Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Discovery, Development and Design of Anthocyanins-Inspired Anticancer Agents: A Comprehensive Review

Author(s): Sasadhar Majhi*

Volume 22, Issue 19, 2022

Published on: 17 January, 2022

Page: [3219 - 3238] Pages: 20

DOI: 10.2174/1871520621666211015142310

Price: $65

Abstract

Mother Nature is an indispensable source of bioactive natural products. Bioactive secondary metabolites have played a crucial role in the drug development and discovery process; mainly, anticancer and antibiotic molecules are extensively enriched with molecules of natural origin. Anthocyanins are water-soluble secondary metabolites found in most species in the plant domain, especially flowers, fruits, and tubers. These natural vacuolar pigments belong to the chemical class of phenolic moieties, which are responsible for the shiny orange, red, blue, pink, and violet colors in the fruits, flowers, and vegetables. Chemically, anthocyanins comprise a core structure in the form of flavylium cation or 2-phenylbenzopyrylium, and these natural colorants are polyhydroxy and polymethoxy analouges of this flavylium cation and can have sugar moieties or acylated groups linked at different positions. Currently, these molecules have raised a growing interest because of their wide range of colors, innocuous and beneficial health effects, and commercial application in functional foods, nutraceuticals, pharmaceutical and cosmetic industries. However, interest in anthocyanin derivatives has noticeably enhanced in recent years due to their higher stability, improved bioavailability in biological matrices, and better use in food matrices and cosmetic products. Due to the enormous potential of natural anthocyanins and their derivatives, this review tries to cover syntheses of anthocyanins and their analogues, chemical derivatization of anthocyanins, and anticancer activities, such as breast, colorectal, leukemia, lung, prostate, and skin cancer of anthocyanins efficiently.

Keywords: Anthocyanins, anticancer activities, bioactive natural products, drug discovery, semi-synthesis, synthesis.

Graphical Abstract

[1]
Wang, L-S.; Stoner, G.D. Anthocyanins and their role in cancer prevention. Cancer Lett., 2008, 269(2), 281-290.
[http://dx.doi.org/10.1016/j.canlet.2008.05.020] [PMID: 18571839]
[2]
Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res., 2016, 30(8), 1265-1286.
[http://dx.doi.org/10.1002/ptr.5642] [PMID: 27221033]
[3]
Alappat, B.; Alappat, J. Anthocyanin pigments: Beyond aesthetics. Molecules, 2020, 25(23), 5500.
[http://dx.doi.org/10.3390/molecules25235500] [PMID: 33255297]
[4]
Mazza, G. Anthocyanins in grapes and grape products. Crit. Rev. Food Sci. Nutr., 1995, 35(4), 341-371.
[http://dx.doi.org/10.1080/10408399509527704] [PMID: 7576162]
[5]
Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 2020, 25(17), 3809.
[http://dx.doi.org/10.3390/molecules25173809] [PMID: 32825684]
[6]
Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J., 2008, 54(4), 733-749.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03447.x] [PMID: 18476875]
[7]
Onyilagha, J.C.; Grotewold, E. The biology and structural distribution of surface flavonoids. Recent Res. Dev. Plant Sci, 2004, 2, 53-71.
[8]
Nicolaou, K.C.; Rigol, S. Perspectives from nearly five decades of total synthesis of natural products and their analogues for biology and medicine. Nat. Prod. Rep., 2020, 37(11), 1404-1435.
[http://dx.doi.org/10.1039/D0NP00003E] [PMID: 32319494]
[9]
Li, L.; Chen, Z.; Zhang, X.; Jia, Y. Divergent strategy in natural product total synthesis. Chem. Rev., 2018, 118(7), 3752-3832.
[http://dx.doi.org/10.1021/acs.chemrev.7b00653] [PMID: 29516724]
[10]
Majhi, S. Diterpenoids: Natural distribution, semisynthesis at room temperature and pharmacological aspects-a decade update. ChemistrySelect, 2020, 5, 12450-12464.
[http://dx.doi.org/10.1002/slct.202002836]
[11]
Majhi, S.; Das, D. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects-a decade update. Tetrahedron, 2020, 78, 131801.
[http://dx.doi.org/10.1016/j.tet.2020.131801]
[12]
Majhi, S. The art of total synthesis of bioactive natural products via microwaves. Curr. Org. Chem., 2021, 25, 1047-1069.
[http://dx.doi.org/10.2174/1385272825666210303112302]
[13]
Majhi, S. Applications of Yamaguchi method to esterification and macrolactonization in total synthesis of bioactive natural products. ChemistrySelect, 2021, 6, 4178-4206.
[http://dx.doi.org/10.1002/slct.202100206]
[14]
Sinha, K.; Chowdhury, S.; Banerjee, S.; Mandal, B.; Mandal, M.; Majhi, S.; Brahmachari, G.; Ghosh, J.; Sil, P.C. Lupeol alters viability of SK-RC-45 (Renal cell carcinoma cell line) by modulating its mitochondrial dynamics. Heliyon, 2019, 5(8), e02107.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02107] [PMID: 31417967]
[15]
Kong, J.M.; Chia, L.S.; Goh, N.K.; Chia, T.F.; Brouillard, R. Analysis and biological activities of anthocyanins. Phytochemistry, 2003, 64(5), 923-933.
[http://dx.doi.org/10.1016/S0031-9422(03)00438-2] [PMID: 14561507]
[16]
Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, A. Chemical studies of anthocyanins: A review. Food Chem., 2009, 113, 859-871.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.001]
[17]
Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res., 2017, 61(1), 1361779.
[http://dx.doi.org/10.1080/16546628.2017.1361779] [PMID: 28970777]
[18]
Khoo, H.E.; Ng, H.S.; Yap, W-S.; Goh, H.J.H.; Yim, H.S. Nutrients for prevention of macular degeneration and eye-related diseases. Antioxidants, 2019, 8(4), 85.
[http://dx.doi.org/10.3390/antiox8040085] [PMID: 30986936]
[19]
Pereira, S.R.; Pereira, R.; Figueiredo, I.; Freitas, V.; Dinis, T.C.; Almeida, L.M. Comparison of anti-inflammatory activities of an anthocyanin-rich fraction from Portuguese blueberries (Vaccinium corymbosum L.) and 5-aminosalicylic acid in a TNBS-induced colitis rat model. PLoS One, 2017, 12(3), e0174116.
[http://dx.doi.org/10.1371/journal.pone.0174116] [PMID: 28329021]
[20]
Shah, S.A.; Amin, F.U.; Khan, M.; Abid, M.N.; Rehman, S.U.; Kim, T.H.; Kim, M.W.; Kim, M.O. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J. Neuroinflammation, 2016, 13(1), 286.
[http://dx.doi.org/10.1186/s12974-016-0752-y] [PMID: 27821173]
[21]
Kamiloglu, S.; Capanoglu, E.; Grootaert, C.; Van Camp, J. Anthocyanin absorption and metabolism by human intestinal CaCo-2 cells-A review. Int. J. Mol. Sci., 2015, 16(9), 21555-21574.
[http://dx.doi.org/10.3390/ijms160921555] [PMID: 26370977]
[22]
Pojer, E.; Mattivi, F.; Johnson, D.; Stockley, C.S. The case for anthocyanin consumption to promote human health: A review. Compr. Rev. Food Sci. Food Saf., 2013, 12(5), 483-508.
[http://dx.doi.org/10.1111/1541-4337.12024] [PMID: 33412667]
[23]
Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int., 2005, 88(5), 1269-1278.
[http://dx.doi.org/10.1093/jaoac/88.5.1269] [PMID: 16385975]
[24]
Sweeny, J.G.; Iacobucci, G.A. The synthesis of 3-deoxyanthocyanidins from 5-hydroxy-flavanones. Tetrahedron, 1977, 33, 2927-2932.
[http://dx.doi.org/10.1016/0040-4020(77)88025-3]
[25]
Sweeny, J.G.; Iacobucci, G.A. Total synthesis of apigeninidin and luteolinidin chlorides. Tetrahedron, 1981, 37, 1481-1483.
[http://dx.doi.org/10.1016/S0040-4020(01)92086-1]
[26]
Pratt, D.D.; Robinson, R. CLVI.-A synthesis of pyrylium salts of anthocyanidin type. Part VI. Polyhydroxyflavylium salts related to chrysin, apigenin, lotoflavin, luteolin, galangin, fisetin, and morin. J. Chem. Soc. Trans., 1925, 127, 1128-1138.
[http://dx.doi.org/10.1039/CT9252701128]
[27]
Kondo, T.; Oyama, K.; Nakamura, S.; Yamakawa, D.; Tokuno, K.; Yoshida, K. Novel and efficient synthesis of cyanidin 3-O-beta-D-glucoside from (+)-catechin via a flav-3-en-3-ol as a key intermediate. Org. Lett., 2006, 8(16), 3609-3612.
[http://dx.doi.org/10.1021/ol0614976] [PMID: 16869672]
[28]
Kawamoto, H.; Nakatsubo, F.; Murakami, K. Chemical structure of synthetic condensed tannin from benzylated flavan-3,4-diol. Mokuzai Gakkaishi, 1991, 37, 488-493.
[29]
Ohmori, K.; Ohrui, H.; Suzuki, K. First synthesis of Astilbin, biologically active glycosyl flavonoid isolated from Chinese folk medicine. Tetrahedron Lett., 2000, 41, 5537-5541.
[http://dx.doi.org/10.1016/S0040-4039(00)00826-1]
[30]
Davies, J.S.; Higginbotham, C.L.; Tremeer, E.J.; Brown, C.; Treadgold, R.C. Protection of hydroxy groups by silylation: Use in peptide synthesis and as lipophilicity modifiers for peptides. J. Chem. Soc., Perkin Trans. 1, 1992, 3043-3048.
[http://dx.doi.org/10.1039/p19920003043]
[31]
Aida, Y.; Tamogami, S.; Kodama, O.; Tsukiboshi, T. Synthesis of 7-methoxyapigeninidin and its fungicidal activity against Gloeocercospora sorghi. Biosci. Biotechnol. Biochem., 1996, 60(9), 1495-1496.
[http://dx.doi.org/10.1271/bbb.60.1495] [PMID: 8987602]
[32]
Oyama, K.; Kawaguchi, S.; Yoshidac, K.; Kondo, T. Synthesis of pelargonidin 3-O-6′′-O-acetyl-beta-D-glucopyranoside, an acylated anthocyanin, via the corresponding kaempferol glucoside. Tetrahedron Lett., 2007, 48, 6005-6009.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.134]
[33]
Tanaka, H.; Stohlmeyer, M.M.; Wandless, T.J.; Taylor, L.P. Synthesis of flavonol derivatives as probes of biological processes. Tetrahedron Lett., 2000, 41, 9735-9739.
[http://dx.doi.org/10.1016/S0040-4039(00)01767-6]
[34]
Slimestad, R.; Andersen, M.; Francis, G.W.; Marston, A.; Hostettmann, K. Syringetin 3-O-(6″-acetyl)-β-glucopyranoside and other flavonols from needles of Norway spruce. Picea abies. Phytochemistry, 1995, 40, 1537-1542.
[http://dx.doi.org/10.1016/0031-9422(95)00383-I]
[35]
Toki, K.; Yamamoto, T.; Terahara, N.; Saito, N.; Honda, T.; Inoue, H.; Mizutani, H. Pelargonidin 3-acetylglucoside in Verbena flowers. Phytochemistry, 1991, 30, 3828-3829.
[http://dx.doi.org/10.1016/0031-9422(91)80127-M]
[36]
Kraus, M.; Biskup, E. Synthesis of [4-14C]-pelargonidin chloride and [4-14C]-delphinidin chloride. J. Labelled Comp. Radiopharm., 2006, 49, 1151-1162.
[http://dx.doi.org/10.1002/jlcr.1120]
[37]
Mikhaleva, A.I.; Ivanoc, A.V.; Skital’tseva, E.V.; Ushakov, I.A.; Vasil’tsov, A.M.; Trofimov, B.A. An efficient route to 1-vinylpyrrole-2-carbaldehydes. Synthesis, 2009, 587-590.
[38]
Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Vogel’s Textbook of Practical Organic Chemistry, 5th ed; Pearson Education, 2006, PP. 916.
[39]
Allewelt, A.L.; Day, A.R. Preparation of some amino ketones and amino alcohols containing the ac-tetrahydro-β-naphthylamine, tetrahydroisoquinoline, or β-phenylethylamine nucleus. J. Org. Chem., 1941, 6, 384-400.
[http://dx.doi.org/10.1021/jo01203a003]
[40]
Freudenberg, K.; Hubner, H.H. Oxyzimtalkohole und ihre Dehydrierungs-polymerisate. Chem. Ber., 1952, 85, 1181-1191.
[http://dx.doi.org/10.1002/cber.19520851213]
[41]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[42]
Ville, A.; Viault, G.; Hélesbeux, J-J.; Guilet, D.; Richomme, P.; Séraphin, D. Efficient semi-synthesis of natural δ-(R)-tocotrienols from a renewable vegetal source. J. Nat. Prod., 2019, 82(1), 51-58.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00517] [PMID: 30629440]
[43]
Oliveira, J.; Fernandes, V.; Miranda, C.; Santos-Buelga, C.; Silva, A.; de Freitas, V.; Mateus, N. Color properties of four cyanidin-pyruvic acid adducts. J. Agric. Food Chem., 2006, 54(18), 6894-6903.
[http://dx.doi.org/10.1021/jf061085b] [PMID: 16939355]
[44]
Bakker, J.; Timberlake, C.F. Isolation, identification, and characterization of new color-stable anthocyanins occurring in some red wines. J. Agric. Food Chem., 1997, 45, 35-43.
[http://dx.doi.org/10.1021/jf960252c]
[45]
Fulcrand, H.; Benabdeljalil, C.; Rigaud, J.; Cheynier, V.; Moutounet, M. A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry, 1998, 47(7), 1401-1407.
[http://dx.doi.org/10.1016/S0031-9422(97)00772-3] [PMID: 9611832]
[46]
Cruz, L.; Fernandes, V.C.; Araújo, P.; Mateus, N.; de Freitas, V. Synthesis, characterisation and antioxidant features of procyanidin B4 and malvidin-3-glucoside stearic acid derivatives. Food Chem., 2015, 174, 480-486.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.062] [PMID: 25529709]
[47]
Fernández-López, J.A.; Angosto, J.M.; Giménez, P.J.; León, G. Thermal stability of selected natural red extracts used as food colorants. Plant Foods Hum. Nutr., 2013, 68(1), 11-17.
[http://dx.doi.org/10.1007/s11130-013-0337-1] [PMID: 23378056]
[48]
Zhu, Z.; Wu, N.; Kuang, M.; Lamikanra, O.; Liu, G.; Li, S.; He, J. Preparation and toxicological evaluation of methyl pyranoanthocyanin. Food Chem. Toxicol., 2015, 83, 125-132.
[49]
Giusti, M.M.; Wrolstad, R.E. Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J., 2003, 14, 217-225.
[50]
Ahmed, N.U.; Park, J-I.; Jung, H-J.; Hur, Y.; Nou, I-S. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa. Funct. Integr. Genomics, 2015, 15(4), 383-394.
[http://dx.doi.org/10.1007/s10142-014-0427-7] [PMID: 25504198]
[51]
Blanco-Vega, D.; López-Bellido, F.J.; Alía-Robledo, J.M.; Hermosín-Gutiérrez, I. HPLC-DAD-ESI-MS/MS characterization of pyranoanthocyanins pigments formed in model wine. J. Agric. Food Chem., 2011, 59(17), 9523-9531.
[http://dx.doi.org/10.1021/jf201546j] [PMID: 21806064]
[52]
He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their variation in red wines. II. Anthocyanin derived pigments and their color evolution. Molecules, 2012, 17(2), 1483-1519.
[http://dx.doi.org/10.3390/molecules17021483] [PMID: 23442981]
[53]
Kuang, M.; Wu, N.; Qi, M.; He, J.; Li, S.; Deng, L.; Chen, X. Optimized method for preparation of methyl pyranoanthocyanins and analyzed by HPLC-MS/MS. Food Ind. Technol., 2014, 2014, 061.
[54]
Zimman, A.; Waterhouse, A.L. Enzymatic synthesis of [3′-O-methyl-(3)H]malvidin-3-glucoside from petunidin-3-glucoside. J. Agric. Food Chem., 2002, 50(8), 2429-2431.
[http://dx.doi.org/10.1021/jf0110755] [PMID: 11929308]
[55]
Mazza, G.; Miniati, E. Grapes.In: Anthocyanins in Fruits, Vegetables, and Grains; CRC Press: Boca Raton, FL, 1993, pp. 149-199.
[56]
He, J.; Silva, A.M.S.; Mateus, N.; de Freitas, V. Oxidative formation and structural characterisation of new α-pyranone (lactone) compounds of non-oxonium nature originated from fruit anthocyanins. Food Chem., 2011, 127(3), 984-992.
[http://dx.doi.org/10.1016/j.foodchem.2011.01.069] [PMID: 25214087]
[57]
Rentzsch, M.; Quast, P.; Hillebrand, S.; Mehnert, J.; Winterhalter, P. Isolation and identification of 5-carboxypyranoanthocyanins in beverages from cherry (Prunus cerasus L.). Innov. Food Sci. Emerg. Technol., 2007, 8, 333-338.
[http://dx.doi.org/10.1016/j.ifset.2007.03.006]
[58]
Faria, A.; Pestana, D.; Teixeira, D.; de Freitas, V.; Mateus, N.; Calhau, C. Blueberry anthocyanins and pyruvic acid adducts: Anticancer properties in breast cancer cell lines. Phytother. Res., 2010, 24(12), 1862-1869.
[http://dx.doi.org/10.1002/ptr.3213] [PMID: 20564502]
[59]
Cruz, L.; Teixeira, N.; Silva, A.M.; Mateus, N.; Borges, J.; de Freitas, V. Role of vinylcatechin in the formation of pyranomalvidin-3-glucoside-+-catechin. J. Agric. Food Chem., 2008, 56(22), 10980-10987.
[http://dx.doi.org/10.1021/jf8021496] [PMID: 18959409]
[60]
Cruz, L.; Borges, E.; Silva, A.M.S.; Mateus, N.; De Freitas, V. Synthesis of a new (+)-catechin-derived compound: 8-Vinylcatechin. Lett. Org. Chem., 2008, 5, 530-536.
[http://dx.doi.org/10.2174/157017808785982211]
[61]
Marquez, A.; Dueñas, M.; Serratosa, M.P.; Merida, J. Formation of vitisins and anthocyanin-flavanol adducts during red grape drying. J. Agric. Food Chem., 2012, 60(27), 6866-6874.
[http://dx.doi.org/10.1021/jf300998p] [PMID: 22703561]
[62]
Quaglieri, C.; Jourdes, M.; Waffo-Teguo, P.; Teissedre, P-L. Updated knowledge about pyranoanthocyanins: Impact of oxygen on their contents, and contribution in the winemaking process to overall wine color. Trends Food Sci. Technol., 2017, 67, 139-149.
[http://dx.doi.org/10.1016/j.tifs.2017.07.005]
[63]
Chkaiban, L.; Botondi, R.; Bellincontro, A.; De Santis, D.; Kefalas, P.; Mencarelli, F. Influence of postharvest water stress on lipoxygenase and alcohol dehydrogenase activities, and on the composition of some volatile compounds of Gewürztraminer grapes dehydrated under controlled and uncontrolled thermohygrometric conditions. Aust. J. Grape Wine Res., 2007, 13, 142-149.
[http://dx.doi.org/10.1111/j.1755-0238.2007.tb00244.x]
[64]
Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Pract., 2017, 4, 127-129.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[65]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin., 2013, 63(1), 11-30.
[http://dx.doi.org/10.3322/caac.21166] [PMID: 23335087]
[66]
Fisher, R.; Pusztai, L.; Swanton, C. Cancer heterogeneity: Implications for targeted therapeutics. Br. J. Cancer, 2013, 108(3), 479-485.
[http://dx.doi.org/10.1038/bjc.2012.581] [PMID: 23299535]
[67]
Meacham, C.E.; Morrison, S.J. Tumour heterogeneity and cancer cell plasticity. Nature, 2013, 501(7467), 328-337.
[http://dx.doi.org/10.1038/nature12624] [PMID: 24048065]
[68]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[69]
Seto, M.; Honma, K.; Nakagawa, M. Diversity of genome profiles in malignant lymphoma. Cancer Sci., 2010, 101(3), 573-578.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01452.x] [PMID: 20070305]
[70]
Matlashewski, G.; Lamb, P.; Pim, D.; Peacock, J.; Crawford, L.; Benchimol, S. Isolation and characterization of a human p53 cDNA clone: Expression of the human p53 gene. EMBO J., 1984, 3(13), 3257-3262.
[http://dx.doi.org/10.1002/j.1460-2075.1984.tb02287.x] [PMID: 6396087]
[71]
Reboredo-Rodriguez, P. Potential roles of berries in the prevention of breast cancer progression. J. Berry Res., 2018, 8, 307-323.
[http://dx.doi.org/10.3233/JBR-180366]
[72]
Thiel, K.W.; Hernandez, L.I.; Dassie, J.P.; Thiel, W.H.; Liu, X.; Stockdale, K.R.; Rothman, A.M.; Hernandez, F.J.; McNamara, J.O., II; Giangrande, P.H. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res., 2012, 40(13), 6319-6337.
[http://dx.doi.org/10.1093/nar/gks294] [PMID: 22467215]
[73]
Kelsey, J.L.; Gammon, M.D.; John, E.M. Reproductive factors and breast cancer. Epidemiol. Rev., 1993, 15(1), 36-47.
[http://dx.doi.org/10.1093/oxfordjournals.epirev.a036115] [PMID: 8405211]
[74]
Hulka, B.S.; Stark, A.T. Breast cancer: Cause and prevention. Lancet, 1995, 346(8979), 883-887.
[http://dx.doi.org/10.1016/S0140-6736(95)92713-1] [PMID: 7564675]
[75]
Mazzoni, L.; Giampieri, F.; Alvarez Suarez, J.M.; Gasparrini, M.; Mezzetti, B.; Forbes Hernandez, T.Y.; Battino, M.A. Isolation of strawberry anthocyanin-rich fractions and their mechanisms of action against murine breast cancer cell lines. Food Funct., 2019, 10(11), 7103-7120.
[http://dx.doi.org/10.1039/C9FO01721F] [PMID: 31621765]
[76]
Herrera-Sotero, M.Y.; Cruz-Hernández, C.D.; Oliart-Ros, R.M.; Chávez-Servia, J.L.; Guzmán-Gerónimo, R.I.; González-Covarrubias, V.; Cruz-Burgos, M.; Rodríguez-Dorantes, M. Anthocyanins of blue corn and tortilla arrest cell cycle and induce apoptosis on breast and prostate cancer cells. Nutr. Cancer, 2020, 72(5), 768-777.
[http://dx.doi.org/10.1080/01635581.2019.1654529] [PMID: 31448633]
[77]
Zhou, J.; Zhu, Y-F.; Chen, X-Y.; Han, B.; Li, F.; Chen, J-Y.; Peng, X-L.; Luo, L-P.; Chen, W.; Yu, X-P. Black rice-derived anthocyanins inhibit HER-2-positive breast cancer epithelial-mesenchymal transition-mediated metastasis in vitro by suppressing FAK signaling. Int. J. Mol. Med., 2017, 40(6), 1649-1656.
[http://dx.doi.org/10.3892/ijmm.2017.3183] [PMID: 29039492]
[78]
Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(1), 9-29.
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
[79]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[80]
Afrin, S.; Giampieri, F.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Varela-López, A.; Quiles, J.L.; Mezzetti, B.; Battino, M. Chemopreventive and therapeutic effects of edible berries: A focus on colon cancer prevention and treatment. Molecules, 2016, 21(2), 169.
[http://dx.doi.org/10.3390/molecules21020169] [PMID: 26840292]
[81]
Zhang, H.; Guo, J.; Mao, L.; Li, Q.; Guo, M.; Mu, T.; Zhang, Q.; Bi, X. Up-regulation of miR-24-1-5p is involved in the chemoprevention of colorectal cancer by black raspberry anthocyanins. Br. J. Nutr., 2019, 122(5), 518-526.
[http://dx.doi.org/10.1017/S0007114518003136] [PMID: 30375302]
[82]
Schauss, A.G.; Wu, X.; Prior, R.L.; Ou, B.; Patel, D.; Huang, D.; Kababick, J.P. Phytochemical and nutrient composition of the freeze-dried amazonian palm berry, Euterpe oleraceae mart. (acai). J. Agric. Food Chem., 2006, 54(22), 8598-8603.
[http://dx.doi.org/10.1021/jf060976g] [PMID: 17061839]
[83]
Fragoso, M.F.; Romualdo, G.R.; Vanderveer, L.A.; Franco-Barraza, J.; Cukierman, E.; Clapper, M.L.; Carvalho, R.F.; Barbisan, L.F. Lyophilized açaí pulp (Euterpe oleracea mart) attenuates colitis-associated colon carcinogenesis while its main anthocyanin has the potential to affect the motility of colon cancer cells. Food Chem. Toxicol., 2018, 121, 237-245.
[http://dx.doi.org/10.1016/j.fct.2018.08.078] [PMID: 30194994]
[84]
Lippert, E.; Ruemmele, P.; Obermeier, F.; Goelder, S.; Kunst, C.; Rogler, G.; Dunger, N.; Messmann, H.; Hartmann, A.; Endlicher, E. Anthocyanins prevent colorectal cancer development in a mouse model. Digestion, 2017, 95(4), 275-280.
[http://dx.doi.org/10.1159/000475524] [PMID: 28494451]
[85]
Nimptsch, K.; Zhang, X.; Cassidy, A.; Song, M.; O’Reilly, E.J.H.; Lin, J.H.; Pischon, T.; Rimm, E.B.; Willett, W.C.; Fuchs, C.S.; Ogino, S.; Chan, A.T.; Giovannucci, E.L.; Wu, K. Habitual intake of flavonoid subclasses and risk of colorectal cancer in 2 large prospective cohorts. Am. J. Clin. Nutr., 2016, 103(1), 184-191.
[http://dx.doi.org/10.3945/ajcn.115.117507] [PMID: 26537935]
[86]
Medinger, M.; Lengerke, C.; Passweg, J. Novel therapeutic options in acute myeloid leukemia. Leuk. Res. Rep., 2016, 6, 39-49.
[http://dx.doi.org/10.1016/j.lrr.2016.09.001] [PMID: 27752467]
[87]
Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute myeloid leukemia. N. Engl. J. Med., 2015, 373(12), 1136-1152.
[http://dx.doi.org/10.1056/NEJMra1406184] [PMID: 26376137]
[88]
Fan, M.J.; Yeh, P.H.; Lin, J.P.; Huang, A.C.; Lien, J.C.; Lin, H.Y.; Chung, J.G. Anthocyanins from black rice (Oryza sativa) promote immune responses in leukemia through enhancing phagocytosis of macrophages in vivo. Exp. Ther. Med., 2017, 14(1), 59-64.
[http://dx.doi.org/10.3892/etm.2017.4467] [PMID: 28672893]
[89]
Tsai, T.C.; Huang, H-P.; Chang, Y-C.; Wang, C-J. An anthocyanin-rich extract from Hibiscus sabdariffa linnaeus inhibits N-nitrosomethylurea-induced leukemia in rats. J. Agric. Food Chem., 2014, 62(7), 1572-1580.
[http://dx.doi.org/10.1021/jf405235j] [PMID: 24471438]
[90]
American Cancer Society. Cancer Facts and Figures; American Cancer society: Atlanta, 2015.
[91]
Lu, J.N.; Panchanathan, R.; Lee, W.S.; Kim, H.J.; Kim, D.H.; Choi, Y.H.; Kim, G.S.; Shin, S.C.; Hong, S.C. Anthocyanins from the fruit of vitis coignetiae pulliat inhibit tnf-augmented cancer proliferation, migration, and invasion in A549 cells. Asian Pac. J. Cancer Prev., 2017, 18(11), 2919-2923.
[PMID: 29172259]
[92]
Syed, D.N.; Afaq, F.; Sarfaraz, S.; Khan, N.; Kedlaya, R.; Setaluri, V.; Mukhtar, H. Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation. Toxicol. Appl. Pharmacol., 2008, 231(1), 52-60.
[http://dx.doi.org/10.1016/j.taap.2008.03.023] [PMID: 18499206]
[93]
Aqil, F.; Jeyabalan, J.; Kausar, H.; Munagal, R.; Singh, I.P.; Gupta, R. Lung cancer inhibitory activity of dietary berries and berry polyphenolics. J. Berry Res., 2016, 6, 105-114.
[http://dx.doi.org/10.3233/JBR-160120]
[94]
Kausar, H.; Jeyabalan, J.; Aqil, F.; Chabba, D.; Sidana, J.; Singh, I.P.; Gupta, R.C. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett., 2012, 325(1), 54-62.
[http://dx.doi.org/10.1016/j.canlet.2012.05.029] [PMID: 22659736]
[95]
Ferlay, J.; Parkin, D.M.; Steliarova-Foucher, E. Estimates of cancer incidence and mortality in Europe in 2008. Eur. J. Cancer, 2010, 46(4), 765-781.
[http://dx.doi.org/10.1016/j.ejca.2009.12.014] [PMID: 20116997]
[96]
Ito, K. Prostate cancer in Asian men. Nat. Rev. Urol., 2014, 11(4), 197-212.
[http://dx.doi.org/10.1038/nrurol.2014.42] [PMID: 24595118]
[97]
Arnold, J.T.; Isaacs, J.T. Mechanisms involved in the progression of androgen-independent prostate cancers: It is not only the cancer cell’s fault. Endocr. Relat. Cancer, 2002, 9(1), 61-73.
[http://dx.doi.org/10.1677/erc.0.0090061] [PMID: 11914183]
[98]
Sumanasuriya, S.; De Bono, J. Treatment of advanced prostate cancer-A review of current therapies and future promise. Cold Spring Harb. Perspect. Med., 2018, 8(6), a030635.
[http://dx.doi.org/10.1101/cshperspect.a030635] [PMID: 29101113]
[99]
Lee, S.H.; Park, S.M.; Park, S.M.; Park, J.H.; Shin, D.Y.; Kim, G.Y.; Ryu, C.H.; Shin, S.C.; Jung, J.M.; Kang, H.S.; Lee, W.S.; Choi, Y.H. Induction of apoptosis in human leukemia U937 cells by anthocyanins through down-regulation of Bcl-2 and activation of caspases. Int. J. Oncol., 2009, 34(4), 1077-1083.
[PMID: 19287965]
[100]
Sorrenti, V.; Vanella, L.; Acquaviva, R.; Cardile, V.; Giofrè, S.; Di Giacomo, C. Cyanidin induces apoptosis and differentiation in prostate cancer cells. Int. J. Oncol., 2015, 47(4), 1303-1310.
[http://dx.doi.org/10.3892/ijo.2015.3130] [PMID: 26315029]
[101]
Eskra, J.N.; Schlicht, M.J.; Bosland, M.C. Effects of black raspberries and their ellagic acid and anthocyanin constituents on taxane chemotherapy of castration-resistant prostate cancer cells. Sci. Rep., 2019, 9(1), 4367.
[http://dx.doi.org/10.1038/s41598-019-39589-1] [PMID: 30867440]
[102]
Diaconeasa, Z.; Știrbu, I.; Xiao, J.; Leopold, N.; Ayvaz, Z.; Danciu, C.; Ayvaz, H.; Stǎnilǎ, A.; Nistor, M.; Socaciu, C. Anthocyanins, vibrant color pigments, and their role in skin cancer prevention. Biomedicines, 2020, 8(9), 336.
[http://dx.doi.org/10.3390/biomedicines8090336] [PMID: 32916849]
[103]
Pennello, G.; Devesa, S.; Gail, M. Association of surface ultraviolet B radiation levels with melanoma and nonmelanoma skin cancer in United States blacks. Cancer Epidemiol. Biomarkers Prev., 2000, 9(3), 291-297.
[PMID: 10750668]
[104]
Leonel, E.; Rojo, D.E.R.; Graf, B. Role of Anthocyanins in Skin Aging and UV Induced Skin Damage.In: Anthocyanins in Health and Disease; Wallace, T.C.; Giusti, M.M., Eds.; CRC Press: Boca Raton, FL, USA, 2013.
[105]
Wang, E.; Liu, Y.; Xu, C.; Liu, J. Antiproliferative and proapoptotic activities of anthocyanin and anthocyanidin extracts from blueberry fruits on B16-F10 melanoma cells. Food Nutr. Res., 2017, 61(1), 1325308.
[http://dx.doi.org/10.1080/16546628.2017.1325308] [PMID: 28680383]
[106]
Diaconeasa, Z.; Ayvaz, H.; Ruginǎ, D.; Leopold, L.; Stǎnilǎ, A.; Socaciu, C.; Tăbăran, F.; Luput, L.; Mada, D.C.; Pintea, A.; Jefferson, A. Melanoma inhibition by anthocyanins is associated with the reduction of oxidative stress biomarkers and changes in mitochondrial membrane potential. Plant Foods Hum. Nutr., 2017, 72(4), 404-410.
[http://dx.doi.org/10.1007/s11130-017-0638-x] [PMID: 29129015]
[107]
Razina, T.G.; Zueva, E.P.; Ulrich, A.V.; Rybalkina, O.Y.; Chaikovskii, A.V.; Isaikina, N.V.; Kalinkina, G.I.; Zhdanov, V.V.; Zyuz’kov, G.N. Antitumor effects of Sorbus aucuparia L. extract highly saturated with anthocyans and their mechanisms. Bull. Exp. Biol. Med., 2016, 162(1), 93-97.
[http://dx.doi.org/10.1007/s10517-016-3554-4] [PMID: 27878717]
[108]
Lee, S.J.; Hong, S.; Yoo, S.H.; Kim, G.W. Cyanidin-3-O-sambubioside from Acanthopanax sessiliflorus fruit inhibits metastasis by downregulating MMP-9 in breast cancer cells MDA-MB-231. Planta Med., 2013, 79(17), 1636-1640.
[http://dx.doi.org/10.1055/s-0033-1350954] [PMID: 24214832]
[109]
Oliveira, H.; Wu, N.; Zhang, Q.; Wang, J.; Oliveira, J.; de Freitas, V.; Mateus, N.; He, J.; Fernandes, I. Bioavailability studies and anticancer properties of malvidin based anthocyanins, pyranoanthocyanins and non-oxonium derivatives. Food Funct., 2016, 7(5), 2462-2468.
[http://dx.doi.org/10.1039/C6FO00445H] [PMID: 27165855]
[110]
Tan, J.; Li, Q.; Xue, H.; Tang, J. Ultrasound-assisted enzymatic extraction of anthocyanins from grape skins: Optimization, identification, and antitumor activity. J. Food Sci., 2020, 85(11), 3731-3744.
[http://dx.doi.org/10.1111/1750-3841.15497] [PMID: 33078395]
[111]
López de Las Hazas, M.C.; Mosele, J.I.; Macià, A.; Ludwig, I.A.; Motilva, M.J. Exploring the colonic metabolism of grape and strawberry anthocyanins and their in vitro apoptotic effects in HT-29 colon cancer cells. J. Agric. Food Chem., 2017, 65(31), 6477-6487.
[http://dx.doi.org/10.1021/acs.jafc.6b04096] [PMID: 27790915]
[112]
Chen, L.; Jiang, B.; Zhong, C.; Guo, J.; Zhang, L.; Mu, T.; Zhang, Q.; Bi, X. Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation. Carcinogenesis, 2018, 39(3), 471-481.
[http://dx.doi.org/10.1093/carcin/bgy009] [PMID: 29361151]
[113]
Charepalli, V.; Reddivari, L.; Radhakrishnan, S.; Vadde, R.; Agarwal, R.; Vanamala, J.K.P. Anthocyanin-containing purple-fleshed potatoes suppress colon tumorigenesis via elimination of colon cancer stem cells. J. Nutr. Biochem., 2015, 26(12), 1641-1649.
[http://dx.doi.org/10.1016/j.jnutbio.2015.08.005] [PMID: 26383537]
[114]
Yun, J.W.; Lee, W.S.; Kim, M.J.; Lu, J.N.; Kang, M.H.; Kim, H.G.; Kim, D.C.; Choi, E.J.; Choi, J.Y.; Kim, H.G.; Lee, Y.K.; Ryu, C.H.; Kim, G.; Choi, Y.H.; Park, O.J.; Shin, S.C. Characterization of a profile of the anthocyanins isolated from Vitis coignetiae Pulliat and their anti-invasive activity on HT-29 human colon cancer cells. Food Chem. Toxicol., 2010, 48(3), 903-909.
[http://dx.doi.org/10.1016/j.fct.2009.12.031] [PMID: 20060025]
[115]
Peiffer, D.S.; Zimmerman, N.P.; Wang, L.S.; Ransom, B.W.; Carmella, S.G.; Kuo, C.T.; Siddiqui, J.; Chen, J.H.; Oshima, K.; Huang, Y.W.; Hecht, S.S.; Stoner, G.D. Chemoprevention of esophageal cancer with black raspberries, their component anthocyanins, and a major anthocyanin metabolite, protocatechuic acid. Cancer Prev. Res. (Phila.), 2014, 7(6), 574-584.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0003] [PMID: 24667581]
[116]
Wang, Y.; Lin, J.; Tian, J.; Si, X.; Jiao, X.; Zhang, W.; Gong, E.; Li, B. Blueberry malvidin-3-galactoside suppresses hepatocellular carcinoma by regulating apoptosis, proliferation, and metastases pathways in vivo and in vitro. J. Agric. Food Chem., 2019, 67(2), 625-636.
[http://dx.doi.org/10.1021/acs.jafc.8b06209] [PMID: 30586992]
[117]
Dokkaew, A.; Punvittayagul, C.; Insuan, O.; Limtrakul Dejkriengkraikul, P.; Wongpoomchai, R. Protective effects of defatted sticky rice bran extracts on the early stages of hepatocarcinogenesis in rats. Molecules, 2019, 24(11), 2142.
[http://dx.doi.org/10.3390/molecules24112142] [PMID: 31174320]
[118]
Liao, S.F.; Liu, J.G.; Xu, M.; Zheng, J.G. Evaluation of the liver cancer prevention of anthocyanin extracts from mulberry (Morus alba L.) variety PR-01. Adv. Biosci. Biotechnol., 2018, 9, 423-442.
[http://dx.doi.org/10.4236/abb.2018.99030]
[119]
Aqil, F.; Jeyabalan, J.; Agrawal, A.K.; Kyakulaga, A.H.; Munagala, R.; Parker, L.; Gupta, R.C. Exosomal delivery of berry anthocyanidins for the management of ovarian cancer. Food Funct., 2017, 8(11), 4100-4107.
[http://dx.doi.org/10.1039/C7FO00882A] [PMID: 28991298]
[120]
Jongsomchai, K.; Leardkamolkarn, V.; Mahatheeranont, S. A rice bran phytochemical, cyanidin 3-glucoside, inhibits the progression of PC3 prostate cancer cell. Anat. Cell Biol., 2020, 53(4), 481-492.
[http://dx.doi.org/10.5115/acb.20.085] [PMID: 32839357]
[121]
Tyagi, A.; Kumar, S.; Raina, K.; Wempe, M.F.; Maroni, P.D.; Agarwal, R.; Agarwal, C. Differential effect of grape seed extract and its active constituent procyanidin B2 3,3″-di-O-gallate against prostate cancer stem cells. Mol. Carcinog., 2019, 58(7), 1105-1117.
[http://dx.doi.org/10.1002/mc.22995] [PMID: 30828884]
[122]
Wallace, T.C.; Giusti, M.M. Anthocyanins. Adv. Nutr., 2015, 6(5), 620-622.
[http://dx.doi.org/10.3945/an.115.009233] [PMID: 26374184]
[123]
Martin, K.R.; Burrell, L.; Bopp, J. Authentic tart cherry juice reduces markers of inflammation in overweight and obese subjects: A randomized, crossover pilot study. Food Funct., 2018, 9(10), 5290-5300.
[http://dx.doi.org/10.1039/C8FO01492B] [PMID: 30255184]
[124]
Weisel, T.; Baum, M.; Eisenbrand, G.; Dietrich, H.; Will, F.; Stockis, J.P.; Kulling, S.; Rüfer, C.; Johannes, C.; Janzowski, C. An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands. Biotechnol. J., 2006, 1(4), 388-397.
[http://dx.doi.org/10.1002/biot.200600004] [PMID: 16892265]
[125]
Mentor-Marcel, R.A.; Bobe, G.; Sardo, C.; Wang, L.S.; Kuo, C.T.; Stoner, G.; Colburn, N.H. Plasma cytokines as potential response indicators to dietary freeze-dried black raspberries in colorectal cancer patients. Nutr. Cancer, 2012, 64(6), 820-825.
[http://dx.doi.org/10.1080/01635581.2012.697597] [PMID: 22823889]
[126]
Wang, L.S.; Arnold, M.; Huang, Y.W.; Sardo, C.; Seguin, C.; Martin, E.; Huang, T.H.; Riedl, K.; Schwartz, S.; Frankel, W.; Pearl, D.; Xu, Y.; Winston, J., III; Yang, G.Y.; Stoner, G. Modulation of genetic and epigenetic biomarkers of colorectal cancer in humans by black raspberries: A phase I pilot study. Clin. Cancer Res., 2011, 17(3), 598-610.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1260] [PMID: 21123457]
[127]
Desai, T.; Bottoms, L.; Roberts, M. The effects of Montmorency tart cherry juice supplementation and FATMAX exercise on fat oxidation rates and cardio-metabolic markers in healthy humans. Eur. J. Appl. Physiol., 2018, 118(12), 2523-2539.
[http://dx.doi.org/10.1007/s00421-018-3978-9] [PMID: 30173287]
[128]
Mallery, S.R.; Zwick, J.C.; Pei, P.; Tong, M.; Larsen, P.E.; Shumway, B.S.; Lu, B.; Fields, H.W.; Mumper, R.J.; Stoner, G.D. Topical application of a bioadhesive black raspberry gel modulates gene expression and reduces cyclooxygenase 2 protein in human premalignant oral lesions. Cancer Res., 2008, 68(12), 4945-4957.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0568] [PMID: 18559542]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy