Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

CGRP and CGRP-Receptor as Targets of Migraine Therapy: Brain Prize-2021

Author(s): János Tajti, Délia Szok, Aliz Nyári and László Vécsei*

Volume 21, Issue 6, 2022

Published on: 30 November, 2021

Page: [460 - 478] Pages: 19

DOI: 10.2174/1871527320666211011110307

Price: $65

Abstract

Background: Migraine is a highly prevalent primary headache with an unclear pathomechanism. During the last 40 years, numerous hypotheses have arisen; among them, the theory of the trigeminovascular system is the primary one. It serves as a skeleton in successful preclinical studies and in the development of effective therapeutic options for migraine headache.

Objective: The brain prize (awarded annually by the Lundbeck Foundation) is the most prestigious tribute in neuroscience. The winners in 2021 were Lars Edvinsson, Peter Goadsby, Michael Moskowitz and Jes Olesen. They are the fathers of migraine pathomechanism, which led to revolutionary new treatments. This review summarizes their landmark findings.

Methods: Data related to this topic were reviewed from PubMed records published between 1979 and May 2021. Searches were based on preclinical and clinical studies in the covered field. The findings were listed in chronological order. From a therapeutic perspective, only randomized controlled trials and meta-analysis were discussed.

Results: The calcitonin gene-related peptide-related pathogenesis of migraine is based on the activation of the trigeminovascular system. The therapeutic triad for migraine is triptans, gepants, and calcitonin gene-related peptide-targeted monoclonal antibodies.

Conclusion: In the past 40 years, the systematic work of leading headache scientists has resulted in robust theoretical and therapeutic knowledge in the preclinical and clinical study of migraine.

Keywords: Brain Prize, CGRP, migraine, monoclonal antibodies, trigeminovascular system, neuropeptides.

Graphical Abstract

[1]
Edvinsson L. CGRP Antibodies as Prophylaxis in Migraine. Cell 2018; 175(7): 1719.
[http://dx.doi.org/10.1016/j.cell.2018.11.049] [PMID: 30550780]
[2]
Ashina M, Katsarava Z, Do TP, et al. Migraine: epidemiology and systems of care. Lancet 2021; 397(10283): 1485-95.
[http://dx.doi.org/10.1016/S0140-6736(20)32160-7] [PMID: 33773613]
[3]
Collaborators GBDN. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(5): 459-80.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[4]
Diseases GBD, Injuries C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258): 1204-22.
[http://dx.doi.org/10.1016/S0140-6736(20)30925-9] [PMID: 33069326]
[5]
Moskowitz MA, Reinhard JF Jr, Romero J, Melamed E, Pettibone DJ. Neurotransmitters and the fifth cranial nerve: is there a relation to the headache phase of migraine? Lancet 1979; 2(8148): 883-5.
[http://dx.doi.org/10.1016/S0140-6736(79)92692-8] [PMID: 90971]
[6]
Ashina M, Hansen JM, Do TP, Melo-Carrillo A, Burstein R, Moskowitz MA. Migraine and the trigeminovascular system-40 years and counting. Lancet Neurol 2019; 18(8): 795-804.
[http://dx.doi.org/10.1016/S1474-4422(19)30185-1] [PMID: 31160203]
[7]
Edvinsson L. The Journey to Establish CGRP as a Migraine Target: A Retrospective View. Headache 2015; 55(9): 1249-55.
[http://dx.doi.org/10.1111/head.12656] [PMID: 26368117]
[8]
Edvinsson L. Role of CGRP in Migraine. Handb Exp Pharmacol 2019; 255: 121-30.
[http://dx.doi.org/10.1007/164_2018_201] [PMID: 30725283]
[9]
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97(2): 553-622.
[http://dx.doi.org/10.1152/physrev.00034.2015] [PMID: 28179394]
[10]
Iyengar S, Johnson KW, Ossipov MH, Aurora SK. CGRP and the trigeminal system in migraine. Headache 2019; 59(5): 659-81.
[http://dx.doi.org/10.1111/head.13529] [PMID: 30982963]
[11]
Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev Physiol 2013; 75: 365-91.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183717] [PMID: 23190076]
[12]
Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH. An association between migraine and cutaneous allodynia. Ann Neurol 2000; 47(5): 614-24.
[http://dx.doi.org/10.1002/1531-8249(200005)47:5<614::AID-ANA9>3.0.CO;2-N] [PMID: 10805332]
[13]
Burstein R, Cutrer MF, Yarnitsky D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain 2000; 123(Pt 8): 1703-9.
[http://dx.doi.org/10.1093/brain/123.8.1703] [PMID: 10908199]
[14]
Edvinsson L, Haanes KA, Warfvinge K, Krause DN. CGRP as the target of new migraine therapies - successful translation from bench to clinic. Nat Rev Neurol 2018; 14(6): 338-50.
[http://dx.doi.org/10.1038/s41582-018-0003-1] [PMID: 29691490]
[15]
Edvinsson L, Villalón CM, MaassenVanDenBrink A. Basic mechanisms of migraine and its acute treatment. Pharmacol Ther 2012; 136(3): 319-33.
[http://dx.doi.org/10.1016/j.pharmthera.2012.08.011] [PMID: 22939884]
[16]
Goadsby PJ, Holland PR. An update: pathophysiology of migraine. Neurol Clin 2019; 37(4): 651-71.
[http://dx.doi.org/10.1016/j.ncl.2019.07.008] [PMID: 31563225]
[17]
Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 1990; 28(2): 183-7.
[http://dx.doi.org/10.1002/ana.410280213] [PMID: 1699472]
[18]
Olesen J, Friberg L, Olsen TS, et al. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks. Ann Neurol 1990; 28(6): 791-8.
[http://dx.doi.org/10.1002/ana.410280610] [PMID: 2285266]
[19]
Ramachandran R, Bhatt DK, Ploug KB, et al. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation. Cephalalgia 2014; 34(2): 136-47.
[http://dx.doi.org/10.1177/0333102413502735] [PMID: 24000375]
[20]
Thomsen LL, Olesen J. Nitric oxide in primary headaches. Curr Opin Neurol 2001; 14(3): 315-21.
[http://dx.doi.org/10.1097/00019052-200106000-00009] [PMID: 11371754]
[21]
Knyihár-Csillik E, Tajti J, Samsam M, Sáry G, Slezák S, Vécsei L. Effect of a serotonin agonist (sumatriptan) on the peptidergic innervation of the rat cerebral dura mater and on the expression of c-fos in the caudal trigeminal nucleus in an experimental migraine model. J Neurosci Res 1997; 48(5): 449-64.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19970601)48:5<449::AID-JNR6>3.0.CO;2-E] [PMID: 9185668]
[22]
Knyihár-Csillik E, Tajti J, Csillik AE, Chadaide Z, Mihály A, Vécsei L. Effects of eletriptan on the peptidergic innervation of the cerebral dura mater and trigeminal ganglion, and on the expression of c-fos and c-jun in the trigeminal complex of the rat in an experimental migraine model. Eur J Neurosci 2000; 12(11): 3991-4002.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00299.x] [PMID: 11069595]
[23]
Vécsei L, Szalárdy L, Fülöp F, Toldi J. Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 2013; 12(1): 64-82.
[http://dx.doi.org/10.1038/nrd3793] [PMID: 23237916]
[24]
Tuka B, Helyes Z, Markovics A, et al. Alterations in PACAP-38- like immunoreactivity in the plasma during ictal and interictal periods of migraine patients. Cephalalgia 2013; 33(13): 1085-95.
[http://dx.doi.org/10.1177/0333102413483931] [PMID: 23598374]
[25]
Russo AF. Calcitonin gene-related peptide (CGRP): a new target for migraine. Annu Rev Pharmacol Toxicol 2015; 55: 533-52.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124701] [PMID: 25340934]
[26]
Edvinsson L. The Trigeminovascular Pathway: Role of CGRP and CGRP Receptors in Migraine. Headache 2017; 57(Suppl. 2): 47-55.
[http://dx.doi.org/10.1111/head.13081] [PMID: 28485848]
[27]
Deen M, Correnti E, Kamm K, et al. Blocking CGRP in migraine patients - a review of pros and cons. J Headache Pain 2017; 18(1): 96.
[http://dx.doi.org/10.1186/s10194-017-0807-1] [PMID: 28948500]
[28]
Yuan H, Lauritsen CG, Kaiser EA, Silberstein SD. CGRP monoclonal antibodies for migraine: rationale and progress. BioDrugs 2017; 31(6): 487-501.
[http://dx.doi.org/10.1007/s40259-017-0250-5] [PMID: 29116598]
[29]
Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders Cephalalgia (3rd edition) 2018; 38(1): 1-211.
[30]
Peng KP, May A. Redefining migraine phases - a suggestion based on clinical, physiological, and functional imaging evidence. Cephalalgia 2020; 40(8): 866-70.
[http://dx.doi.org/10.1177/0333102419898868] [PMID: 31928343]
[31]
Schoonman GG, Evers DJ, Terwindt GM, van Dijk JG, Ferrari MD. The prevalence of premonitory symptoms in migraine: a questionnaire study in 461 patients. Cephalalgia 2006; 26(10): 1209-13.
[http://dx.doi.org/10.1111/j.1468-2982.2006.01195.x] [PMID: 16961788]
[32]
Karsan N, Bose P, Goadsby PJ. The Migraine Premonitory Phase. Continuum (Minneap Minn) 2018; 24(4): 996-1008.
[http://dx.doi.org/10.1212/CON.0000000000000624]
[33]
Karsan N, Goadsby PJ. Biological insights from the premonitory symptoms of migraine. Nat Rev Neurol 2018; 14(12): 699-710.
[http://dx.doi.org/10.1038/s41582-018-0098-4] [PMID: 30448858]
[34]
Barbanti P, Fabbrini G, Pesare M, Vanacore N, Cerbo R. Unilateral cranial autonomic symptoms in migraine. Cephalalgia 2002; 22(4): 256-9.
[http://dx.doi.org/10.1046/j.1468-2982.2002.00358.x] [PMID: 12100086]
[35]
Obermann M, Yoon MS, Dommes P, et al. Prevalence of trigeminal autonomic symptoms in migraine: a population-based study. Cephalalgia 2007; 27(6): 504-9.
[http://dx.doi.org/10.1111/j.1468-2982.2007.01316.x] [PMID: 17428298]
[36]
Gupta R, Bhatia MS. A report of cranial autonomic symptoms in migraineurs. Cephalalgia 2007; 27(1): 22-8.
[http://dx.doi.org/10.1111/j.1468-2982.2006.01237.x] [PMID: 17212679]
[37]
Danno D, Wolf J, Ishizaki K, Kikui S, Yoshikawa H, Takeshima T. Cranial Autonomic Symptoms of Migraine in Japan: Prospective Study of 373 Migraine Patients at a Tertiary Headache Center. Headache 2020; 60(8): 1592-600.
[http://dx.doi.org/10.1111/head.13888] [PMID: 32592512]
[38]
Iljazi A, Ashina H, Lipton RB, et al. Dizziness and vertigo during the prodromal phase and headache phase of migraine: A systematic review and meta-analysis. Cephalalgia 2020; 40(10): 1095-103.
[http://dx.doi.org/10.1177/0333102420921855] [PMID: 32349538]
[39]
Bigal ME, Ashina S, Burstein R, et al. Prevalence and characteristics of allodynia in headache sufferers: a population study. Neurology 2008; 70(17): 1525-33.
[http://dx.doi.org/10.1212/01.wnl.0000310645.31020.b1] [PMID: 18427069]
[40]
Maleki N, Szabo E, Becerra L, et al. Ictal and interictal brain activation in episodic migraine: Neural basis for extent of allodynia. PLoS One 2021; 16(1): e0244320.
[http://dx.doi.org/10.1371/journal.pone.0244320] [PMID: 33395413]
[41]
Bose P, Karsan N, Goadsby PJ. The Migraine Postdrome. Continuum (Minneap Minn) 2018; 24(4): 1023-31.
[http://dx.doi.org/10.1212/CON.0000000000000626]
[42]
Karsan N, Peréz-Rodríguez A, Nagaraj K, Bose PR, Goadsby PJ. The migraine postdrome: Spontaneous and triggered phenotypes. Cephalalgia 2021; 41(6): 721-30.
[http://dx.doi.org/10.1177/0333102420975401] [PMID: 33423506]
[43]
Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 1982; 298(5871): 240-4.
[http://dx.doi.org/10.1038/298240a0] [PMID: 6283379]
[44]
Rosenfeld MG, Mermod JJ, Amara SG, et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 1983; 304(5922): 129-35.
[http://dx.doi.org/10.1038/304129a0] [PMID: 6346105]
[45]
McLatchie LM, Fraser NJ, Main MJ, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998; 393(6683): 333-9.
[http://dx.doi.org/10.1038/30666] [PMID: 9620797]
[46]
Uddman R, Edvinsson L, Ekman R, Kingman T, McCulloch J. Innervation of the feline cerebral vasculature by nerve fibers containing calcitonin gene-related peptide: trigeminal origin and co-existence with substance P. Neurosci Lett 1985; 62(1): 131-6.
[http://dx.doi.org/10.1016/0304-3940(85)90296-4] [PMID: 2415882]
[47]
Uddman R, Edvinsson L, Ekblad E, Håkanson R, Sundler F. Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul Pept 1986; 15(1): 1-23.
[http://dx.doi.org/10.1016/0167-0115(86)90071-6] [PMID: 3532219]
[48]
Edvinsson L, Ekman R, Jansen I, Ottosson A, Uddman R. Peptide-containing nerve fibers in human cerebral arteries: Immunocytochemistry, radioimmunoassay, and in vitro pharmacology. Ann Neurol 1987; 21(5): 431-7.
[http://dx.doi.org/10.1002/ana.410210503] [PMID: 2438992]
[49]
Keller JT, Marfurt CF. Peptidergic and serotoninergic innervation of the rat dura mater. J Comp Neurol 1991; 309(4): 515-34.
[http://dx.doi.org/10.1002/cne.903090408] [PMID: 1717522]
[50]
Edvinsson L. Functional role of perivascular peptides in the control of cerebral circulation. Trends Neurosci 1985; 8: 126-31.
[http://dx.doi.org/10.1016/0166-2236(85)90050-5]
[51]
Ray BS, Wolff HG. Experimental studies on headache: Pain sensitive structures of the head their significance in headache. Arch Surg 1940; 41(4): 813-56.
[http://dx.doi.org/10.1001/archsurg.1940.01210040002001]
[52]
Liu-Chen LY, Mayberg MR, Moskowitz MA. Immunohistochemical evidence for a substance P-containing trigeminovascular pathway to pial arteries in cats. Brain Res 1983; 268(1): 162-6.
[http://dx.doi.org/10.1016/0006-8993(83)90402-X] [PMID: 6190538]
[53]
Knyihar-Csillik E, Tajti J, Mohtasham S, Sari G, Vecsei L. Electrical stimulation of the Gasserian ganglion induces structural alterations of calcitonin gene-related peptide-immunoreactive perivascular sensory nerve terminals in the rat cerebral dura mater: a possible model of migraine headache. Neurosci Lett 1995; 184(3): 189-92.
[http://dx.doi.org/10.1016/0304-3940(94)11203-U] [PMID: 7715843]
[54]
Knyihár-Csillik E, Tajti J, Samsam M, Sáry G, Buzás P, Vécsei L. Depletion of calcitonin gene-related peptide from the caudal trigeminal nucleus of the rat after electrical stimulation of the Gasserian ganglion. Exp Brain Res 1998; 118(1): 111-4.
[http://dx.doi.org/10.1007/s002210050260] [PMID: 9547068]
[55]
McCulloch J, Uddman R, Kingman TA, Edvinsson L. Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc Natl Acad Sci USA 1986; 83(15): 5731-5.
[http://dx.doi.org/10.1073/pnas.83.15.5731] [PMID: 3488550]
[56]
Sams A, Knyihár-Csillik E, Engberg J, et al. CGRP and adrenomedullin receptor populations in human cerebral arteries: In vitro pharmacological and molecular investigations in different artery sizes. Eur J Pharmacol 2000; 408(2): 183-93.
[http://dx.doi.org/10.1016/S0014-2999(00)00781-0] [PMID: 11080525]
[57]
Edvinsson L, Goadsby PJ. Neuropeptides in headache. Eur J Neurol 1998; 5(4): 329-41.
[http://dx.doi.org/10.1046/j.1468-1331.1998.540329.x]
[58]
Tajti J, Uddman R, Möller S, Sundler F, Edvinsson L. Messenger molecules and receptor mRNA in the human trigeminal ganglion. J Auton Nerv Syst 1999; 76(2-3): 176-83.
[http://dx.doi.org/10.1016/S0165-1838(99)00024-7] [PMID: 10412842]
[59]
Tajti J, Uddman R, Edvinsson L. Neuropeptide localization in the “migraine generator” region of the human brainstem. Cephalalgia 2001; 21(2): 96-101.
[http://dx.doi.org/10.1046/j.1468-2982.2001.00140.x] [PMID: 11422090]
[60]
Uddman R, Tajti J, Hou M, Sundler F, Edvinsson L. Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2. Cephalalgia 2002; 22(2): 112-6.
[http://dx.doi.org/10.1046/j.1468-2982.2002.00324.x] [PMID: 11972578]
[61]
Eftekhari S, Salvatore CA, Calamari A, Kane SA, Tajti J, Edvinsson L. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. Neuroscience 2010; 169(2): 683-96.
[http://dx.doi.org/10.1016/j.neuroscience.2010.05.016] [PMID: 20472035]
[62]
Bower RL, Eftekhari S, Waldvogel HJ, et al. Mapping the calcitonin receptor in human brain stem. Am J Physiol Regul Integr Comp Physiol 2016; 310(9): R788-93.
[http://dx.doi.org/10.1152/ajpregu.00539.2015] [PMID: 26911465]
[63]
Ashina M, Terwindt GM, Al-Karagholi MA, et al. Migraine: disease characterisation, biomarkers, and precision medicine. Lancet 2021; 397(10283): 1496-504.
[http://dx.doi.org/10.1016/S0140-6736(20)32162-0] [PMID: 33773610]
[64]
Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 1988; 23(2): 193-6.
[http://dx.doi.org/10.1002/ana.410230214] [PMID: 2454066]
[65]
Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B, Olesen J. CGRP may play a causative role in migraine. Cephalalgia 2002; 22(1): 54-61.
[http://dx.doi.org/10.1046/j.1468-2982.2002.00310.x] [PMID: 11993614]
[66]
Ashina M, Hansen JM, Á Dunga BO, Olesen J. Human models of migraine - short-term pain for long-term gain. Nat Rev Neurol 2017; 13(12): 713-24.
[http://dx.doi.org/10.1038/nrneurol.2017.137] [PMID: 28984313]
[67]
Csati A, Tajti J, Tuka B, Edvinsson L, Warfvinge K. Calcitonin gene-related peptide and its receptor components in the human sphenopalatine ganglion - interaction with the sensory system. Brain Res 2012; 1435: 29-39.
[http://dx.doi.org/10.1016/j.brainres.2011.11.058] [PMID: 22208649]
[68]
Leao AAP. Spreading depression of activity in the cerebral cortex. J Neurophysiol 1944; 7(6): 359-90.
[http://dx.doi.org/10.1152/jn.1944.7.6.359] [PMID: 20268874]
[69]
Woods RP, Iacoboni M, Mazziotta JC. Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache. N Engl J Med 1994; 331(25): 1689-92.
[http://dx.doi.org/10.1056/NEJM199412223312505] [PMID: 7969360]
[70]
Hadjikhani N, Sanchez Del Rio M, Wu O, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA 2001; 98(8): 4687-92.
[http://dx.doi.org/10.1073/pnas.071582498] [PMID: 11287655]
[71]
Close LN, Eftekhari S, Wang M, Charles AC, Russo AF. Cortical spreading depression as a site of origin for migraine: Role of CGRP. Cephalalgia 2019; 39(3): 428-34.
[http://dx.doi.org/10.1177/0333102418774299] [PMID: 29695168]
[72]
Moskowitz MA, Macfarlane R. Neurovascular and molecular mechanisms in migraine headaches. Cerebrovasc Brain Metab Rev 1993; 5(3): 159-77.
[PMID: 8217498]
[73]
Zhang X, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R. Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol 2011; 69(5): 855-65.
[http://dx.doi.org/10.1002/ana.22329] [PMID: 21416489]
[74]
Wang Y, Tye AE, Zhao J, et al. Induction of calcitonin gene-related peptide expression in rats by cortical spreading depression. Cephalalgia 2019; 39(3): 333-41.
[http://dx.doi.org/10.1177/0333102416678388] [PMID: 27919019]
[75]
Matteo E, Pensato U, Favoni V, Giannini G, Pierangeli G, Cevoli S. Do anti-CGRP drugs have a role in migraine aura therapy? J Neurol 2021; 268(6): 2273-4.
[http://dx.doi.org/10.1007/s00415-021-10546-1] [PMID: 33856547]
[76]
Thomsen LL, Olesen J. A pivotal role of nitric oxide in migraine pain. Ann N Y Acad Sci 1997; 835: 363-72.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb48642.x] [PMID: 9616786]
[77]
Lassen LH, Ashina M, Christiansen I, et al. Nitric oxide synthase inhibition: a new principle in the treatment of migraine attacks. Cephalalgia 1998; 18(1): 27-32.
[http://dx.doi.org/10.1046/j.1468-2982.1998.1801027.x] [PMID: 9601621]
[78]
Thomsen LL, Kruuse C, Iversen HK, Olesen J. A nitric oxide donor (nitroglycerin) triggers genuine migraine attacks. Eur J Neurol 1994; 1(1): 73-80.
[http://dx.doi.org/10.1111/j.1468-1331.1994.tb00053.x] [PMID: 24283432]
[79]
Pardutz A, Multon S, Malgrange B, Parducz A, Vecsei L, Schoenen J. Effect of systemic nitroglycerin on CGRP and 5-HT afferents to rat caudal spinal trigeminal nucleus and its modulation by estrogen. Eur J Neurosci 2002; 15(11): 1803-9.
[http://dx.doi.org/10.1046/j.1460-9568.2002.02031.x] [PMID: 12081660]
[80]
Yao G, Man YH, Li AR, et al. NO up-regulates migraine-related CGRP via activation of an Akt/GSK-3β/NF-κB signaling cascade in trigeminal ganglion neurons. Aging (Albany NY) 2020; 12(7): 6370-84.
[http://dx.doi.org/10.18632/aging.103031] [PMID: 32276265]
[81]
Bhatt DK, Gupta S, Jansen-Olesen I, Andrews JS, Olesen J. NXN-188, a selective nNOS inhibitor and a 5-HT1B/1D receptor agonist, inhibits CGRP release in preclinical migraine models. Cephalalgia 2013; 33(2): 87-100.
[http://dx.doi.org/10.1177/0333102412466967] [PMID: 23155193]
[82]
Messlinger K, Balcziak LK, Russo AF. Cross-talk signaling in the trigeminal ganglion: role of neuropeptides and other mediators. J Neural Transm (Vienna) 2020; 127(4): 431-44.
[http://dx.doi.org/10.1007/s00702-020-02161-7] [PMID: 32088764]
[83]
Humphrey PP, Feniuk W, Perren MJ, Connor HE, Oxford AW. The pharmacology of the novel 5-HT1-like receptor agonist, GR43175. Cephalalgia 1989; 9(Suppl. 9): 23-33.
[PMID: 2544280]
[84]
Humphrey PP. The discovery of a new drug class for the acute treatment of migraine. Headache 2007; 47(Suppl. 1): S10-9.
[http://dx.doi.org/10.1111/j.1526-4610.2007.00672.x] [PMID: 17425704]
[85]
Buzzi MG, Carter WB, Shimizu T, Heath H III, Moskowitz MA. Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology 1991; 30(11): 1193-200.
[http://dx.doi.org/10.1016/0028-3908(91)90165-8] [PMID: 1663596]
[86]
Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 1993; 33(1): 48-56.
[http://dx.doi.org/10.1002/ana.410330109] [PMID: 8388188]
[87]
Goadsby PJ, Edvinsson L. Joint 1994 Wolff Award Presentation. Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90. Headache 1994; 34(7): 394-9.
[http://dx.doi.org/10.1111/j.1526-4610.1994.hed3407394.x] [PMID: 7928323]
[88]
Smith D, Hill RG, Edvinsson L, Longmore J. An immunocytochemical investigation of human trigeminal nucleus caudalis: CGRP, substance P and 5-HT1D-receptor immunoreactivities are expressed by trigeminal sensory fibres. Cephalalgia 2002; 22(6): 424-31.
[http://dx.doi.org/10.1046/j.1468-2982.2002.00378.x] [PMID: 12133041]
[89]
Hou M, Kanje M, Longmore J, Tajti J, Uddman R, Edvinsson L. 5-HT(1B) and 5-HT(1D) receptors in the human trigeminal ganglion: co-localization with calcitonin gene-related peptide, substance P and nitric oxide synthase. Brain Res 2001; 909(1-2): 112-20.
[http://dx.doi.org/10.1016/S0006-8993(01)02645-2] [PMID: 11478927]
[90]
Durham PL, Masterson CG. Two mechanisms involved in trigeminal CGRP release: implications for migraine treatment. Headache 2013; 53(1): 67-80.
[http://dx.doi.org/10.1111/j.1526-4610.2012.02262.x] [PMID: 23095108]
[91]
Kageneck C, Nixdorf-Bergweiler BE, Messlinger K, Fischer MJ. Release of CGRP from mouse brainstem slices indicates central inhibitory effect of triptans and kynurenate. J Headache Pain 2014; 15: 7.
[http://dx.doi.org/10.1186/1129-2377-15-7] [PMID: 24506953]
[92]
Juhasz G, Zsombok T, Jakab B, Nemeth J, Szolcsanyi J, Bagdy G. Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia 2005; 25(3): 179-83.
[http://dx.doi.org/10.1111/j.1468-2982.2005.00836.x] [PMID: 15689192]
[93]
Vécsei L, Majláth Z, Balog A, Tajti J. Drug targets of migraine and neuropathy: treatment of hyperexcitability. CNS Neurol Disord Drug Targets 2015; 14(5): 664-76.
[http://dx.doi.org/10.2174/1871527314666150429114040] [PMID: 25921739]
[94]
Knyihár-Csillik E, Chadaide Z, Okuno E, et al. Kynurenine aminotransferase in the supratentorial dura mater of the rat: effect of stimulation of the trigeminal ganglion. Exp Neurol 2004; 186(2): 242-7.
[http://dx.doi.org/10.1016/j.expneurol.2003.12.001] [PMID: 15026260]
[95]
Vámos E, Fejes A, Koch J, et al. Kynurenate derivative attenuates the nitroglycerin-induced CamKIIα and CGRP expression changes. Headache 2010; 50(5): 834-43.
[http://dx.doi.org/10.1111/j.1526-4610.2009.01574.x] [PMID: 19925620]
[96]
Eftekhari S, Salvatore CA, Johansson S, Chen TB, Zeng Z, Edvinsson L. Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood-brain barrier. Brain Res 2015; 1600: 93-109.
[http://dx.doi.org/10.1016/j.brainres.2014.11.031] [PMID: 25463029]
[97]
Csáti A, Edvinsson L, Vécsei L, et al. Kynurenic acid modulates experimentally induced inflammation in the trigeminal ganglion. J Headache Pain 2015; 16: 99.
[http://dx.doi.org/10.1186/s10194-015-0581-x] [PMID: 26627709]
[98]
Greco R, Demartini C, Zanaboni AM, et al. Effects of kynurenic acid analogue 1 (KYNA-A1) in nitroglycerin-induced hyperalgesia: Targets and anti-migraine mechanisms. Cephalalgia 2017; 37(13): 1272-84.
[http://dx.doi.org/10.1177/0333102416678000] [PMID: 27919017]
[99]
Spekker E, Laborc KF, Bohár Z, et al. Effect of dural inflammatory soup application on activation and sensitization markers in the caudal trigeminal nucleus of the rat and the modulatory effects of sumatriptan and kynurenic acid. J Headache Pain 2021; 22(1): 17.
[http://dx.doi.org/10.1186/s10194-021-01229-3] [PMID: 33789568]
[100]
Curto M, Lionetto L, Negro A, et al. Altered kynurenine pathway metabolites in serum of chronic migraine patients. J Headache Pain 2015; 17: 47.
[http://dx.doi.org/10.1186/s10194-016-0638-5] [PMID: 27130315]
[101]
Curto M, Lionetto L, Fazio F, Mitsikostas DD, Martelletti P. Fathoming the kynurenine pathway in migraine: why understanding the enzymatic cascades is still critically important. Intern Emerg Med 2015; 10(4): 413-21.
[http://dx.doi.org/10.1007/s11739-015-1208-6] [PMID: 25708356]
[102]
Tuka B, Nyári A, Cseh EK, et al. Clinical relevance of depressed kynurenine pathway in episodic migraine patients: potential prognostic markers in the peripheral plasma during the interictal period. J Headache Pain 2021; 22(1): 60.
[http://dx.doi.org/10.1186/s10194-021-01239-1] [PMID: 34171996]
[103]
Al-Karagholi MA, Hansen JM, Abou-Kassem D, et al. Phase 1 study to access safety, tolerability, pharmacokinetics, and pharmacodynamics of kynurenine in healthy volunteers. Pharmacol Res Perspect 2021; 9(2): e00741.
[http://dx.doi.org/10.1002/prp2.741] [PMID: 33682377]
[104]
Vécsei L, Tuka B, Tajti J. Role of PACAP in migraine headaches. Brain 2014; 137(Pt 3): 650-1.
[http://dx.doi.org/10.1093/brain/awu014] [PMID: 24549810]
[105]
Tajti J, Tuka B, Botz B, Helyes Z, Vecsei L. Role of pituitary adenylate cyclase-activating polypeptide in nociception and migraine. CNS Neurol Disord Drug Targets 2015; 14(4): 540-53.
[http://dx.doi.org/10.2174/1871527314666150429114234] [PMID: 25921738]
[106]
Schytz HW, Birk S, Wienecke T, Kruuse C, Olesen J, Ashina M. PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 2009; 132(Pt 1): 16-25.
[http://dx.doi.org/10.1093/brain/awn307] [PMID: 19052139]
[107]
Jansen-Olesen I, Baun M, Amrutkar DV, Ramachandran R, Christophersen DV, Olesen J. PACAP-38 but not VIP induces release of CGRP from trigeminal nucleus caudalis via a receptor distinct from the PAC1 receptor. Neuropeptides 2014; 48(2): 53-64.
[http://dx.doi.org/10.1016/j.npep.2014.01.004] [PMID: 24508136]
[108]
Körtési T, Tuka B, Nyári A, Vécsei L, Tajti J. The effect of orofacial complete Freund’s adjuvant treatment on the expression of migraine-related molecules. J Headache Pain 2019; 20(1): 43.
[http://dx.doi.org/10.1186/s10194-019-0999-7] [PMID: 31035923]
[109]
Ashina M, Buse DC, Ashina H, et al. Migraine: integrated approaches to clinical management and emerging treatments. Lancet 2021; 397(10283): 1505-18.
[http://dx.doi.org/10.1016/S0140-6736(20)32342-4] [PMID: 33773612]
[110]
Doods H, Hallermayer G, Wu D, et al. Pharmacological profile of BIBN4096BS, the first selective small molecule CGRP antagonist. Br J Pharmacol 2000; 129(3): 420-3.
[http://dx.doi.org/10.1038/sj.bjp.0703110] [PMID: 10711339]
[111]
Olesen J, Diener HC, Husstedt IW, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 2004; 350(11): 1104-10.
[http://dx.doi.org/10.1056/NEJMoa030505] [PMID: 15014183]
[112]
Connor KM, Shapiro RE, Diener HC, et al. Randomized, controlled trial of telcagepant for the acute treatment of migraine. Neurology 2009; 73(12): 970-7.
[http://dx.doi.org/10.1212/WNL.0b013e3181b87942] [PMID: 19770473]
[113]
Tajti J, Majláth Z, Szok D, Csáti A, Vécsei L. Drug safety in acute migraine treatment. Expert Opin Drug Saf 2015; 14(6): 891-909.
[http://dx.doi.org/10.1517/14740338.2015.1026325] [PMID: 25773005]
[114]
Chiang CC, Schwedt TJ. Calcitonin gene-related peptide (CGRP)- targeted therapies as preventive and acute treatments for migraine-The monoclonal antibodies and gepants. Prog Brain Res 2020; 255: 143-70.
[http://dx.doi.org/10.1016/bs.pbr.2020.06.019] [PMID: 33008505]
[115]
Voss T, Lipton RB, Dodick DW, et al. A phase IIb randomized, double-blind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia 2016; 36(9): 887-98.
[http://dx.doi.org/10.1177/0333102416653233] [PMID: 27269043]
[116]
Dodick DW, Lipton RB, Ailani J, et al. Ubrogepant for the Treatment of Migraine. N Engl J Med 2019; 381(23): 2230-41.
[http://dx.doi.org/10.1056/NEJMoa1813049] [PMID: 31800988]
[117]
Lipton RB, Dodick DW, Ailani J, et al. Effect of Ubrogepant vs Placebo on Pain and the Most Bothersome Associated Symptom in the Acute Treatment of Migraine: The ACHIEVE II Randomized Clinical Trial. JAMA 2019; 322(19): 1887-98.
[http://dx.doi.org/10.1001/jama.2019.16711] [PMID: 31742631]
[118]
Goadsby PJ, Blumenfeld AM, Lipton RB, et al. Time course of efficacy of ubrogepant for the acute treatment of migraine: Clinical implications. Cephalalgia 2021; 41(5): 546-60.
[http://dx.doi.org/10.1177/0333102420970523] [PMID: 33241721]
[119]
Blumenfeld AM, Goadsby PJ, Dodick DW, et al. Efficacy of ubrogepant based on prior exposure and response to triptans: A post hoc analysis. Headache 2021; 61(3): 422-9.
[http://dx.doi.org/10.1111/head.14089] [PMID: 33749826]
[120]
Ailani J, Lipton RB, Hutchinson S, et al. Long-Term Safety Evaluation of Ubrogepant for the Acute Treatment of Migraine: Phase 3, Randomized, 52-Week Extension Trial. Headache 2020; 60(1): 141-52.
[http://dx.doi.org/10.1111/head.13682] [PMID: 31913519]
[121]
Jakate A, Boinpally R, Butler M, Lu K, McGeeney D, Periclou A. Evaluation of the Pharmacokinetic Interaction of Ubrogepant Coadministered With Sumatriptan and of the Safety of Ubrogepant With Triptans. Headache 2020; 60(7): 1340-50.
[http://dx.doi.org/10.1111/head.13862] [PMID: 32573795]
[122]
Jakate A, Blumenfeld AM, Boinpally R, et al. Pharmacokinetics and safety of ubrogepant when coadministered with calcitonin gene-related peptide-targeted monoclonal antibody migraine preventives in participants with migraine: a randomized phase 1b drug-drug interaction study. Headache 2021; 61(4): 642-52.
[http://dx.doi.org/10.1111/head.14095] [PMID: 33818780]
[123]
Yang Y, Chen M, Sun Y, Gao B, Chen Z, Wang Z. Safety and efficacy of ubrogepant for the acute treatment of episodic migraine: a meta-analysis of randomized clinical trials. CNS Drugs 2020; 34(5): 463-71.
[http://dx.doi.org/10.1007/s40263-020-00715-7] [PMID: 32193827]
[124]
Zhang Z, Shu Y, Diao Y, et al. Calcitonin gene-related peptide receptor antagonist ubrogepant for the treatment of acute migraine: A meta-analysis. Medicine (Baltimore) 2021; 100(8): e24741.
[http://dx.doi.org/10.1097/MD.0000000000024741] [PMID: 33663087]
[125]
Chiang CC, Arca KN, Dunn RB, et al. Real-world efficacy, tolerability, and safety of ubrogepant. Headache 2021; 61(4): 620-7.
[http://dx.doi.org/10.1111/head.14062] [PMID: 33547676]
[126]
Chiang CC, VanderPluym JH. Ubrogepant in the acute management of migraine: a narrative review. J Pain Res 2021; 14: 1185-92.
[http://dx.doi.org/10.2147/JPR.S244249] [PMID: 33948091]
[127]
Marcus R, Goadsby PJ, Dodick D, Stock D, Manos G, Fischer TZ. BMS-927711 for the acute treatment of migraine: a double-blind, randomized, placebo controlled, dose-ranging trial. Cephalalgia 2014; 34(2): 114-25.
[http://dx.doi.org/10.1177/0333102413500727] [PMID: 23965396]
[128]
Lipton RB, Croop R, Stock EG, et al. Rimegepant, an Oral Calcitonin Gene-Related Peptide Receptor Antagonist, for Migraine. N Engl J Med 2019; 381(2): 142-9.
[http://dx.doi.org/10.1056/NEJMoa1811090] [PMID: 31291516]
[129]
Croop R, Goadsby PJ, Stock DA, et al. Efficacy, safety, and tolerability of rimegepant orally disintegrating tablet for the acute treatment of migraine: a randomised, phase 3, double-blind, placebo- controlled trial. Lancet 2019; 394(10200): 737-45.
[http://dx.doi.org/10.1016/S0140-6736(19)31606-X] [PMID: 31311674]
[130]
Croop R, Lipton RB, Kudrow D, et al. Oral rimegepant for preventive treatment of migraine: a phase 2/3, randomised, double-blind, placebo-controlled trial. Lancet 2021; 397(10268): 51-60.
[http://dx.doi.org/10.1016/S0140-6736(20)32544-7] [PMID: 33338437]
[131]
Chan TLH, Cowan RP, Woldeamanuel YW. Calcitonin gene-related peptide receptor antagonists (gepants) for the acute treatment of nausea in episodic migraine: a systematic review and meta-analysis. Headache 2020; 60(7): 1489-99.
[http://dx.doi.org/10.1111/head.13858] [PMID: 32515018]
[132]
Ha DK, Kim MJ, Han N, Kwak JH, Baek IH. Comparative efficacy of oral calcitonin-gene-related peptide antagonists for the treatment of acute migraine: updated meta-analysis. Clin Drug Investig 2021; 41(2): 119-32.
[http://dx.doi.org/10.1007/s40261-020-00997-1] [PMID: 33426614]
[133]
Goadsby PJ, Dodick DW, Ailani J, et al. Safety, tolerability, and efficacy of orally administered atogepant for the prevention of episodic migraine in adults: a double-blind, randomised phase 2b/3 trial. Lancet Neurol 2020; 19(9): 727-37.
[http://dx.doi.org/10.1016/S1474-4422(20)30234-9] [PMID: 32822633]
[134]
Boinpally R, Spaventa J, Chen K, Butler M. Evaluation of the pharmacokinetic interaction and safety of atogepant co-administered with acetaminophen or naproxen in healthy participants: a randomized trial. Clin Drug Investig 2021; 41(6): 557-67.
[http://dx.doi.org/10.1007/s40261-021-01034-5] [PMID: 33948911]
[135]
Dubowchik GM, Conway CM, Xin AW. Blocking the cgrp pathway for acute and preventive treatment of migraine: the evolution of success. J Med Chem 2020; 63(13): 6600-23.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01810] [PMID: 32058712]
[136]
Moreno-Ajona D, Pérez-Rodríguez A, Goadsby PJ. Gepants, calcitonin-gene-related peptide receptor antagonists: what could be their role in migraine treatment? Curr Opin Neurol 2020; 33(3): 309-15.
[http://dx.doi.org/10.1097/WCO.0000000000000806] [PMID: 32251023]
[137]
Olesen J, Ashina M. Calcitonin gene-related peptide - beyond migraine prophylaxis. Nat Rev Neurol 2019; 15(10): 562-4.
[http://dx.doi.org/10.1038/s41582-019-0258-1] [PMID: 31488896]
[138]
Hargreaves R, Olesen J. Calcitonin gene-related peptide modulators - the history and renaissance of a new migraine drug class. Headache 2019; 59(6): 951-70.
[http://dx.doi.org/10.1111/head.13510] [PMID: 31020659]
[139]
Evers S, Afra J, Frese A, et al. EFNS guideline on the drug treatment of migraine-revised report of an EFNS task force. Eur J Neurol 2009; 16(9): 968-81.
[http://dx.doi.org/10.1111/j.1468-1331.2009.02748.x] [PMID: 19708964]
[140]
Silberstein SD, Holland S, Freitag F, Dodick DW, Argoff C, Ashman E. Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 2012; 78(17): 1337-45.
[http://dx.doi.org/10.1212/WNL.0b013e3182535d20] [PMID: 22529202]
[141]
Gklinos P, Papadopoulou M, Stanulovic V, Mitsikostas DD, Papadopoulos D. Monoclonal antibodies as neurological therapeutics. Pharmaceuticals (Basel) 2021; 14(2): 92.
[http://dx.doi.org/10.3390/ph14020092] [PMID: 33530460]
[142]
Dodick DW, Lipton RB, Silberstein S, et al. Eptinezumab for prevention of chronic migraine: A randomized phase 2b clinical trial. Cephalalgia 2019; 39(9): 1075-85.
[http://dx.doi.org/10.1177/0333102419858355] [PMID: 31234642]
[143]
Ashina M, Saper J, Cady R, et al. Eptinezumab in episodic migraine: A randomized, double-blind, placebo-controlled study (PROMISE-1). Cephalalgia 2020; 40(3): 241-54.
[http://dx.doi.org/10.1177/0333102420905132] [PMID: 32075406]
[144]
Lipton RB, Goadsby PJ, Smith J, et al. Efficacy and safety of eptinezumab in patients with chronic migraine: PROMISE-2. Neurology 2020; 94(13): e1365-77.
[http://dx.doi.org/10.1212/WNL.0000000000009169] [PMID: 32209650]
[145]
Silberstein S, Diamond M, Hindiyeh NA, et al. Eptinezumab for the prevention of chronic migraine: efficacy and safety through 24 weeks of treatment in the phase 3 PROMISE-2 (Prevention of migraine via intravenous ALD403 safety and efficacy-2) study. J Headache Pain 2020; 21(1): 120.
[http://dx.doi.org/10.1186/s10194-020-01186-3] [PMID: 33023473]
[146]
Diener HC, Marmura MJ, Tepper SJ, et al. Efficacy, tolerability, and safety of eptinezumab in patients with a dual diagnosis of chronic migraine and medication-overuse headache: Subgroup analysis of PROMISE-2. Headache 2021; 61(1): 125-36.
[http://dx.doi.org/10.1111/head.14036] [PMID: 33314079]
[147]
Kudrow D, Cady RK, Allan B, et al. Long-term safety and tolerability of eptinezumab in patients with chronic migraine: a 2-year, open-label, phase 3 trial. BMC Neurol 2021; 21(1): 126.
[http://dx.doi.org/10.1186/s12883-021-02123-w] [PMID: 33740902]
[148]
Smith TR, Spierings ELH, Cady R, et al. Safety and tolerability of eptinezumab in patients with migraine: a pooled analysis of 5 clinical trials. J Headache Pain 2021; 22(1): 16.
[http://dx.doi.org/10.1186/s10194-021-01227-5] [PMID: 33781209]
[149]
Bigal ME, Dodick DW, Rapoport AM, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol 2015; 14(11): 1081-90.
[http://dx.doi.org/10.1016/S1474-4422(15)00249-5] [PMID: 26432182]
[150]
Dodick DW, Silberstein SD, Bigal ME, et al. Effect of fremanezumab compared with placebo for prevention of episodic migraine: a randomized clinical trial. JAMA 2018; 319(19): 1999-2008.
[http://dx.doi.org/10.1001/jama.2018.4853] [PMID: 29800211]
[151]
Silberstein SD, Dodick DW, Bigal ME, et al. Fremanezumab for the preventive treatment of chronic migraine. N Engl J Med 2017; 377(22): 2113-22.
[http://dx.doi.org/10.1056/NEJMoa1709038] [PMID: 29171818]
[152]
Blumenfeld AM, Stevanovic DM, Ortega M, et al. No “wearing-off effect” seen in quarterly or monthly dosing of fremanezumab: subanalysis of a randomized long-term study. Headache 2020; 60(10): 2431-43.
[http://dx.doi.org/10.1111/head.13994] [PMID: 33009665]
[153]
Ferrari MD, Diener HC, Ning X, et al. Fremanezumab versus placebo for migraine prevention in patients with documented failure to up to four migraine preventive medication classes (focus): a randomised, double-blind, placebo-controlled, phase 3b trial. Lancet 2019; 394(10203): 1030-40.
[http://dx.doi.org/10.1016/S0140-6736(19)31946-4] [PMID: 31427046]
[154]
Spierings ELH, Kärppä M, Ning X, et al. Efficacy and safety of fremanezumab in patients with migraine and inadequate response to prior preventive treatment: subgroup analyses by country of a randomized, placebo-controlled trial. J Headache Pain 2021; 22(1): 26.
[http://dx.doi.org/10.1186/s10194-021-01232-8] [PMID: 33863272]
[155]
Goadsby PJ, Silberstein SD, Yeung PP, et al. Long-term safety, tolerability, and efficacy of fremanezumab in migraine: A randomized study. Neurology 2020; 95(18): e2487-99.
[http://dx.doi.org/10.1212/WNL.0000000000010600] [PMID: 32913018]
[156]
Gao B, Sun N, Yang Y, et al. Safety and efficacy of fremanezumab for the prevention of migraine: a meta-analysis from randomized controlled trials. Front Neurol 2020; 11: 435.
[http://dx.doi.org/10.3389/fneur.2020.00435] [PMID: 32508742]
[157]
Huang IH, Wu PC, Lee YH, Kang YN. Optimal treatment strategy of fremanezumab in migraine prevention: a systematic review with network meta-analysis of randomized clinical trials. Sci Rep 2020; 10(1): 18609.
[http://dx.doi.org/10.1038/s41598-020-75602-8] [PMID: 33122778]
[158]
Cohen-Barak O, Radivojevic A, Jones A, et al. Dose selection for fremanezumab (AJOVY) phase 3 pediatric migraine studies using pharmacokinetic data from a pediatric phase 1 study and a population pharmacokinetic modeling and simulation approach. Cephalalgia 2021; 41(10): 1065-74.
[http://dx.doi.org/10.1177/03331024211007789] [PMID: 34000848]
[159]
Stauffer VL, Dodick DW, Zhang Q, Carter JN, Ailani J, Conley RR. Evaluation of Galcanezumab for the Prevention of Episodic Migraine: The EVOLVE-1 Randomized Clinical Trial. JAMA Neurol 2018; 75(9): 1080-8.
[http://dx.doi.org/10.1001/jamaneurol.2018.1212] [PMID: 29813147]
[160]
Skljarevski V, Matharu M, Millen BA, Ossipov MH, Kim BK, Yang JY. Efficacy and safety of galcanezumab for the prevention of episodic migraine: Results of the EVOLVE-2 Phase 3 randomized controlled clinical trial. Cephalalgia 2018; 38(8): 1442-54.
[http://dx.doi.org/10.1177/0333102418779543] [PMID: 29848108]
[161]
Detke HC, Goadsby PJ, Wang S, Friedman DI, Selzler KJ, Aurora SK. Galcanezumab in chronic migraine: The randomized, double-blind, placebo-controlled REGAIN study. Neurology 2018; 91(24): e2211-21.
[http://dx.doi.org/10.1212/WNL.0000000000006640] [PMID: 30446596]
[162]
Camporeale A, Kudrow D, Sides R, et al. A phase 3, long-term, open-label safety study of Galcanezumab in patients with migraine. BMC Neurol 2018; 18(1): 188.
[http://dx.doi.org/10.1186/s12883-018-1193-2] [PMID: 30413151]
[163]
Mulleners WM, Kim BK, Láinez MJA, et al. Safety and efficacy of galcanezumab in patients for whom previous migraine preventive medication from two to four categories had failed (CONQUER): a multicentre, randomised, double-blind, placebo-controlled, phase 3b trial. Lancet Neurol 2020; 19(10): 814-25.
[http://dx.doi.org/10.1016/S1474-4422(20)30279-9] [PMID: 32949542]
[164]
Schwedt TJ, Kuruppu DK, Dong Y, Standley K, Yunes-Medina L, Pearlman E. Early onset of effect following galcanezumab treatment in patients with previous preventive medication failures. J Headache Pain 2021; 22(1): 15.
[http://dx.doi.org/10.1186/s10194-021-01230-w] [PMID: 33765912]
[165]
Tatsuoka Y, Takeshima T, Ozeki A, Matsumura T. Treatment Satisfaction of Galcanezumab in Japanese Patients with Episodic Migraine: A Phase 2 Randomized Controlled Study. Neurol Ther 2021; 10(1): 265-78.
[http://dx.doi.org/10.1007/s40120-021-00236-5] [PMID: 33835383]
[166]
Gklinos P, Mitsikostas DD. Galcanezumab in migraine prevention: a systematic review and meta-analysis of randomized controlled trials. Ther Adv Neurol Disord 2020; 13: 1756286420918088.
[http://dx.doi.org/10.1177/1756286420918088] [PMID: 32426040]
[167]
Abu-Zaid A, AlBatati SK, AlHossan AM, et al. Galcanezumab for the Management of Migraine: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials. Cureus 2020; 12(11): e11621.
[PMID: 33376635]
[168]
Vernieri F, Altamura C, Brunelli N, et al. Galcanezumab for the prevention of high frequency episodic and chronic migraine in real life in Italy: a multicenter prospective cohort study (the GARLIT study). J Headache Pain 2021; 22(1): 35.
[http://dx.doi.org/10.1186/s10194-021-01247-1] [PMID: 33941080]
[169]
Sun H, Dodick DW, Silberstein S, et al. Safety and efficacy of AMG 334 for prevention of episodic migraine: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2016; 15(4): 382-90.
[http://dx.doi.org/10.1016/S1474-4422(16)00019-3] [PMID: 26879279]
[170]
Tepper S, Ashina M, Reuter U, et al. Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 2017; 16(6): 425-34.
[http://dx.doi.org/10.1016/S1474-4422(17)30083-2] [PMID: 28460892]
[171]
Goadsby PJ, Reuter U, Hallström Y, et al. A Controlled Trial of Erenumab for Episodic Migraine. N Engl J Med 2017; 377(22): 2123-32.
[http://dx.doi.org/10.1056/NEJMoa1705848] [PMID: 29171821]
[172]
Diener HC, Ashina M, Ritter S, et al. Erenumab prevents the occurrence of migraine attacks and not just migraine days: Post-hoc analyses of a phase III study. Cephalalgia 2021; 3331024211010308.
[PMID: 33939497]
[173]
Dodick DW, Ashina M, Brandes JL, et al. ARISE: A Phase 3 randomized trial of erenumab for episodic migraine. Cephalalgia 2018; 38(6): 1026-37.
[http://dx.doi.org/10.1177/0333102418759786] [PMID: 29471679]
[174]
Reuter U, Goadsby PJ, Lanteri-Minet M, et al. Efficacy and tolerability of erenumab in patients with episodic migraine in whom two-to-four previous preventive treatments were unsuccessful: a randomised, double-blind, placebo-controlled, phase 3b study. Lancet 2018; 392(10161): 2280-7.
[http://dx.doi.org/10.1016/S0140-6736(18)32534-0] [PMID: 30360965]
[175]
Lanteri-Minet M, Goadsby PJ, Reuter U, et al. Effect of erenumab on functional outcomes in patients with episodic migraine in whom 2-4 preventives were not useful: results from the LIBERTY study. J Neurol Neurosurg Psychiatry 2021; 92(5): 466-72.
[http://dx.doi.org/10.1136/jnnp-2020-324396] [PMID: 33402419]
[176]
Goadsby PJ, Reuter U, Lanteri-Minet M, et al. Long-Term Efficacy and Safety of Erenumab: Results From 64 Weeks of the LIBERTY Study. Neurology 2021; 10.1212/WNL.0000000000012029.
[PMID: 33910942]
[177]
Ornello R, Casalena A, Frattale I, et al. Real-life data on the efficacy and safety of erenumab in the Abruzzo region, central Italy. J Headache Pain 2020; 21(1): 32.
[http://dx.doi.org/10.1186/s10194-020-01102-9] [PMID: 32264820]
[178]
Ornello R, Casalena A, Frattale I, et al. Conversion from chronic to episodic migraine in patients treated with erenumab: real-life data from an Italian region. J Headache Pain 2020; 21(1): 102.
[http://dx.doi.org/10.1186/s10194-020-01171-w] [PMID: 32799790]
[179]
Torres-Ferrús M, Gallardo VJ, Alpuente A, Caronna E, Gine- Cipres E, Pozo-Rosich P. The impact of anti-CGRP monoclonal antibodies in resistant migraine patients: a real-world evidence observational study. J Neurol 2021.
[http://dx.doi.org/10.1007/s00415-021-10523-8] [PMID: 33772636]
[180]
Lattanzi S, Brigo F, Trinka E, et al. Erenumab for Preventive Treatment of Migraine: A Systematic Review and Meta-Analysis of Efficacy and Safety. Drugs 2019; 79(4): 417-31.
[http://dx.doi.org/10.1007/s40265-019-01069-1] [PMID: 30793254]
[181]
Pellesi L, De Icco R, Alawie HY, et al. A systematic review, meta-analysis and meta-regression evaluating the adverse reactions to erenumab in the preventive treatment of migraine. Expert Opin Drug Saf 2021; 20(4): 467-74.
[http://dx.doi.org/10.1080/14740338.2021.1866537] [PMID: 33337920]
[182]
Ashina M, Goadsby PJ, Reuter U, et al. Long-term efficacy and safety of erenumab in migraine prevention: Results from a 5-year, open-label treatment phase of a randomized clinical trial. Eur J Neurol 2021; 28(5): 1716-25.
[http://dx.doi.org/10.1111/ene.14715] [PMID: 33400330]
[183]
Gantenbein AR, Agosti R, Gobbi C, et al. Impact on monthly migraine days of discontinuing anti-CGRP antibodies after one year of treatment - a real-life cohort study. Cephalalgia 2021; 3331024211014616.
[PMID: 34000847]
[184]
Kokoti L, Drellia K, Papadopoulos D, Mitsikostas DD. Placebo and nocebo phenomena in anti- CGRP monoclonal antibody trials for migraine prevention: a meta-analysis. J Neurol 2020; 267(4): 1158-70.
[http://dx.doi.org/10.1007/s00415-019-09673-7] [PMID: 31919565]
[185]
Forbes RB, McCarron M, Cardwell CR. Efficacy and Contextual (Placebo) Effects of CGRP Antibodies for Migraine: Systematic Review and Meta-analysis. Headache 2020; 60(8): 1542-57.
[http://dx.doi.org/10.1111/head.13907] [PMID: 32668023]
[186]
Drellia K, Kokoti L, Deligianni CI, Papadopoulos D, Mitsikostas DD. Anti-CGRP monoclonal antibodies for migraine prevention: A systematic review and likelihood to help or harm analysis. Cephalalgia 2021; 41(7): 851-64.
[http://dx.doi.org/10.1177/0333102421989601] [PMID: 33567891]
[187]
Wang X, Chen Y, Song J, You C. Efficacy and Safety of Monoclonal Antibody Against Calcitonin Gene-Related Peptide or Its Receptor for Migraine: A Systematic Review and Network Meta-analysis. Front Pharmacol 2021; 12: 649143.
[http://dx.doi.org/10.3389/fphar.2021.649143] [PMID: 33867991]
[188]
Vécsei L, Majláth Z, Szok D, Csáti A, Tajti J. Drug safety and tolerability in prophylactic migraine treatment. Expert Opin Drug Saf 2015; 14(5): 667-81.
[http://dx.doi.org/10.1517/14740338.2015.1014797] [PMID: 25676133]
[189]
Ramsey RR, Ryan JL, Hershey AD, Powers SW, Aylward BS, Hommel KA. Treatment adherence in patients with headache: a systematic review. Headache 2014; 54(5): 795-816.
[http://dx.doi.org/10.1111/head.12353] [PMID: 24750017]
[190]
Hepp Z, Bloudek LM, Varon SF. Systematic review of migraine prophylaxis adherence and persistence. J Manag Care Pharm 2014; 20(1): 22-33.
[http://dx.doi.org/10.18553/jmcp.2014.20.1.22] [PMID: 24372457]
[191]
Mavridis T, Deligianni CI, Karagiorgis G, Daponte A, Breza M, Mitsikostas DD. Monoclonal Antibodies Targeting CGRP: From Clinical Studies to Real-World Evidence-What Do We Know So Far? Pharmaceuticals (Basel) 2021; 14(7): 700.
[http://dx.doi.org/10.3390/ph14070700] [PMID: 34358126]
[192]
Sacco S, Braschinsky M, Ducros A, et al. European headache federation consensus on the definition of resistant and refractory migraine : Developed with the endorsement of the European Migraine & Headache Alliance (EMHA). J Headache Pain 2020; 21(1): 76.
[http://dx.doi.org/10.1186/s10194-020-01130-5] [PMID: 32546227]
[193]
Zagami AS, Edvinsson L, Goadsby PJ. Pituitary adenylate cyclase activating polypeptide and migraine. Ann Clin Transl Neurol 2014; 1(12): 1036-40.
[http://dx.doi.org/10.1002/acn3.113] [PMID: 25574477]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy