Review Article

近期上市和临床BCR-ABL抑制剂的研究现状、合成及临床应用

卷 29, 期 17, 2022

发表于: 13 January, 2022

页: [3050 - 3078] 页: 29

弟呕挨: 10.2174/0929867328666211012093423

价格: $65

摘要

BCR-ABL融合基因表达的酪氨酸激酶可引起细胞增殖、粘附和存活特性的变化,这是慢性粒细胞白血病(CML)的主要原因。抑制BCR-ABL酪氨酸激酶的活性已成为治疗慢性骨髓性白血病的有效方法之一。最初,伊马替尼是BCR-ABL酪氨酸激酶抑制剂(TKI)的第一个小分子,用于有效治疗慢性骨髓性白血病。后来,由于各种BCR-ABL突变的出现,特别是T315I突变,伊马替尼产生了强烈的抗药性。第二代激酶抑制剂达沙替尼和尼洛替尼能够克服大部分突变耐药性,但不能克服T315I突变。因此,为了进一步克服耐药性问题,开发了新型KTI,如氟马蒂尼和拉替尼,为临床治疗提供了更多的选择。一些新药已进入临床试验。近年来,临床市场引进了2种新的BCRABL抑制剂(氟马替尼和拉替尼)和5种新的BCR-ABL抑制剂。我们回顾了他们的研究现状,合成方法和临床应用。

关键词: 慢性骨髓性白血病(CML),BCR-ABL,酪氨酸激酶抑制剂(TKI),研究现状,合成,临床应用。

[1]
Jondreville, L.; Krzisch, D.; Chapiro, E.; Nguyen-Khac, F. The complex karyotype and chronic lym-phocytic leukemia: prognostic value and diagnostic recommendations. Am. J. Hematol., 2020, 95(11), 1361-1367.
[http://dx.doi.org/10.1002/ajh.25956] [PMID: 32777106]
[2]
Mishra, S.; Lee, Y.; Park, J.W. Direct quantification of trace amounts of a chronic myeloid leukemia biomarker using locked nucleic acid capture probes. Anal. Chem., 2018, 90(21), 12824-12831.
[http://dx.doi.org/10.1021/acs.analchem.8b03350] [PMID: 30272952]
[3]
Shah, N.P.; Nicoll, J.M.; Nagar, B.; Gorre, M.E.; Paquette, R.L.; Kuriyan, J.; Sawyers, C.L. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell, 2002, 2(2), 117-125.
[http://dx.doi.org/10.1016/S1535-6108(02)00096-X] [PMID: 12204532]
[4]
Melo, J.V. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood, 1996, 88(7), 2375-2384.
[http://dx.doi.org/10.1182/blood.V88.7.2375.bloodjournal8872375] [PMID: 8839828]
[5]
Giles, F.J.; Abruzzese, E.; Rosti, G.; Kim, D.W.; Bhatia, R.; Bosly, A.; Goldberg, S.; Kam, G.L.S.; Ja-gasia, M.; Mendrek, W.; Fischer, T.; Facon, T.; Dünzinger, U.; Marin, D.; Mueller, M.C.; Shou, Y.; Gallagher, N.J.; Larson, R.A.; Mahon, F.X.; Baccarani, M.; Cortes, J.; Kantarjian, H.M. Nilotinib is active in chronic and accelerated phase chronic myeloid leukemia following failure of imatinib and dasatinib therapy. Leukemia, 2010, 24(7), 1299-1301.
[http://dx.doi.org/10.1038/leu.2010.110] [PMID: 20520639]
[6]
Ohyashiki, K.; Ohyashiki, J.H.; Iwabuchi, H.; Tauchi, T.; Iwabuchi, A.; Toyama, K. Presence of Phil-adelphia (Ph) chromosome-negative cells in Ph-positive chronic myelogenous leukemia. Jpn. J. Med., 1990, 29(1), 7-12.
[http://dx.doi.org/10.2169/internalmedicine1962.29.7] [PMID: 2214350]
[7]
Kuwabara, T.; Hamada, M.; Warashina, M.; Taira, K. Allosterically controlled single-chained maxizymes with extremely high and specific activity. Biomacromolecules, 2001, 2(3), 788-799.
[http://dx.doi.org/10.1021/bm010054g] [PMID: 11710033]
[8]
Arthanari, Y.; Pluen, A.; Rajendran, R.; Aojula, H.; Demonacos, C. Delivery of therapeutic shRNA and siRNA by tat fusion peptide targeting BCR-ABL fusion gene in chronic myeloid leukemia cells. J. Control. Release, 2010, 145(3), 272-280.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.011] [PMID: 20403398]
[9]
Yuda, J.; Miyamoto, T.; Odawara, J.; Ohkawa, Y.; Semba, Y.; Hayashi, M.; Miyamura, K.; Tanimoto, M.; Yamamoto, K.; Taniwaki, M.; Akashi, K. Persistent detection of alternatively spliced BCR-ABL variant results in a failure to achieve deep molecular response. Cancer Sci., 2017, 108(11), 2204-2212.
[http://dx.doi.org/10.1111/cas.13353] [PMID: 28801986]
[10]
Gamas, P.; Marchetti, S.; Puissant, A.; Grosso, S.; Jacquel, A.; Colosetti, P.; Pasquet, J.M.; Mahon, F.X.; Cassuto, J.P.; Auberger, P. Inhibition of imatinib-mediated apoptosis by the caspase-cleaved form of the tyrosine kinase Lyn in chronic myelogenous leukemia cells. Leukemia, 2009, 23(8), 1500-1506.
[http://dx.doi.org/10.1038/leu.2009.60] [PMID: 19340007]
[11]
Lambert, G.K.; Duhme-Klair, A.K.; Morgan, T.; Ramjee, M.K. The background, discovery and clini-cal development of BCR-ABL inhibitors. Drug Discov. Today, 2013, 18(19-20), 992-1000.
[http://dx.doi.org/10.1016/j.drudis.2013.06.001] [PMID: 23769978]
[12]
Hassan, A.Q.; Sharma, S.V.; Warmuth, M. Allosteric inhibition of BCR-ABL. Cell Cycle, 2010, 9(18), 3710-3714.
[http://dx.doi.org/10.4161/cc.9.18.13232] [PMID: 20930519]
[13]
Ross, D.M.; O’Hely, M.; Bartley, P.A.; Dang, P.; Score, J.; Goyne, J.M.; Sobrinho-Simoes, M.; Cross, N.C.; Melo, J.V.; Speed, T.P.; Hughes, T.P.; Morley, A.A. Distribution of genomic breakpoints in chronic myeloid leukemia: Analysis of 308 patients. Leukemia, 2013, 27(10), 2105-2107.
[http://dx.doi.org/10.1038/leu.2013.116] [PMID: 23588714]
[14]
Kurzrock, R.; Kantarjian, H.M.; Druker, B.J.; Talpaz, M. Philadelphia chromosome-positive leukemi-as: From basic mechanisms to molecular therapeutics. Ann. Intern. Med., 2003, 138(10), 819-830.
[http://dx.doi.org/10.7326/0003-4819-138-10-200305200-00010] [PMID: 12755554]
[15]
Rowley, J.D.; Hurych, J.; Rezacova, D. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature, 1973, 243(5405), 290-293.
[http://dx.doi.org/10.1038/243290a0] [PMID: 4126434]
[16]
Chen, Z.; Cortes, J.E.; Jorgensen, J.L.; Wang, W.; Yin, C.C.; You, M.J.; Jabbour, E.; Kantarjian, H.M.; Medeiros, L.J.; Hu, S. Differential impact of additional chromosomal abnormalities in myeloid vs lymphoid blast phase of chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Leukemia, 2016, 30(7), 1606-1609.
[http://dx.doi.org/10.1038/leu.2016.6] [PMID: 26837843]
[17]
Van Etten, R.A. Cycling, stressed-out and nervous: cellular functions of c-ABL. Trends Cell Biol., 1999, 9(5), 179-186.
[http://dx.doi.org/10.1016/S0962-8924(99)01549-4] [PMID: 10322452]
[18]
Zhang, Z.; Li, N.; Liu, S.; Jiang, M.; Wan, J.; Zhang, Y.; Wan, L.; Xie, C.; Le, A. Overexpression of IFIT2 inhibits the proliferation of chronic myeloid leukemia cells by regulating the BCR ABL/AKT/mTOR pathway. Int. J. Mol. Med., 2020, 45(4), 1187-1194.
[http://dx.doi.org/10.3892/ijmm.2020.4500] [PMID: 32124954]
[19]
Deininger, M.W.N.; Goldman, J.M.; Melo, J.V. The molecular biology of chronic myeloid leukemia. Blood, 2000, 96(10), 3343-3356.
[http://dx.doi.org/10.1182/blood.V96.10.3343] [PMID: 11071626]
[20]
Yan, Z.; Shanmugasundaram, K.; Ma, D.; Luo, J.; Luo, S.; Rao, H. The N-terminal domain of the non-receptor tyrosine kinase ABL confers protein instability and suppresses tumorigenesis. J. Biol. Chem., 2020, 295(27), 9069-9075.
[http://dx.doi.org/10.1074/jbc.RA120.012821] [PMID: 32439806]
[21]
Claus, R.B.; Annelies, D.K.; Anne, H.; Ton, V.A.; Kessel, G.V.A.; Dirk, B.; Gerard, G.; Malcolm, A.; Ferguson, S.; Teresa, D.; Marion, S. Translocation of c-ABL oncogene correlates with the presence of a Phil-adelphia chromosome in chronic myelocytic leukaemia. Nature, 1983, 306(17), 277-280S.
[22]
Groffen, J.; Stephenson, J.R.; Heisterkamp, N.; de Klein, A.; Bartram, C.R.; Grosveld, G. Philadelph-ia chromosomal breakpoints are clustered within a limited region, BCR, on chromosome 22. Cell, 1984, 36(1), 93-99.
[http://dx.doi.org/10.1016/0092-8674(84)90077-1] [PMID: 6319012]
[23]
Lugo, T.G.; Pendergast, A.M.; Muller, A.J.; Witte, O.N. Tyrosine kinase activity and transformation potency of BCR-ABL oncogene products. Science, 1990, 247(4946), 1079-1082.
[http://dx.doi.org/10.1126/science.2408149] [PMID: 2408149]
[24]
Daley, G.Q.; Van Etten, R.A.; Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210BCR-ABL gene of the Philadelphia chromosome. Science, 1990, 247(4944), 824-830.
[http://dx.doi.org/10.1126/science.2406902] [PMID: 2406902]
[25]
Druker, B.J.; Tamura, S.; Buchdunger, E.; Ohno, S.; Segal, G.M.; Fanning, S.; Zimmermann, J.; Lydon, N.B. Effects of a selective inhibitor of the ABL tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med., 1996, 2(5), 561-566.
[http://dx.doi.org/10.1038/nm0596-561] [PMID: 8616716]
[26]
Deininger, M.W.N.; Goldman, J.M.; Lydon, N.; Melo, J.V. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood, 1997, 90(9), 3691-3698.
[http://dx.doi.org/10.1182/blood.V90.9.3691] [PMID: 9345054]
[27]
Clark, S.S.; McLaughlin, J.; Timmons, M.; Pendergast, A.M.; Ben-Neriah, Y.; Dow, L.W.; Crist, W.; Rovera, G.; Smith, S.D.; Witte, O.N. Expression of a distinctive BCR-ABL oncogene in Ph1-positive Acute Lymphocytic Leukemia (ALL). Science, 1988, 239(4841 Pt 1), 775-777.
[http://dx.doi.org/10.1126/science.3422516] [PMID: 3422516]
[28]
Sawyers, C.L. Disabling ABL-perspectives on ABL kinase regulation and cancer therapeutics. Cancer Cell, 2002, 1(1), 13-15.
[http://dx.doi.org/10.1016/S1535-6108(02)00022-3] [PMID: 12086882]
[29]
Leong, D.; Aghel, N.; Hillis, C.; Siegal, D.; Karampatos, S.; Rangarajan, S.; Pond, G.; Seow, H. Tyro-sine kinase inhibitors in chronic myeloid leukaemia and emergent cardiovascular disease. Heart, 2021, 107(8), 667-673.
[http://dx.doi.org/10.1136/heartjnl-2020-318251] [PMID: 33419879]
[30]
Rossari, F.; Minutolo, F.; Orciuolo, E. Past, present, and future of BCR-ABL inhibitors: From chemi-cal development to clinical efficacy. J. Hematol. Oncol., 2018, 11(1), 84.
[http://dx.doi.org/10.1186/s13045-018-0624-2] [PMID: 29925402]
[31]
Honma, Y.; Matsuo, Y.; Hayashi, Y.; Omura, S. Treatment of Philadelphia-chromosome-positive human leukemia in SCID mouse model with herbimycin A, BCR-ABL tyrosine kinase activity inhibitor. Int. J. Cancer, 1995, 60(5), 685-688.
[http://dx.doi.org/10.1002/ijc.2910600519] [PMID: 7860143]
[32]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[33]
Goldman, J.M.; Melo, J.V. BCR-ABL in chronic myelogenous leukemia-how does it work? Acta Haematol., 2008, 119(4), 212-217.
[http://dx.doi.org/10.1159/000140633] [PMID: 18566539]
[34]
Wang, L.Y.; Chu, S.C.; Lo, Y.; Yang, Y.Y.; Chan, K.A. Association of BCR-ABL tyrosine kinase in-hibitors with hepatitis B virus reactivation requiring antiviral treatment in Taiwan. JAMA Netw. Open, 2021, 4(4), e214132.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.4132] [PMID: 33822067]
[35]
Yaish, P.; Gazit, A.; Gilon, C.; Levitzki, A. Blocking of EGF-dependent cell proliferation by EGF re-ceptor kinase inhibitors. Science, 1988, 242(4880), 933-935.
[http://dx.doi.org/10.1126/science.3263702] [PMID: 3263702]
[36]
Levitzki, A.; Gazit, A. Tyrosine kinase inhibition: An approach to drug development. Science, 1995, 267(5205), 1782-1788.
[http://dx.doi.org/10.1126/science.7892601] [PMID: 7892601]
[37]
Kaur, G.; Gazit, A.; Levitzki, A.; Stowe, E.; Cooney, D.A.; Sausville, E.A. Tyrphostin induced growth inhibition: Correlation with effect on p210BCR-ABL autokinase activity in K562 chronic myelogenous leu-kemia. Anticancer Drugs, 1994, 5(2), 213-222.
[http://dx.doi.org/10.1097/00001813-199404000-00013] [PMID: 8049505]
[38]
Deng, X.; Okram, B.; Ding, Q.; Zhang, J.; Choi, Y.; Adrián, F.J.; Wojciechowski, A.; Zhang, G.; Che, J.; Bursulaya, B.; Cowan-Jacob, S.W.; Rummel, G.; Sim, T.; Gray, N.S. Expanding the diversity of allosteric BCR-ABL inhibitors. J. Med. Chem., 2010, 53(19), 6934-6946.
[http://dx.doi.org/10.1021/jm100555f] [PMID: 20828158]
[39]
Jain, N.; Maiti, A.; Ravandi, F.; Konopleva, M.; Daver, N.; Kadia, T.; Pemmaraju, N.; Short, N.; Ke-briaei, P.; Ning, J.; Cortes, J.; Jabbour, E.; Kantarjian, H. Inotuzumab ozogamicin with bosutinib for relapsed or refractory Philadelphia chromosome positive acute lymphoblastic leukemia or lymphoid blast phase of chronic myeloid leukemia. Am. J. Hematol., 2021, 96(8), 1000-1007.
[http://dx.doi.org/10.1002/ajh.26238] [PMID: 33991360]
[40]
Reynolds, C.R.; Islam, S.A.; Sternberg, M.J.E. EzMol: A web server wizard for the rapid visualization and image production of protein and nucleic acid structures. J. Mol. Biol., 2018, 430(15), 2244-2248.
[http://dx.doi.org/10.1016/j.jmb.2018.01.013] [PMID: 29391170]
[41]
Cutler, J.A.; Udainiya, S.; Madugundu, A.K.; Renuse, S.; Xu, Y.; Jung, J.; Kim, K.P.; Wu, X.; Pan-dey, A. Integrative phosphoproteome and interactome analysis of the role of Ubash3b in BCR-ABL signal-ing. Leukemia, 2020, 34(1), 301-305.
[http://dx.doi.org/10.1038/s41375-019-0535-4] [PMID: 31399640]
[42]
Azam, M.; Seeliger, M.A.; Gray, N.S.; Kuriyan, J.; Daley, G.Q. Activation of tyrosine kinases by mu-tation of the gatekeeper threonine. Nat. Struct. Mol. Biol., 2008, 15(10), 1109-1118.
[http://dx.doi.org/10.1038/nsmb.1486] [PMID: 18794843]
[43]
Carofiglio, F.; Lopalco, A.; Lopedota, A.; Cutrignelli, A.; Nicolotti, O.; Denora, N.; Stefanachi, A.; Leonetti, F. BCR-ABL tyrosine kinase inhibitors in the treatment of pediatric CML. Int. J. Mol. Sci., 2020, 21(12), 4469.
[http://dx.doi.org/10.3390/ijms21124469] [PMID: 32586039]
[44]
Hantschel, O.; Grebien, F.; Superti-Furga, G. The growing arsenal of ATP-competitive and allosteric inhibitors of BCR-ABL. Cancer Res., 2012, 72(19), 4890-4895.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1276] [PMID: 23002203]
[45]
Shah, N.P.; Tran, C.; Lee, F.Y.; Chen, P.; Norris, D.; Sawyers, C.L. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science, 2004, 305(5682), 399-401.
[http://dx.doi.org/10.1126/science.1099480] [PMID: 15256671]
[46]
O’Hare, T.; Shakespeare, W.C.; Zhu, X.; Eide, C.A.; Rivera, V.M.; Wang, F.; Adrian, L.T.; Zhou, T.; Huang, W.S.; Xu, Q.; Metcalf, C.A., III; Tyner, J.W.; Loriaux, M.M.; Corbin, A.S.; Wardwell, S.; Ning, Y.; Keats, J.A.; Wang, Y.; Sundaramoorthi, R.; Thomas, M.; Zhou, D.; Snodgrass, J.; Commodore, L.; Sawyer, T.K.; Dalgarno, D.C.; Deininger, M.W.; Druker, B.J.; Clackson, T. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 2009, 16(5), 401-412.
[http://dx.doi.org/10.1016/j.ccr.2009.09.028] [PMID: 19878872]
[47]
Ting, S.; Mixue, X.; Lixia, Z.; Xueying, L.; Wanzhuo, X.; Xiujin, Y. T315I mutation exerts a dismal prognosis on adult BCR-ABL1-positive acute lymphoblastic leukemia, and salvage therapy with ponatinib or CAR-T cell and bridging to allogeneic hematopoietic stem cell transplantation can improve clinical outcomes. Ann. Hematol., 2020, 99(4), 829-834.
[http://dx.doi.org/10.1007/s00277-020-03949-z] [PMID: 32107574]
[48]
Bradeen, H.A.; Eide, C.A.; O’Hare, T.; Johnson, K.J.; Willis, S.G.; Lee, F.Y.; Druker, B.J.; Deininger, M.W. Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: High efficacy of drug combinations. Blood, 2006, 108(7), 2332-2338.
[http://dx.doi.org/10.1182/blood-2006-02-004580] [PMID: 16772610]
[49]
Burgess, M.R.; Skaggs, B.J.; Shah, N.P. Comparative analysis of two clinically active BCR-ABL ki-nase inhibitors reveals the role of conformation-specific binding in resistance. Proc. Natl. Acad. Sci. USA, 2005, 102(9), 3395-3400.
[http://dx.doi.org/10.1073/pnas.0409770102] [PMID: 15705718]
[50]
Roychowdhury, S.; Talpaz, M. Managing resistance in chronic myeloid leukemia. Blood Rev., 2011, 25(6), 279-290.
[http://dx.doi.org/10.1016/j.blre.2011.09.001] [PMID: 21982419]
[51]
Druker, B.J.; Sawyers, C.L.; Kantarjian, H.; Resta, D.J.; Reese, S.F.; Ford, J.M.; Capdeville, R.; Talpaz, M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic mye-loid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med., 2001, 344(14), 1038-1042.
[http://dx.doi.org/10.1056/NEJM200104053441402] [PMID: 11287973]
[52]
Druker, B.J.; Talpaz, M.; Resta, D.J.; Peng, B.; Buchdunger, E.; Ford, J.M.; Lydon, N.B.; Kantarjian, H.; Capdeville, R.; Ohno-Jones, S.; Sawyers, C.L. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med., 2001, 344(14), 1031-1037.
[http://dx.doi.org/10.1056/NEJM200104053441401] [PMID: 11287972]
[53]
Makeyeva, A.B.; Skublov, S.G. STI571: Targeting BCR-ABL as therapy for CML Mauro. Geochem. Int., 2016, 54, 788-794.
[http://dx.doi.org/10.1634/theoncologist.6-3-233]
[54]
Kantarjian, H.; Sawyers, C.; Hochhaus, A.; Guilhot, F.; Schiffer, C.; Gambacorti-Passerini, C.; Nie-derwieser, D.; Resta, D.; Capdeville, R.; Zoellner, U.; Talpaz, M.; Druker, B.; Goldman, J.; O’Brien, S.G.; Russell, N.; Fischer, T.; Ottmann, O.; Cony-Makhoul, P.; Facon, T.; Stone, R.; Miller, C.; Tallman, M.; Brown, R.; Schuster, M.; Loughran, T.; Gratwohl, A.; Mandelli, F.; Saglio, G.; Lazzarino, M.; Russo, D.; Bac-carani, M.; Morra, E. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med., 2002, 346(9), 645-652.
[http://dx.doi.org/10.1056/NEJMoa011573] [PMID: 11870241]
[55]
Druker, B.J.; Guilhot, F.; O’Brien, S.G.; Gathmann, I.; Kantarjian, H.; Gattermann, N.; Deininger, M.W.; Silver, R.T.; Goldman, J.M.; Stone, R.M.; Cervantes, F.; Hochhaus, A.; Powell, B.L.; Gabrilove, J.L.; Rousselot, P.; Reiffers, J.; Cornelissen, J.J.; Hughes, T.; Agis, H.; Fischer, T.; Verhoef, G.; Shepherd, J.; Sa-glio, G.; Gratwohl, A.; Nielsen, J.L.; Radich, J.P.; Simonsson, B.; Taylor, K.; Baccarani, M.; So, C.; Letvak, L.; Larson, R.A. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med., 2006, 355(23), 2408-2417.
[http://dx.doi.org/10.1056/NEJMoa062867] [PMID: 17151364]
[56]
Deininger, M.; O’Brien, S.G.; Guilhot, F. International randomized study of interferon vs STI571(IRIS) 8-year follow up: consistainded survival and low risk for progression or events in patients with newly diagnosed Chronic Myeloid Leukemia in Chronic Phase (CML-CP) treated with imatinib. Blood, 2009, 114(22), 462-462.
[http://dx.doi.org/10.1182/blood.V114.22.1126.1126]
[57]
El-Damasy, A.K.; Jin, H.; Seo, S.H.; Bang, E.K.; Keum, G. Design, synthesis, and biological evalua-tions of novel 3-amino-4-ethynyl indazole derivatives as BCR-ABL kinase inhibitors with potent cellular an-tileukemic activity. Eur. J. Med. Chem., 2020, 207, 112710.
[http://dx.doi.org/10.1016/j.ejmech.2020.112710] [PMID: 32961435]
[58]
Miething, C.; Feihl, S.; Mugler, C.; Grundler, R.; von Bubnoff, N.; Lordick, F.; Peschel, C.; Duyster, J. The BCR-ABL mutations T315I and Y253H do not confer a growth advantage in the absence of imatinib. Leukemia, 2006, 20(4), 650-657.
[http://dx.doi.org/10.1038/sj.leu.2404151] [PMID: 16482207]
[59]
Naqvi, K.; Cortes, J.E.; Luthra, R.; O’Brien, S.; Wierda, W.; Borthakur, G.; Kadia, T.; Garcia-Manero, G.; Ravandi, F.; Rios, M.B.; Dellasala, S.; Pierce, S.; Jabbour, E.; Patel, K.; Kantarjian, H. Characteristics and outcome of chronic myeloid leukemia patients with E255K/V BCR-ABL kinase domain mutations. Int. J. Hematol., 2018, 107(6), 689-695.
[http://dx.doi.org/10.1007/s12185-018-2422-6] [PMID: 29464484]
[60]
Naqvi, K.; Kantarjian, H.; Quintas-Cardama, A. Characteristics and outcome of Chronic Myeloid Leukemia (CML) patients with E255K and E255V BCR-ABL kinase domain mutations. Blood, 2010, 19(21), 524-525.
[http://dx.doi.org/10.1182/blood.V116.21.1226.1226]
[61]
Ivanov, H.Y.; Linev, A.; Zheliazkov, I. Characterizing of five common BCR-ABL kinase domain mutations (T315I, F359V, E255V, E255K, Y253H) in Bulgarian patients with chronic myeloid leukemia pre-liminary results. Eur. J. Hum. Genet., 2019, 27, 1013-1014.
[http://dx.doi.org/10.1038/s41431-019-0408-3]
[62]
Liu, J.; Pei, J.; Lai, L. A combined computational and experimental strategy identifies mutations con-ferring resistance to drugs targeting the BCR-ABL fusion protein. Commun. Biol., 2020, 3(1), 18.
[http://dx.doi.org/10.1038/s42003-019-0743-5] [PMID: 31925328]
[63]
Takawira, C.; Arsuaga-Zorrilla, C.B.; Wilson, L.; Taguchi, T.; Dietrich, M.A.; Stout, R.W.; Lopez, M.J. Association of chronic myelogenous (basophilic) leukemia and the BCR/ABL mutation in a Yucatan barrow (Sus scrofa domestica). Front. Vet. Sci., 2020, 7, 575199.
[http://dx.doi.org/10.3389/fvets.2020.575199] [PMID: 33251261]
[64]
Gupta, P.; Kathawala, R.J.; Wei, L.; Wang, F.; Wang, X.; Druker, B.J.; Fu, L.W.; Chen, Z.S. PBA2, a novel inhibitor of imatinib-resistant BCR-ABL T315I mutation in chronic myeloid leukemia. Cancer Lett., 2016, 383(2), 220-229.
[http://dx.doi.org/10.1016/j.canlet.2016.09.025] [PMID: 27720778]
[65]
Branford, S.; Rudzki, Z.; Walsh, S.; Parkinson, I.; Grigg, A.; Szer, J.; Taylor, K.; Herrmann, R.; Sey-mour, J.F.; Arthur, C.; Joske, D.; Lynch, K.; Hughes, T. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood, 2003, 102(1), 276-283.
[http://dx.doi.org/10.1182/blood-2002-09-2896] [PMID: 12623848]
[66]
Hochhaus, M.A. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia, 2002, 16(11), 2190-2196.
[http://dx.doi.org/10.1038/sj.leu.2402741]
[67]
Donato, N.J.; Wu, J.Y.; Stapley, J.; Lin, H.; Arlinghaus, R.; Aggarwal, B.B.; Shishodia, S.; Albitar, M.; Hayes, K.; Kantarjian, H.; Talpaz, M. Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res., 2004, 64(2), 672-677.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-1484] [PMID: 14744784]
[68]
Rumpold, H.; Wolf, A.M.; Gruenewald, K.; Gastl, G.; Gunsilius, E.; Wolf, D. RNAi-mediated knock-down of P-glycoprotein using a transposon-based vector system durably restores imatinib sensitivity in imatinib-resistant CML cell lines. Exp. Hematol., 2005, 33(7), 767-775.
[http://dx.doi.org/10.1016/j.exphem.2005.03.014] [PMID: 15963852]
[69]
Burger, H.; van Tol, H.; Brok, M.; Wiemer, E.A.; de Bruijn, E.A.; Guetens, G.; de Boeck, G.; Sparre-boom, A.; Verweij, J.; Nooter, K. Chronic imatinib mesylate exposure leads to reduced intracellular drug ac-cumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol. Ther., 2005, 4(7), 747-752.
[http://dx.doi.org/10.4161/cbt.4.7.1826] [PMID: 15970668]
[70]
Robin, F.; Sabina, C. Dasatinib-Blinatumomab for pH-positive ALL. N. Engl. J. Med., 2021, 384(2), 384-384.
[http://dx.doi.org/10.1056/NEJMc2033785]
[71]
Hochhaus, A.; Gambacorti-Passerini, C.; Abboud, C.; Gjertsen, B.T.; Brümmendorf, T.H.; Smith, B.D.; Ernst, T.; Giraldo-Castellano, P.; Olsson-Strömberg, U.; Saussele, S.; Bardy-Bouxin, N.; Viqueira, A.; Leip, E.; Russell-Smith, T.A.; Leone, J.; Rosti, G.; Watts, J.; Giles, F.J. Bosutinib for pretreated patients with chronic phase chronic myeloid leukemia: primary results of the phase 4 BYOND study. Leukemia, 2020, 34(8), 2125-2137.
[http://dx.doi.org/10.1038/s41375-020-0915-9] [PMID: 32572189]
[72]
Kantarjian, H.M.; Hughes, T.P.; Larson, R.A.; Kim, D.W.; Issaragrisil, S.; le Coutre, P.; Etienne, G.; Boquimpani, C.; Pasquini, R.; Clark, R.E.; Dubruille, V.; Flinn, I.W.; Kyrcz-Krzemien, S.; Medras, E.; Za-nichelli, M.; Bendit, I.; Cacciatore, S.; Titorenko, K.; Aimone, P.; Saglio, G.; Hochhaus, A. Long-term out-comes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia, 2021, 35(2), 440-453.
[http://dx.doi.org/10.1038/s41375-020-01111-2] [PMID: 33414482]
[73]
Deininger, M.; Buchdunger, E.; Druker, B.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood, 2005, 105(7), 2640-2653.
[http://dx.doi.org/10.1182/blood-2004-08-3097] [PMID: 15618470]
[74]
Quach, D.; Tang, G.; Anantharajan, J.; Baburajendran, N.; Poulsen, A.; Wee, J.L.K.; Retna, P.; Li, R.; Liu, B.; Tee, D.H.Y.; Kwek, P.Z.; Joy, J.K.; Yang, W.Q.; Zhang, C.J.; Foo, K.; Keller, T.H.; Yao, S.Q. Strate-gic design of catalytic lysine-targeting reversible covalent BCR-ABL inhibitors. Angew. Chem. Int. Ed. Engl., 2021, 60(31), 17131-17137.
[http://dx.doi.org/10.1002/anie.202105383] [PMID: 34008286]
[75]
Wong, S.; Witte, O.N. The BCR-ABL story: Bench to bedside and back. Annu. Rev. Immunol., 2004, 22, 247-306.
[http://dx.doi.org/10.1146/annurev.immunol.22.012703.104753] [PMID: 15032571]
[76]
Zimmermann, J.; Buchdunger, E.; Mett, H.; Meyer, T.; Lydon, N.B.; Traxler, P. Phenylamino-pyrimidine (PAP) - derivatives: a new class of potent and highly selective PDGF-receptor autophosphoryla-tion inhibitors. Bioorg. Med. Chem. Lett., 1996, 6, 1221-1226.
[http://dx.doi.org/10.1016/0960-894X(96)00197-7]
[77]
Zimmermann, J.; Buchdunger, E.; Mett, H.; Meyer, T.; Lydon, N.B. Potent and selective inhibitors of the ABL-kinase: Phenylamino-Pyrimidine (PAP) derivatives. Bioorg. Med. Chem. Lett., 1997, 7(11), 187-192.
[http://dx.doi.org/10.1016/S0960-894X(96)00601-4]
[78]
Zhao, J.; Quan, H.; Xu, Y.; Kong, X.; Jin, L.; Lou, L. Flumatinib, a selective inhibitor of BCR-ABL/PDGFR/KIT, effectively overcomes drug resistance of certain KIT mutants. Cancer Sci., 2014, 105(1), 117-125.
[http://dx.doi.org/10.1111/cas.12320] [PMID: 24205792]
[79]
Gong, A.; Chen, X.; Deng, P.; Zhong, D. Metabolism of flumatinib, a novel antineoplastic tyrosine kinase inhibitor, in chronic myelogenous leukemia patients. Drug Metab. Dispos., 2010, 38(8), 1328-1340.
[http://dx.doi.org/10.1124/dmd.110.032326] [PMID: 20478851]
[80]
Xu, G.; Shen, H.; Tong, T.F. Synthesis, crystal structure, and spectral characterization of flumatinib mesylate. Synth. Commun., 2010, 40(17), 2564-2570.
[http://dx.doi.org/10.1080/00397910903289248]
[81]
Cowan-Jacob, S.W.; Fendrich, G.; Floersheimer, A.; Furet, P.; Liebetanz, J.; Rummel, G.; Rhein-berger, P.; Centeleghe, M.; Fabbro, D.; Manley, P.W. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallogr. D Biol. Crystallogr., 2007, 63(Pt 1), 80-93.
[http://dx.doi.org/10.1107/S0907444906047287] [PMID: 17164530]
[82]
Zhang, L.; Meng, L.; Liu, B.; Zhang, Y.; Zhu, H.; Cui, J.; Sun, A.; Hu, Y.; Jin, J.; Jiang, H.; Zhang, X.; Li, Y.; Liu, L.; Zhang, W.; Liu, X.; Gu, J.; Qiao, J.; Ouyang, G.; Liu, X.; Luo, J.; Jiang, M.; Xie, X.; Li, J.; Zhao, C.; Zhang, M.; Yang, T.; Wang, J. Flumatinib versus imatinib for newly diagnosed chronic phase chronic myeloid leukemia: a phase III, randomized, open-label, multi-center FESTnd study. Clin. Cancer Res., 2021, 27(1), 70-77.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-1600] [PMID: 32928796]
[83]
Ramirez, P.; DiPersio, J.F. Therapy options in imatinib failures. Oncologist, 2008, 13(4), 424-434.
[http://dx.doi.org/10.1634/theoncologist.2007-0170] [PMID: 18448557]
[84]
Chen, J.; Guo, S.; Yu, X.; Lei, J.; Xu, T.; Zhu, S.; Chen, L.; Xu, P.; Zhou, X.; Yu, L. Metabolic inter-actions between flumatinib and the CYP3A4 inhibitors erythromycin, cyclosporine, and voriconazole. Pharmazie, 2020, 75(9), 424-429.
[http://dx.doi.org/10.1691/ph.2020.0068] [PMID: 32797767]
[85]
Gschwind, H.P.; Pfaar, U.; Waldmeier, F.; Zollinger, M.; Sayer, C.; Zbinden, P.; Hayes, M.; Pokorny, R.; Seiberling, M.; Ben-Am, M.; Peng, B.; Gross, G. Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab. Dispos., 2005, 33(10), 1503-1512.
[http://dx.doi.org/10.1124/dmd.105.004283] [PMID: 16006570]
[86]
Todd, M.; Meyers, M.L.; Charnas, R.; Acharya, M.; Molina, A. Fast and flawed or scientifically sound: the argument for administering oral oncology drugs during fasting. J. Clin. Oncol., 2012, 30(8), 888-889.
[http://dx.doi.org/10.1200/JCO.2011.39.7851] [PMID: 22331950]
[87]
Yang, Y.; Liu, K.; Zhong, D.; Chen, X. Simultaneous determination of flumatinib and its two major metabolites in plasma of chronic myelogenous leukemia patients by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 895-896, 25-30.
[http://dx.doi.org/10.1016/j.jchromb.2012.03.008] [PMID: 22472641]
[88]
Kishino, E.; Ogata, R.; Saitoh, W.; Koike, Y.; Ohta, Y.; Kanomata, N.; Kurebayashi, J. Anti-cell growth and anti-cancer stem cell activity of the CDK4/6 inhibitor palbociclib in breast cancer cells. Breast Cancer, 2020, 27(3), 415-425.
[http://dx.doi.org/10.1007/s12282-019-01035-5] [PMID: 31823286]
[89]
Khalaf, D.J.; Annala, M.; Taavitsainen, S.; Finch, D.L.; Oja, C.; Vergidis, J.; Zulfiqar, M.; Sunder-land, K.; Azad, A.A.; Kollmannsberger, C.K.; Eigl, B.J.; Noonan, K.; Wadhwa, D.; Attwell, A.; Keith, B.; Ellard, S.L.; Le, L.; Gleave, M.E.; Wyatt, A.W.; Chi, K.N. Optimal sequencing of enzalutamide and abi-raterone acetate plus prednisone in metastatic castration-resistant prostate cancer: a multicentre, randomised, open-label, phase 2, crossover trial. Lancet Oncol., 2019, 20(12), 1730-1739.
[http://dx.doi.org/10.1016/S1470-2045(19)30688-6] [PMID: 31727538]
[90]
Ramanathan, S.; Jin, F.; Sharma, S.; Kearney, B.P. Clinical pharmacokinetic and pharmacodynamic profile of idelalisib. Clin. Pharmacokinet., 2016, 55(1), 33-45.
[http://dx.doi.org/10.1007/s40262-015-0304-0] [PMID: 26242379]
[91]
de Jong, J.; Sukbuntherng, J.; Skee, D.; Murphy, J.; O’Brien, S.; Byrd, J.C.; James, D.; Hellemans, P.; Loury, D.J.; Jiao, J.; Chauhan, V.; Mannaert, E. The effect of food on the pharmacokinetics of oral ibrutinib in healthy participants and patients with chronic lymphocytic leukemia. Cancer Chemother. Pharmacol., 2015, 75(5), 907-916.
[http://dx.doi.org/10.1007/s00280-015-2708-9] [PMID: 25724156]
[92]
Kuang, Y.; Song, H.L.; Yang, G.P.; Pei, Q.; Yang, X.Y.; Ye, L.; Yang, S.; Wu, S.T.; Guo, C.; He, Q.N.; Huang, J. Effect of high-fat diet on the pharmacokinetics and safety of flumatinib in healthy Chinese subjects. Cancer Chemother. Pharmacol., 2020, 86(3), 339-346.
[http://dx.doi.org/10.1007/s00280-020-04117-w] [PMID: 32757049]
[93]
Reddy, E.P.; Aggarwal, A.K. The ins and outs of BCR-ABL inhibition. Genes Cancer, 2012, 3(5-6), 447-454.
[http://dx.doi.org/10.1177/1947601912462126] [PMID: 23226582]
[94]
Kim, D.Y.; Cho, D.J.; Lee, G.Y.; Kim, H.Y.; Woo, S.H.; Kim, Y.S.; Lee, S.A.; Han, B.C. Preparation of N-phenyl-2- pyrimidinamines as anticancer drugs. U.S. Patent 20,080,096,899, 2007.
[95]
Dong, L.S. High-yield synthesis method of radotinib. C.N. Patent 111,039,932, 2019.
[96]
Noh, H.; Jung, S.Y.; Kwak, J.Y.; Kim, S.H.; Oh, S.J.; Zang, D.Y.; Lee, S.; Park, H.L.; Jo, D.J.; Shin, J.S.; Do, Y.R.; Kim, D.W.; Lee, J.I. Determination of a radotinib dosage regimen based on dose-response re-lationships for the treatment of newly diagnosed patients with chronic myeloid leukemia. Cancer Med., 2018, 7(5), 1766-1773.
[http://dx.doi.org/10.1002/cam4.1436] [PMID: 29577681]
[97]
Talpaz, M.; Shah, N.P.; Kantarjian, H.; Donato, N.; Nicoll, J.; Paquette, R.; Cortes, J.; O’Brien, S.; Nicaise, C.; Bleickardt, E.; Blackwood-Chirchir, M.A.; Iyer, V.; Chen, T.T.; Huang, F.; Decillis, A.P.; Saw-yers, C.L. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2006, 354(24), 2531-2541.
[http://dx.doi.org/10.1056/NEJMoa055229] [PMID: 16775234]
[98]
Lee, J.; Jung, S.Y.; Choi, M.Y.; Park, J.S.; Park, S.K.; Lim, S.A.; Cho, K.H.; Oh, S.Y.; Ha, J.; Kim, D.W.; Lee, J. Development of a dried blood spot sampling method towards therapeutic monitoring of ra-dotinib in the treatment of chronic myeloid leukaemia. J. Clin. Pharm. Ther., 2020, 45(5), 1006-1013.
[http://dx.doi.org/10.1111/jcpt.13124] [PMID: 32022312]
[99]
Lee, S.; Kim, S.; Park, Y.J.; Yun, S.P.; Kwon, S.H.; Kim, D.; Kim, D.Y.; Shin, J.S.; Cho, D.J.; Lee, G.Y.; Ju, H.S.; Yun, H.J.; Park, J.H.; Kim, W.R.; Jung, E.A.; Lee, S.; Ko, H.S. The c-ABL inhibitor, Ra-dotinib HCl, is neuroprotective in a preclinical Parkinson’s disease mouse model. Hum. Mol. Genet., 2018, 27(13), 2344-2356.
[http://dx.doi.org/10.1093/hmg/ddy143] [PMID: 29897434]
[100]
Kim, K.E.; Park, S.; Cheon, S.; Kim, D.Y.; Cho, D.J.; Park, J.M.; Hur, D.Y.; Park, H.J.; Cho, D. Novel application of radotinib for the treatment of solid tumors via natural killer cell activation. J. Immunol. Res., 2018, 2018, 9580561.
[http://dx.doi.org/10.1155/2018/9580561] [PMID: 30687767]
[101]
Heo, S.K.; Noh, E.K.; Kim, J.Y.; Jo, J.C.; Choi, Y.; Koh, S.; Baek, J.H.; Min, Y.J.; Kim, H. Radotinib induces high cytotoxicity in c-KIT positive acute myeloid leukemia cells. Eur. J. Pharmacol., 2017, 804, 52-56.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.040] [PMID: 28322836]
[102]
Heo, S.K.; Noh, E.K.; Gwon, G.D.; Kim, J.Y.; Jo, J.C.; Choi, Y.; Koh, S.; Baek, J.H.; Min, Y.J.; Kim, H. Radotinib inhibits acute myeloid leukemia cell proliferation via induction of mitochondrial-dependent apoptosis and CDK inhibitors. Eur. J. Pharmacol., 2016, 789, 280-290.
[http://dx.doi.org/10.1016/j.ejphar.2016.07.049] [PMID: 27477352]
[103]
Breccia, M.; Colafigli, G.; Scalzulli, E.; Martelli, M. Asciminib: An investigational agent for the treatment of chronic myeloid leukemia. Expert Opin. Investig. Drugs, 2021, 30(8), 803-811.
[http://dx.doi.org/10.1080/13543784.2021.1941863] [PMID: 34130563]
[104]
Hughes, T.P.; Mauro, M.J.; Cortes, J.E.; Minami, H.; Rea, D.; DeAngelo, D.J.; Breccia, M.; Goh, Y.T.; Talpaz, M.; Hochhaus, A.; le Coutre, P.; Ottmann, O.; Heinrich, M.C.; Steegmann, J.L.; Deininger, M.W.N.; Janssen, J.J.W.M.; Mahon, F.X.; Minami, Y.; Yeung, D.; Ross, D.M.; Tallman, M.S.; Park, J.H.; Druker, B.J.; Hynds, D.; Duan, Y.; Meille, C.; Hourcade-Potelleret, F.; Vanasse, K.G.; Lang, F.; Kim, D.W. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. N. Engl. J. Med., 2019, 381(24), 2315-2326.
[http://dx.doi.org/10.1056/NEJMoa1902328] [PMID: 31826340]
[105]
Pan, D.; Niu, Y.; Ning, L. Computational study on the binding and unbinding mechanism of HCV NS5B with the inhibitor GS-461203 and substrate using conventional and steered molecular dynamics simulations. Chemom. Intell. Lab. Syst., 2016, 156, 72-80.
[http://dx.doi.org/10.1016/j.chemolab.2016.05.015]
[106]
Mian, A.A.; Rafiei, A.; Haberbosch, I.; Zeifman, A.; Titov, I.; Stroylov, V.; Metodieva, A.; Stroganov, O.; Novikov, F.; Brill, B.; Chilov, G.; Hoelzer, D.; Ottmann, O.G.; Ruthardt, M. PF-114, a potent and selective inhibitor of native and mutated BCR/ABL is active against Philadelphia chromosome-positive (Ph+) leukemias harboring the T315I mutation. Leukemia, 2015, 29(5), 1104-1114.
[http://dx.doi.org/10.1038/leu.2014.326] [PMID: 25394714]
[107]
Wang, H.; Kellogg, G.E.; Xu, P.; Zhang, Y. Exploring the binding mechanisms of dia-minopimelic acid analogs to meso-diaminopimelate dehydrogenase by molecular modeling. J. Mol. Graph. Model., 2018, 83, 100-111.
[http://dx.doi.org/10.1016/j.jmgm.2018.05.011] [PMID: 29885593]
[108]
Zhang, J.; Adrián, F.J.; Jahnke, W.; Cowan-Jacob, S.W.; Li, A.G.; Iacob, R.E.; Sim, T.; Pow-ers, J.; Dierks, C.; Sun, F.; Guo, G.R.; Ding, Q.; Okram, B.; Choi, Y.; Wojciechowski, A.; Deng, X.; Liu, G.; Fendrich, G.; Strauss, A.; Vajpai, N.; Grzesiek, S.; Tuntland, T.; Liu, Y.; Bursulaya, B.; Azam, M.; Manley, P.W.; Engen, J.R.; Daley, G.Q.; Warmuth, M.; Gray, N.S. Targeting BCR-ABL by combining allosteric with ATP-binding-site inhibitors. Nature, 2010, 463(7280), 501-506.
[http://dx.doi.org/10.1038/nature08675] [PMID: 20072125]
[109]
Warmuth, M.; Kim, S.; Gu, X.J.; Xia, G.; Adrián, F. Ba/F3 cells and their use in kinase drug discovery. Curr. Opin. Oncol., 2007, 19(1), 55-60.
[http://dx.doi.org/10.1097/CCO.0b013e328011a25f] [PMID: 17133113]
[110]
Adrián, F.J.; Ding, Q.; Sim, T.; Velentza, A.; Sloan, C.; Liu, Y.; Zhang, G.; Hur, W.; Ding, S.; Manley, P.; Mestan, J.; Fabbro, D.; Gray, N.S. Allosteric inhibitors of BCRABL-dependent cell proliferation. Nat. Chem. Biol., 2006, 2(2), 95-102.
[http://dx.doi.org/10.1038/nchembio760] [PMID: 16415863]
[111]
Schoepfer, J.; Jahnke, W.; Berellini, G.; Buonamici, S.; Cotesta, S.; Cowan-Jacob, S.W.; Dodd, S.; Drueckes, P.; Fabbro, D.; Gabriel, T.; Groell, J.M.; Grotzfeld, R.M.; Hassan, A.Q.; Henry, C.; Iyer, V.; Jones, D.; Lombardo, F.; Loo, A.; Manley, P.W.; Pellé, X.; Rummel, G.; Salem, B.; Warmuth, M.; Wylie, A.A.; Zoller, T.; Marzinzik, A.L.; Furet, P. Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J. Med. Chem., 2018, 61(18), 8120-8135.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01040] [PMID: 30137981]
[112]
Massaro, F.; Colafigli, G.; Molica, M.; Breccia, M. Novel tyrosine-kinase inhibitors for the treatment of chronic myeloid leukemia: Safety and efficacy. Expert Rev. Hematol., 2018, 11(4), 301-306.
[http://dx.doi.org/10.1080/17474086.2018.1451322] [PMID: 29522367]
[113]
Eadie, L.N.; Saunders, V.A.; Branford, S.; White, D.L.; Hughes, T.P. The new allosteric inhib-itor asciminib is susceptible to resistance mediated by ABCB1 and ABCG2 over expression in vitro. Oncotarget, 2018, 9(17), 13423-13437.
[http://dx.doi.org/10.18632/oncotarget.24393] [PMID: 29568367]
[114]
Qiang, W.; Antelope, O.; Zabriskie, M.S.; Pomicter, A.D.; Vellore, N.A.; Szankasi, P.; Rea, D.; Cayuela, J.M.; Kelley, T.W.; Deininger, M.W.; O’Hare, T. Mechanisms of resistance to the BCR-ABL1 allosteric inhibitor asciminib. Leukemia, 2017, 31(12), 2844-2847.
[http://dx.doi.org/10.1038/leu.2017.264] [PMID: 28819281]
[115]
Sahin, I.; Reagan, J.L. Asciminib in relapsed chronic myeloid leukemia. N. Engl. J. Med., 2020, 382(14), 1378-1379.
[http://dx.doi.org/10.1056/NEJMc2000116] [PMID: 32242375]
[116]
Eide, C.A.; Zabriskie, M.S.; Stevens, S.L.S.; Antelope, O.; Vellore, N.A.; Than, H. Asciminib with ponatinib lowers resistance in chronic myeloid leukemia. Cancer Discov., 2019, 9(11), 1481-1481.
[http://dx.doi.org/10.1158/2159-8290.CD-RW2019-149] [PMID: 34468348]
[117]
Eide, C.A.; Zabriskie, M.S.; Savage Stevens, S.L.; Antelope, O.; Vellore, N.A.; Than, H.; Schultz, A.R.; Clair, P.; Bowler, A.D.; Pomicter, A.D.; Yan, D.; Senina, A.V.; Qiang, W.; Kelley, T.W.; Szan-kasi, P.; Heinrich, M.C.; Tyner, J.W.; Rea, D.; Cayuela, J.M.; Kim, D.W.; Tognon, C.E.; O’Hare, T.; Druker, B.J.; Deininger, M.W. Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants. Cancer Cell, 2019, 36(4), 431-443.
[http://dx.doi.org/10.1016/j.ccell.2019.08.004] [PMID: 31543464]
[118]
Mauro, M.J.; Hochhaus, A.; Boquimpani, C. A multicenter, randomized phase 3 study of asciminib (ABL001) vs. bosutinib in patients with Chronic Myeloid Leukemia in chronic phase (CML-CP) previously treated with >= 2 TKIs. Cl Lymph Myelom. Leuke., 2019, 19, S286-S287.
[http://dx.doi.org/10.1016/j.clml.2019.07.230]
[119]
Menssen, H.D.; Quinlan, M.; Kemp, C.; Tian, X. Relative bioavailability and food effect evaluation for 2 tablet formulations of asciminib in a 2-arm, crossover, randomized, open-label study in healthy volunteers. Clin. Pharmacol. Drug Dev., 2019, 8(3), 385-394.
[http://dx.doi.org/10.1002/cpdd.602] [PMID: 30059193]
[120]
Manley, P.W.; Drueckes, P.; Fendrich, G.; Furet, P.; Liebetanz, J.; Martiny-Baron, G.; Mestan, J.; Trappe, J.; Wartmann, M.; Fabbro, D. Extended kinase profile and properties of the protein kinase inhibi-tor nilotinib. Biochim. Biophys. Acta, 2010, 1804(3), 445-453.
[http://dx.doi.org/10.1016/j.bbapap.2009.11.008] [PMID: 19922818]
[121]
Zhan, J.Y.; Ma, J.; Zheng, Q.C. Molecular dynamics investigation on the Asciminib resistance mechanism of I502L and V468F mutations in BCR-ABL. J. Mol. Graph. Model., 2019, 89, 242-249.
[http://dx.doi.org/10.1016/j.jmgm.2019.03.018] [PMID: 30927708]
[122]
Nesr, G.; Laffan, M.; Claudiani, S.; Innes, A.; Apperley, J.; Milojkovic, D. Platelet function in patients with chronic myeloid leukemia treated with asciminib. Leuk. Lymphoma, 2020, 61(12), 3021-3023.
[http://dx.doi.org/10.1080/10428194.2020.1791856] [PMID: 32654575]
[123]
Lindstrom, H.J.G.; Friedman, R. The effects of combination treatments on drug resistance in chronic myeloid leukaemia: An evaluation of the tyrosine kinase inhibitors axitinib and asciminib. BMC Cancer, 2020, 20, 397.
[http://dx.doi.org/10.1186/s12885-020-06782-9]
[124]
Manley, P.W.; Barys, L.; Cowan-Jacob, S.W. The specificity of asciminib, a potential treat-ment for chronic myeloid leukemia, as a myristate-pocket binding ABL inhibitor and analysis of its interac-tions with mutant forms of BCR-ABL1 kinase. Leuk. Res., 2020, 98, 106458.
[http://dx.doi.org/10.1016/j.leukres.2020.106458] [PMID: 33096322]
[125]
Anagnostou, T.; Litzow, M.R. Spotlight on ponatinib in the treatment of chronic myeloid leu-kemia and Philadelphia chromosome-positive acute lymphoblastic leukemia: Patient selection and perspec-tives. Blood Lymphat. Cancer, 2017, 8, 1-9.
[http://dx.doi.org/10.2147/BLCTT.S130197] [PMID: 31360088]
[126]
Wylie, A.A.; Schoepfer, J.; Jahnke, W.; Cowan-Jacob, S.W.; Loo, A.; Furet, P.; Marzinzik, A.L.; Pelle, X.; Donovan, J.; Zhu, W.; Buonamici, S.; Hassan, A.Q.; Lombardo, F.; Iyer, V.; Palmer, M.; Ber-ellini, G.; Dodd, S.; Thohan, S.; Bitter, H.; Branford, S.; Ross, D.M.; Hughes, T.P.; Petruzzelli, L.; Vanasse, K.G.; Warmuth, M.; Hofmann, F.; Keen, N.J.; Sellers, W.R. The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1. Nature, 2017, 543(7647), 733-737.
[http://dx.doi.org/10.1038/nature21702] [PMID: 28329763]
[127]
Shi, D.; Bai, Q.; Zhou, S.; Liu, X.; Liu, H.; Yao, X. Molecular dynamics simulation, binding free energy calculation and unbinding pathway analysis on selectivity difference between FKBP51 and FKBP52: Insight into the molecular mechanism of isoform selectivity. Proteins, 2018, 86(1), 43-56.
[http://dx.doi.org/10.1002/prot.25401] [PMID: 29023988]
[128]
Chilov, G.G.; Titov, I.Y. Protein kinase inhibitor (versions), use thereof for treating oncological diseases and based pharmaceutical composition. R.U. Patent 2,477,723, 2017.
[129]
Ivanova, E.S.; Tatarskiy, V.V.; Yastrebova, M.A.; Khamidullina, A.I.; Shunaev, A.V.; Kalini-na, A.A.; Zeifman, A.A.; Novikov, F.N.; Dutikova, Y.V.; Chilov, G.G.; Shtil, A.A. PF 114, a novel selective inhibitor of BCR ABL tyrosine kinase, is a potent inducer of apoptosis in chronic myelogenous leukemia cells. Int. J. Oncol., 2019, 55(1), 289-297.
[http://dx.doi.org/10.3892/ijo.2019.4801] [PMID: 31115499]
[130]
Wan, H.X.; Li, C.L.; Han, Y.A.; Zhou, Z.L.; Ma, K.; Liu, H.Y.; Zhang, L.D. Preparation of acetylene derivatives having antineoplastic activity. W.O. Patent 2,013,170,774, 2013.
[131]
Zhou, Q.; Chen, Y.; Chen, X.; Zhao, W.; Zhong, Y.; Wang, R.; Jin, M.; Qiu, Y.; Kong, D. In vitro anti leukemia activity of ZSTK474 on K562 and multidrug resistant K562/A02 cells. Int. J. Biol. Sci., 2016, 12(6), 631-638.
[http://dx.doi.org/10.7150/ijbs.14878] [PMID: 27194941]
[132]
Cortes, J.E.; Kantarjian, H.; Shah, N.P.; Bixby, D.; Mauro, M.J.; Flinn, I.; O’Hare, T.; Hu, S.; Narasimhan, N.I.; Rivera, V.M.; Clackson, T.; Turner, C.D.; Haluska, F.G.; Druker, B.J.; Deininger, M.W.; Talpaz, M. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2012, 367(22), 2075-2088.
[http://dx.doi.org/10.1056/NEJMoa1205127] [PMID: 23190221]
[133]
Cortes, J.E.; Kim, D.W.; Pinilla-Ibarz, J.; le Coutre, P.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; DiPersio, J.; DeAngelo, D.J.; Abruzzese, E.; Rea, D.; Baccarani, M.; Müller, M.C.; Gambacorti-Passerini, C.; Wong, S.; Lustgarten, S.; Rivera, V.M.; Clackson, T.; Turner, C.D.; Haluska, F.G.; Guilhot, F.; Deininger, M.W.; Hochhaus, A.; Hughes, T.; Goldman, J.M.; Shah, N.P.; Kantarjian, H. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2013, 369(19), 1783-1796.
[http://dx.doi.org/10.1056/NEJMoa1306494] [PMID: 24180494]
[134]
Turkina, A.G.; Prof, M.D.; Vinogradova, O. PF-114: A 4th generation tyrosine kinase-inhibitor for chronic phase chronic myeloid leukaemia including BCRABL1(T315I). Blood, 2019, 134(134), 1638.
[http://dx.doi.org/10.1182/blood-2019-127951]
[135]
Hoy, S.M. Ponatinib: A review of its use in adults with chronic myeloid leukaemia or Phila-delphia chromosome-positive acute lymphoblastic leukaemia. Drugs, 2014, 74(7), 793-806.
[http://dx.doi.org/10.1007/s40265-014-0216-6] [PMID: 24807266]
[136]
Moslehi, J.J.; Deininger, M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J. Clin. Oncol., 2015, 33(35), 4210-4218.
[http://dx.doi.org/10.1200/JCO.2015.62.4718] [PMID: 26371140]
[137]
Seymour, J.F.; Kim, D.W.; Rubin, E.; Haregewoin, A.; Clark, J.; Watson, P.; Hughes, T.; Dufva, I.; Jimenez, J.L.; Mahon, F.X.; Rousselot, P.; Cortes, J.; Martinelli, G.; Papayannidis, C.; Nagler, A.; Giles, F.J. A phase 2 study of MK-0457 in patients with BCR-ABL T315I mutant chronic myelogenous leu-kemia and philadelphia chromosome-positive acute lymphoblastic leukemia. Blood Cancer J., 2014, 4, e238.
[http://dx.doi.org/10.1038/bcj.2014.60] [PMID: 25127392]
[138]
Yang, H.; Zeng, Q.; He, Z.; Wu, D.; Li, H. Interaction of novel Aurora kinase inhibitor MK-0457 with human serum albumin: Insights into the dynamic behavior, binding mechanism, conformation and esterase activity of human serum albumin. J. Pharm. Biomed., 2020, 178, 112962.
[http://dx.doi.org/10.1016/j.jpba.2019.112962] [PMID: 31711864]
[139]
Salah, E.; Ugochukwu, E.; Barr, A.J.; von Delft, F.; Knapp, S.; Elkins, J.M. Crystal structures of ABL-related gene (ABL2) in complex with imatinib, tozasertib (VX-680), and a type I inhibitor of the tria-zole carbothioamide class. J. Med. Chem., 2011, 54(7), 2359-2367.
[http://dx.doi.org/10.1021/jm101506n] [PMID: 21417343]
[140]
Giles, F.J.; Swords, R.T.; Nagler, A.; Hochhaus, A.; Ottmann, O.G.; Rizzieri, D.A.; Talpaz, M.; Clark, J.; Watson, P.; Xiao, A.; Zhao, B.; Bergstrom, D.; Le Coutre, P.D.; Freedman, S.J.; Cortes, J.E. MK-0457, an Aurora kinase and BCR-ABL inhibitor, is active in patients with BCR-ABL T315I leukemia. Leukemia, 2013, 27(1), 113-117.
[http://dx.doi.org/10.1038/leu.2012.186] [PMID: 22772060]
[141]
Mancini, M.; Leo, E.; Aluigi, M.; Marcozzi, C.; Borsi, E.; Barbieri, E.; Santucci, M.A. Gadd45a transcriptional induction elicited by the Aurora kinase inhibitor MK-0457 in BCR-ABL-expressing cells is driven by Oct-1 transcription factor. Leuk. Res., 2012, 36(8), 1028-1034.
[http://dx.doi.org/10.1016/j.leukres.2012.03.025] [PMID: 22521726]
[142]
Bebbington, D.; Binch, H.; Charrier, J.D.; Everitt, S.; Fraysse, D.; Golec, J.; Kay, D.; Knegtel, R.; Mak, C.; Mazzei, F.; Miller, A.; Mortimore, M.; O’Donnell, M.; Patel, S.; Pierard, F.; Pinder, J.; Pollard, J.; Ramaya, S.; Robinson, D.; Rutherford, A.; Studley, J.; Westcott, J. The discovery of the potent aurora inhibi-tor MK-0457 (VX-680). Bioorg. Med. Chem. Lett., 2009, 19(13), 3586-3592.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.136] [PMID: 19447622]
[143]
Fiskus, W.; Wang, Y.; Joshi, R.; Rao, R.; Yang, Y.; Chen, J.; Kolhe, R.; Balusu, R.; Eaton, K.; Lee, P.; Ustun, C.; Jillella, A.; Buser, C.A.; Peiper, S.; Bhalla, K. Cotreatment with vorinostat enhances activi-ty of MK-0457 (VX-680) against acute and chronic myelogenous leukemia cells. Clin. Cancer Res., 2008, 14(19), 6106-6115.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0721] [PMID: 18829489]
[144]
Okabe, S.; Tauchi, T.; Ohyashiki, K. Efficacy of MK-0457 and in combination with vori-nostat against Philadelphia chromosome positive acute lymphoblastic leukemia cells. Ann. Hematol., 2010, 89(11), 1081-1087.
[http://dx.doi.org/10.1007/s00277-010-0998-x] [PMID: 20563869]
[145]
Zhang, B.; Li, Y.; Zhang, H.; Ai, C. 3D-QSAR and molecular docking studies on derivatives of MK-0457, GSK1070916 and SNS-314 as inhibitors against Aurora B kinase. Int. J. Mol. Sci., 2010, 11(11), 4326-4347.
[http://dx.doi.org/10.3390/ijms11114326] [PMID: 21151441]
[146]
Donato, N.J.; Fang, D.; Sun, H.; Giannola, D.; Peterson, L.F.; Talpaz, M. Targets and effectors of the cellular response to aurora kinase inhibitor MK-0457 (VX-680) in imatinib sensitive and resistant chronic myelogenous leukemia. Biochem. Pharmacol., 2010, 79(5), 688-697.
[http://dx.doi.org/10.1016/j.bcp.2009.10.009] [PMID: 19874801]
[147]
Zhang, L.N.; Ji, K.; Sun, Y.T.; Hou, Y.B.; Chen, J.J. Aurora kinase inhibitor tozasertib sup-presses mast cell activation in vitro and in vivo. Br. J. Pharmacol., 2020, 177(12), 2848-2859.
[http://dx.doi.org/10.1111/bph.15012] [PMID: 32017040]
[148]
Martens, S.; Goossens, V.; Devisscher, L.; Hofmans, S.; Claeys, P.; Vuylsteke, M.; Takahashi, N.; Augustyns, K.; Vandenabeele, P. RIPK1-dependent cell death: A novel target of the Aurora kinase inhibi-tor Tozasertib (VX-680). Cell Death Dis., 2018, 9(2), 211.
[http://dx.doi.org/10.1038/s41419-017-0245-7] [PMID: 29434255]
[149]
Okabe, S.; Tauchi, T.; Ohyashiki, J.H.; Ohyashiki, K. Mechanism of MK-0457 efficacy against BCR-ABL positive leukemia cells. Biochem. Biophys. Res. Commun., 2009, 380(4), 775-779.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.141] [PMID: 19338751]
[150]
Yin, C.; Huang, G.F.; Sun, X.C.; Guo, Z.; Zhang, J.H. Tozasertib attenuates neuronal apopto-sis via DLK/JIP3/MA2K7/JNK pathway in early brain injury after SAH in rats. Neuropharmacology, 2016, 108, 316-323.
[http://dx.doi.org/10.1016/j.neuropharm.2016.04.013] [PMID: 27084696]
[151]
Hofmans, S.; Devisscher, L.; Martens, S.; Van Rompaey, D.; Goossens, K.; Divert, T.; Ne-rinckx, W.; Takahashi, N.; De Winter, H.; Van Der Veken, P.; Goossens, V.; Vandenabeele, P.; Augustyns, K. Tozasertib analogues as inhibitors of necroptotic cell death. J. Med. Chem., 2018, 61(5), 1895-1920.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01449] [PMID: 29437386]
[152]
Choi, J.E.; Woo, S.M.; Min, K.J.; Kang, S.H.; Lee, S.J.; Kwon, T.K. Combined treatment with ABT-737 and VX-680 induces apoptosis in Bcl-2- and c-FLIP-overexpressing breast carcinoma cells. Oncol. Rep., 2015, 33(3), 1395-1401.
[http://dx.doi.org/10.3892/or.2015.3728] [PMID: 25592064]
[153]
Pezzani, R.; Rubin, B.; Bertazza, L.; Redaelli, M.; Barollo, S.; Monticelli, H.; Baldini, E.; Mi-an, C.; Mucignat, C.; Scaroni, C.; Mantero, F.; Ulisse, S.; Iacobone, M.; Boscaro, M. The aurora kinase inhibi-tor VX-680 shows anti-cancer effects in primary metastatic cells and the SW13 cell line. Invest. New Drugs, 2016, 34(5), 531-540.
[http://dx.doi.org/10.1007/s10637-016-0358-3] [PMID: 27177645]
[154]
Cookson, E. Olverembatinib in chronic myeloid leukaemia. Lancet Haematol., 2021, 8(1), E16-E16.
[http://dx.doi.org/10.1016/S2352-3026(20)30407-5] [PMID: 33316215]
[155]
Ren, X.; Pan, X.; Zhang, Z.; Wang, D.; Lu, X.; Li, Y.; Wen, D.; Long, H.; Luo, J.; Feng, Y.; Zhuang, X.; Zhang, F.; Liu, J.; Leng, F.; Lang, X.; Bai, Y.; She, M.; Tu, Z.; Pan, J.; Ding, K. Identification of GZD824 as an orally bioavailable inhibitor that targets phosphorylated and nonphosphorylated breakpoint cluster region-Abelson (BCR-ABL) kinase and overcomes clinically acquired mutation-induced resistance against imatinib. J. Med. Chem., 2013, 56(3), 879-894.
[http://dx.doi.org/10.1021/jm301581y] [PMID: 23301703]
[156]
Kato, Y.; Kunimasa, K.; Takahashi, M.; Harada, A.; Nagasawa, I.; Osawa, M.; Sugimoto, Y.; Tomida, A. GZD824 inhibits GCN2 and sensitizes cancer cells to amino acid starvation stress. Mol. Pharmacol., 2020, 98(6), 669-676.
[http://dx.doi.org/10.1124/molpharm.120.000070] [PMID: 33033108]
[157]
Jiang, Q.; Huang, X.J.; Chen, Z. Safety and efficacy of HQP1351, a 3rd generation oral BCR-ABL inhibitor in patients with tyrosine kinase inhibitor-resistant chronic myelogenous leukemia: Preliminary results of phase I study. Blood, 2018, 132(Suppl_1), 791.
[http://dx.doi.org/10.1182/blood-2018-99-119142]
[158]
Liu, X.; Wang, G.; Yan, X.; Qiu, H.; Min, P.; Wu, M.; Tang, C.; Zhang, F.; Tang, Q.; Zhu, S.; Qiu, M.; Zhuang, W.; Fang, D.D.; Zhou, Z.; Yang, D.; Zhai, Y. Preclinical development of HQP1351, a mul-tikinase inhibitor targeting a broad spectrum of mutant KIT kinases, for the treatment of imatinib-resistant gastrointestinal stromal tumors. Cell Biosci., 2019, 9(1), 88.
[http://dx.doi.org/10.1186/s13578-019-0351-6] [PMID: 31673329]
[159]
Wang, D.; Zhang, Z.; Lu, X.; Feng, Y.; Luo, K.; Gan, J.; Yingxue, L.; Wan, J.; Li, X.; Zhang, F.; Tu, Z.; Cai, Q.; Ren, X.; Ding, K. Hybrid compounds as new Bcr/Abl inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(7), 1965-1968.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.029] [PMID: 21376587]
[160]
Robles-Escajeda, E.; Das, U.; Ortega, N.M.; Parra, K.; Francia, G.; Dimmock, J.R.; Varela-Ramirez, A.; Aguilera, R.J. A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells. Cell Oncol. (Dordr.), 2016, 39(3), 265-277.
[http://dx.doi.org/10.1007/s13402-016-0272-x] [PMID: 26920032]
[161]
Fabian, M.A.; Biggs, W.H., III; Treiber, D.K.; Atteridge, C.E.; Azimioara, M.D.; Benedetti, M.G.; Carter, T.A.; Ciceri, P.; Edeen, P.T.; Floyd, M.; Ford, J.M.; Galvin, M.; Gerlach, J.L.; Grotzfeld, R.M.; Herrgard, S.; Insko, D.E.; Insko, M.A.; Lai, A.G.; Lélias, J.M.; Mehta, S.A.; Milanov, Z.V.; Velasco, A.M.; Wodicka, L.M.; Patel, H.K.; Zarrinkar, P.P.; Lockhart, D.J. A small molecule-kinase interaction map for clin-ical kinase inhibitors. Nat. Biotechnol., 2005, 23(3), 329-336.
[http://dx.doi.org/10.1038/nbt1068] [PMID: 15711537]
[162]
Melo, J.V.; Deininger, M.W.N. Biology of chronic myelogenous leukemia-signaling pathways of initiation and transformation. Hematol. Oncol. Clin. North Am., 2004, 18(3), 545-568.
[http://dx.doi.org/10.1016/j.hoc.2004.03.008] [PMID: 15271392]
[163]
Ren, R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer, 2005, 5(3), 172-183.
[http://dx.doi.org/10.1038/nrc1567] [PMID: 15719031]
[164]
Ye, W.; Jiang, Z.; Lu, X.; Ren, X.; Deng, M.; Lin, S.; Xiao, Y.; Lin, S.; Wang, S.; Li, B.; Zheng, Y.; Lai, P.; Weng, J.; Wu, D.; Ma, Y.; Chen, X.; Wen, Z.; Chen, Y.; Feng, X.; Li, Y.; Liu, P.; Du, X.; Pei, D.; Yao, Y.; Xu, B.; Ding, K.; Li, P. GZD824 suppresses the growth of human B cell precursor acute lymphoblastic leukemia cells by inhibiting the SRC kinase and PI3K/AKT pathways. Oncotarget, 2016, 8(50), 87002-87015.
[http://dx.doi.org/10.18632/oncotarget.10881] [PMID: 29152059]
[165]
Li, P.; Ye, W.; Ding, K.; Lu, X.Y. A new application of naiketini and its medically acceptable salts in the treatment of diseases. C.N. Patent 106,580,993, 2017.
[166]
Goodrich, A.D. Ponatinib in the leukemia world: Why a reevaluation is necessary for Phila-delphia chromosome-positive patients with T315I mutation. Expert Rev. Hematol., 2014, 7(5), 513-515.
[http://dx.doi.org/10.1586/17474086.2014.958465] [PMID: 25199408]
[167]
Jiang, Q.; Huang, X.J.; Chen, Z. Novel BCR-ABL1 Tyrosine Kinase Inhibitor (TKI) HQP1351 (Olverembatinib) is efficacious and well tolerated in patients with T315I-mutated Chronic Myeloid Leukemia (CML): Results of pivotal (phase II) trials. Blood, 2020, 136, 50-51.
[http://dx.doi.org/10.1182/blood-2020-142142]
[168]
Wang, Y.; Zhang, L.; Tang, X.; Luo, J.; Tu, Z.; Jiang, K.; Ren, X.; Xu, F.; Chan, S.; Li, Y.; Zhang, Z.; Ding, K. GZD824 as a FLT3, FGFR1 and PDGFRα inhibitor against leukemia in vitro and in vivo. Transl. Oncol., 2020, 13(4), 100766.
[http://dx.doi.org/10.1016/j.tranon.2020.100766] [PMID: 32247263]
[169]
Jiang, Q.; Huang, X.J.; Chen, Z. An updated safety and efficacy results of phase 1 study of HQP1351, a novel 3rd generation of BCR-ABL Tyrosine Kinase Inhibitor (TKI), in patients with TKI re-sistant chronic myeloid leukemia. Blood, 2019, 134, 493.
[http://dx.doi.org/10.1182/blood-2019-124295]
[170]
Lu, M.; Deng, C.H. Exposure-Response (E-R) analysis of olverembatinib (HQP1351) in Chi-nese patients with Chronic Myeloid Leukemia (CML). Blood, 2020, 5, 5-6.
[http://dx.doi.org/10.1182/blood-2020-141268]
[171]
Chinchilla, R.; Najera, C. The Sonogashira reaction: A booming methodology in synthetic or-ganic chemistry. Chem. Rev., 2007, 107(3), 874-922.
[http://dx.doi.org/10.1021/cr050992x] [PMID: 17305399]
[172]
Amala, K.; Bhujanga Rao, A.K.; Gorantla, B.; Gondi, C.S.; Rao, J.S. Design, synthesis and preclinical evaluation of NRC-AN-019. Int. J. Oncol., 2013, 42(1), 168-178.
[http://dx.doi.org/10.3892/ijo.2012.1697] [PMID: 23151973]
[173]
Digumarti, R.; Myneni, P.C.; Gogula, V.R. Phase I study of NRC-an-019, a tyrosine kinase inhibitor, in imatinib-resistant Chronic Myeloid Leukemia (CML) in an Indian tertiary care hospital. J. Clin. Oncol., 2013, 31(15)
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.7080]
[174]
Gondi, C.S.; Gorantla, B.; Bhujanga Rao, A.K.; Amala, K.; Naidu, M.U.; Jogi, K.V.; Venkat Ramana, G.; Myneni, P.C.; Junnarkar, A.; Rao, J.S. Antitumor activity of NRC-AN-019 in a pre-clinical breast cancer model. Int. J. Oncol., 2011, 39(3), 641-648.
[http://dx.doi.org/10.3892/ijo.2011.1079] [PMID: 21674127]
[175]
Kompella, A.K.; Rao, A.K.S.B.; Rachakonda, V.C.A. Preparation of crystal form of (3,5-bistrifluoromethyl)-N-[4- methyl-3-(4-pyridin-3-yl-pyrimidin-2- ylamino)phenyl]benzamide (AN-019). I.N. Patent 20,09C,H00,475, 2016.
[176]
Kim, D.D.; Hamad, N.; Lee, H.G.; Kamel-Reid, S.; Lipton, J.H. BCR/ABL level at 6 months identifies good risk CML subgroup after failing early molecular response at 3 months following imatinib therapy for CML in chronic phase. Am. J. Hematol., 2014, 89(6), 626-632.
[http://dx.doi.org/10.1002/ajh.23707] [PMID: 24619861]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy