: 28009724]
[132]
Ross, C.; Taylor, M.; Fullwood, N.; Allsop, D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomed., 2018, 13, 8507-8522.
[http://dx.doi.org/10.2147/IJN.S183117] [PMID: 30587974]
[133]
Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Mathew, G.E.; Uddin, M.S.; Kim, H.; Mathew, B. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J. Pharm. Pharmacol., 2019, 71(9), 1370-1383.
[http://dx.doi.org/10.1111/jphp.13132] [PMID: 31304982]
[134]
Moradi, S.Z.; Momtaz, S.; Bayrami, Z.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front. Bioeng. Biotechnol., 2020, 8, 238.
[http://dx.doi.org/10.3389/fbioe.2020.00238] [PMID: 32318551]
[135]
Ramalho, M.J.; Andrade, S.; Loureiro, J.A.; do Carmo Pereira, M. Nanotechnology to improve the Alzheimer’s disease therapy with natural compounds. Drug Deliv. Transl. Res., 2020, 10(2), 380-402.
[http://dx.doi.org/10.1007/s13346-019-00694-3] [PMID: 31773421]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy