Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Perspective

Organic- or Inorganic-based Nanomaterials: Opportunities and Challenges in the Selection for Biomedicines

Author(s): Ranjith K. Kankala*

Volume 28, Issue 3, 2022

Published on: 30 November, 2021

Page: [208 - 215] Pages: 8

DOI: 10.2174/1381612827666211007150414

Abstract

Since the inception of nanotechnology, several efforts have been dedicated to fabricating diverse nanodevices with exceptional performance. These innovative constructs have been applied in medicine due to their tailorable physicochemical properties (chemical composition, optical activity, spectra, and charge) and morphological attributes (size, shape, and surface area). Moreover, these versatile nanomedicines could promisingly offer better performance over the conventional therapeutic strategies. Broadly speaking, in terms of chemical composition, nanobiomaterials are classified into two predominant categories of organic and inorganic- based components. Despite their success and enormous versatile advancements in the past two decades, the significant progress towards clinical translation has been hampered by their corresponding intrinsic limitations. In this perspective, we give a brief overview of these organic- and inorganic-based materials, highlighting opportunities and challenges towards their utilization in medicine. Finally, we provide an interesting outlook on the lessons learned and look forward to further developing these materials, emphasizing their potential in clinical translation.

Keywords: Organic polymers, inorganic metals, biocompatibility, degradability, drug delivery, bioimaging.

[1]
Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine-challenge and perspectives. Angew Chem Int Ed Engl 2009; 48(5): 872-97.
[http://dx.doi.org/10.1002/anie.200802585] [PMID: 19142939]
[2]
Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cyclopara-phenylene: Carbon nanohoop structures. J Am Chem Soc 2008; 130(52): 17646-7.
[http://dx.doi.org/10.1021/ja807126u] [PMID: 19055403]
[3]
Farokhzad OC, Langer R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 2006; 58(14): 1456-9.
[http://dx.doi.org/10.1016/j.addr.2006.09.011] [PMID: 17070960]
[4]
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014; 53(46): 12320-64.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[5]
Kuthati Y, Kankala RK, Lee C-H. Layered double hydroxide nanoparticles for biomedical applications: Current status and recent prospects. Appl Clay Sci 2015; 112: 100-16.
[http://dx.doi.org/10.1016/j.clay.2015.04.018]
[6]
Lohse SE, Murphy CJ. Applications of colloidal inorganic nanoparticles: From medicine to energy. J Am Chem Soc 2012; 134(38): 15607-20.
[http://dx.doi.org/10.1021/ja307589n] [PMID: 22934680]
[7]
Liong M, Lu J, Kovochich M, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008; 2(5): 889-96.
[http://dx.doi.org/10.1021/nn800072t] [PMID: 19206485]
[8]
Torney F, Trewyn BG, Lin VSY, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2007; 2(5): 295-300.
[http://dx.doi.org/10.1038/nnano.2007.108] [PMID: 18654287]
[9]
Kankala RK, Zhu K, Sun X-N, Liu C-G, Wang S-B, Chen A-Z. Cardiac tissue engineering on the nanoscale. ACS Biomater Sci Eng 2018; 4(3): 800-18.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00913] [PMID: 33418765]
[10]
Fang F, Li M, Zhang J, Lee C-S. Different strategies for organic nanoparticle preparation in biomedicine. ACS Materials Letters 2020; 2: 531-49.
[http://dx.doi.org/10.1021/acsmaterialslett.0c00078]
[11]
Ang CY, Tan SY, Teh C, et al. Redox and pH dual responsive polymer based nanoparticles for in vivo drug delivery. Small 2017; 13(7): 13.
[http://dx.doi.org/10.1002/smll.201602379] [PMID: 27918645]
[12]
Chen C, Duan Z, Yuan Y, et al. Peptide-22 and cyclic RGD functionalized liposomes for glioma targeting drug delivery overcoming BBB and BBTB. ACS Appl Mater Interfaces 2017; 9(7): 5864-73.
[http://dx.doi.org/10.1021/acsami.6b15831] [PMID: 28128553]
[13]
Zinger A, Koren L, Adir O, et al. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano 2019; 13(10): 11008-21.
[http://dx.doi.org/10.1021/acsnano.9b02395] [PMID: 31503443]
[14]
Ray S, Li Z, Hsu CH, et al. Dendrimer- and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics 2018; 8(22): 6322-49.
[http://dx.doi.org/10.7150/thno.27828] [PMID: 30613300]
[15]
Kim DW, Kim DH, Jang JY, et al. Microporous organic network nanoparticles for dual chemo-photodynamic cancer therapy. J Mater Chem B Mater Biol Med 2019; 7: 4118-23.
[http://dx.doi.org/10.1039/C9TB00435A]
[16]
Liu C-G, Han Y-H, Zhang J-T, Kankala RK, Wang S-B, Chen A-Z. Rerouting engineered metal-dependent shapes of mesoporous silica nanocontainers to biodegradable Janus-type (sphero-ellipsoid) nanoreactors for chemodynamic therapy. Chem Eng J 2019; 370: 1188-99.
[http://dx.doi.org/10.1016/j.cej.2019.03.272]
[17]
Kankala RK, Liu C-G, Yang D-Y, Wang S-B, Chen A-Z. Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance. Chem Eng J 2020; 383: 123138.
[http://dx.doi.org/10.1016/j.cej.2019.123138]
[18]
Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: Theranostic applications. Chem Soc Rev 2013; 42(2): 530-47.
[http://dx.doi.org/10.1039/C2CS35342C] [PMID: 23059655]
[19]
Liu Z, Chen K, Davis C, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2008; 68(16): 6652-60.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1468] [PMID: 18701489]
[20]
Morgan TT, Muddana HS, Altinoglu EI, et al. Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett 2008; 8(12): 4108-15.
[http://dx.doi.org/10.1021/nl8019888] [PMID: 19367837]
[21]
Zhang LX, Xie XX, Liu DQ, Xu ZP, Liu RT. Efficient co-delivery of neo-epitopes using dispersion-stable layered double hydroxide nanoparticles for enhanced melanoma immunotherapy. Biomaterials 2018; 174: 54-66.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.015] [PMID: 29778982]
[22]
Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nano Today 2007; 2: 18-29.
[http://dx.doi.org/10.1016/S1748-0132(07)70016-6]
[23]
Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW. Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 2012; 100(4): 1033-43.
[http://dx.doi.org/10.1002/jbm.a.34053] [PMID: 22308013]
[24]
Yang G, Xu L, Chao Y, et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun 2017; 8(1): 902.
[http://dx.doi.org/10.1038/s41467-017-01050-0] [PMID: 29026068]
[25]
Tan MC, Chow GM, Ren L, Zhang Q. Inorganic Nanoparticles for Biomedical Applications.In: Shi D, Ed NanoScience in Biomedicine. Berlin, Heidelberg: Springer Berlin Heidelberg 2009; pp. 272-89.
[http://dx.doi.org/10.1007/978-3-540-49661-8_11]
[26]
Chen Y, Chen H, Zhang S, et al. Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Adv Funct Mater 2011; 21: 270-8.
[http://dx.doi.org/10.1002/adfm.201001495]
[27]
Terreno E, Castelli DD, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chem Rev 2010; 110(5): 3019-42.
[http://dx.doi.org/10.1021/cr100025t] [PMID: 20415475]
[28]
Ma Y, Huang J, Song S, Chen H, Zhang Z. Cancer-targeted nanotheranostics: Recent advances and perspectives. Small 2016; 12(36): 4936-54.
[http://dx.doi.org/10.1002/smll.201600635] [PMID: 27150247]
[29]
Liu CG, Han YH, Kankala RK. Subcellular performance of nanoparticles in cancer therapy 2020; 15: 675-704.
[30]
Leslie-Pelecky DL, Rieke RD. Magnetic properties of nanostructured materials. Chem Mater 1996; 8: 1770-83.
[http://dx.doi.org/10.1021/cm960077f]
[31]
Kankala RK, Wang S-B, Chen A-Z. Nanoarchitecting hierarchical mesoporous siliceous frameworks: A new way forward. iScience 2020; 23(11): 101687.
[http://dx.doi.org/10.1016/j.isci.2020.101687] [PMID: 33163941]
[32]
Na HB, Hyeon T. Nanostructured T1 MRI contrast agents. J Mater Chem 2009; 19: 6267-73.
[http://dx.doi.org/10.1039/b902685a]
[33]
Kankala RK, Han Y-H, Na J, et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv Mater 2020; 32(23): e1907035.
[http://dx.doi.org/10.1002/adma.201907035] [PMID: 32319133]
[34]
Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005; 4(6): 435-46.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[35]
Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem Rev 2010; 110(6): 3479-500.
[http://dx.doi.org/10.1021/cr900339w] [PMID: 20201500]
[36]
Stuart MAC, Huck WTS, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater 2010; 9(2): 101-13.
[http://dx.doi.org/10.1038/nmat2614] [PMID: 20094081]
[37]
De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: Present and future commercial applications. Science 2013; 339(6119): 535-9.
[http://dx.doi.org/10.1126/science.1222453] [PMID: 23372006]
[38]
Giner-Casares JJ, Henriksen-Lacey M, Coronado-Puchau M, Liz-Marzán LM. Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research. Mater Today 2016; 19: 19-28.
[http://dx.doi.org/10.1016/j.mattod.2015.07.004]
[39]
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112(5): 2739-79.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[40]
Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci 2012; 37(1): 106-26.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[41]
Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev 2012; 41(2): 666-86.
[http://dx.doi.org/10.1039/C1CS15078B] [PMID: 21796314]
[42]
Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog Polym Sci 2003; 28: 1539-641.
[http://dx.doi.org/10.1016/j.progpolymsci.2003.08.002]
[43]
Mir SH, Nagahara LA, Thundat T, Mokarian-Tabari P, Furukawa H, Khosla A. Review-organic-inorganic hybrid functional materials: An integrated platform for applied technologies. J Electrochem Soc 2018; 165: B3137-56.
[http://dx.doi.org/10.1149/2.0191808jes]
[44]
Li Y, Song K, Cao Y, Peng C, Yang G. Keratin-templated synthesis of metallic oxide nanoparticles as MRI contrast agents and drug carriers. ACS Appl Mater Interfaces 2018; 10(31): 26039-45.
[http://dx.doi.org/10.1021/acsami.8b08555] [PMID: 30010317]
[45]
Yao C, Wang P, Li X, et al. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv Mater 2016; 28(42): 9341-8.
[http://dx.doi.org/10.1002/adma.201503799] [PMID: 27578301]
[46]
Tran LT, Lesieur S, Faivre V. Janus nanoparticles: Materials, preparation and recent advances in drug delivery. Expert Opin Drug Deliv 2014; 11(7): 1061-74.
[http://dx.doi.org/10.1517/17425247.2014.915806] [PMID: 24811771]
[47]
Niu M, Pham-Huy C, He H. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Mikrochim Acta 2016; 183: 2677-95.
[http://dx.doi.org/10.1007/s00604-016-1930-4]
[48]
De Cock LJ, De Koker S, De Geest BG, et al. Polymeric multilayer capsules in drug delivery. Angew Chem Int Ed Engl 2010; 49(39): 6954-73.
[http://dx.doi.org/10.1002/anie.200906266] [PMID: 20645362]
[49]
Rieter WJ, Pott KM, Taylor KML, Lin W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J Am Chem Soc 2008; 130(35): 11584-5.
[http://dx.doi.org/10.1021/ja803383k] [PMID: 18686947]
[50]
Corma A, García H, Llabrés i Xamena FX. Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 2010; 110(8): 4606-55.
[http://dx.doi.org/10.1021/cr9003924] [PMID: 20359232]
[51]
Horcajada P, Gref R, Baati T, et al. Metal-organic frameworks in biomedicine. Chem Rev 2012; 112(2): 1232-68.
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[52]
Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: Drug loading and release studies of a water soluble drug. J Control Release 1999; 57(2): 171-85.
[http://dx.doi.org/10.1016/S0168-3659(98)00116-3] [PMID: 9971898]
[53]
Di Francesco M, Primavera R, Summa M, et al. Engineering shape-defined PLGA microplates for the sustained release of anti-inflammatory molecules. J Control Release 2020; 319: 201-12.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.039] [PMID: 31899267]
[54]
Lee SH, Zhang Z, Feng SS. Nanoparticles of poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) copolymers for protein drug delivery. Biomaterials 2007; 28(11): 2041-50.
[http://dx.doi.org/10.1016/j.biomaterials.2007.01.003] [PMID: 17250886]
[55]
Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 2012; 64: 246-55.
[http://dx.doi.org/10.1016/j.addr.2012.09.022] [PMID: 12628324]
[56]
Ding M, Song N, He X, et al. Toward the next-generation nanomedicines: Design of multifunctional multiblock polyurethanes for effective cancer treatment. ACS Nano 2013; 7(3): 1918-28.
[http://dx.doi.org/10.1021/nn4002769] [PMID: 23411462]
[57]
Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech 2005; 6(2): E329-57.
[http://dx.doi.org/10.1208/pt060243] [PMID: 16353992]
[58]
Arias JL, Clares B, Morales ME, Gallardo V, Ruiz MA. Lipid-based drug delivery systems for cancer treatment. Curr Drug Targets 2011; 12(8): 1151-65.
[http://dx.doi.org/10.2174/138945011795906570] [PMID: 21443475]
[59]
Chen C, Gao K, Lian H, Chen C, Yan X. Single-particle characterization of theranostic liposomes with stimulus sensing and controlled drug release properties. Biosens Bioelectron 2019; 131: 185-92.
[http://dx.doi.org/10.1016/j.bios.2019.02.016] [PMID: 30836270]
[60]
Song Y, Zhang N, Li Q, et al. Biomimetic liposomes hybrid with platelet membranes for targeted therapy of atherosclerosis. Chem Eng J 2021; 408: 127296.
[http://dx.doi.org/10.1016/j.cej.2020.127296]
[61]
Zhu XJ, Li RF, Xu L, et al. A Novel self-assembled mitochondria-targeting protein nanoparticle acting as theranostic platform for cancer. Small 2019; 15(2): e1803428.
[http://dx.doi.org/10.1002/smll.201803428] [PMID: 30450734]
[62]
Liang P, Tang Q, Cai Y, et al. Self-quenched ferrocenyl diketopyrrolopyrrole organic nanoparticles with amplifying photothermal effect for cancer therapy. Chem Sci (Camb) 2017; 8(11): 7457-63.
[http://dx.doi.org/10.1039/C7SC03351F] [PMID: 29163898]
[63]
Cai Y, Si W, Huang W, Chen P, Shao J, Dong X. Organic dye based nanoparticles for cancer phototheranostics. Small 2018; 14(25): e1704247.
[http://dx.doi.org/10.1002/smll.201704247] [PMID: 29611290]
[64]
Choi H, Liu T, Nath K, Zhou R, Chen IW. Peptide nanoparticle with pH-sensing cargo solubility enhances cancer drug efficiency. Nano Today 2017; 13: 15-22.
[http://dx.doi.org/10.1016/j.nantod.2017.02.008]
[65]
Cheng K, Ding Y, Zhao Y, et al. Sequentially responsive therapeutic peptide assembling nanoparticles for dual-targeted cancer immunotherapy. Nano Lett 2018; 18(5): 3250-8.
[http://dx.doi.org/10.1021/acs.nanolett.8b01071] [PMID: 29683683]
[66]
Wei GQ, Wang Y, Huang XH, Hou HB, Zhou SB. Peptide-based nanocarriers for cancer therapy. Small Methods 2018; 2(9): 1700358.
[67]
Zhang M, Ma Y, Wang Z, et al. A CD44-targeting programmable drug delivery system for enhancing and sensitizing chemotherapy to drug-resistant cancer. ACS Appl Mater Interfaces 2019; 11(6): 5851-61.
[http://dx.doi.org/10.1021/acsami.8b19798] [PMID: 30648841]
[68]
Wan Q, Jiang RM, Guo LL, et al. Novel strategy toward AIE-active fluorescent polymeric nanoparticles from polysaccharides: Preparation and cell imaging. ACS Sustain Chem& Eng 2017; 5: 9955-64.
[http://dx.doi.org/10.1021/acssuschemeng.7b01908]
[69]
Yu M, Xue Y, Ma PX, Mao C, Lei B. Intrinsic ultrahigh drug/miRNA loading capacity of biodegradable bioactive glass nanoparticles toward highly efficient pharmaceutical delivery. ACS Appl Mater Interfaces 2017; 9(10): 8460-70.
[http://dx.doi.org/10.1021/acsami.6b13874] [PMID: 28240539]
[70]
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv Mater 2012; 24(12): 1504-34.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[71]
Li X, Zhou L, Wei Y, El-Toni AM, Zhang F, Zhao D. Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J Am Chem Soc 2014; 136(42): 15086-92.
[http://dx.doi.org/10.1021/ja508733r] [PMID: 25251874]
[72]
Malugin A, Herd H, Ghandehari H. Differential toxicity of amorphous silica nanoparticles toward phagocytic and epithelial cells. J Nanopart Res 2011; 13: 5381-96.
[http://dx.doi.org/10.1007/s11051-011-0524-7]
[73]
Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci 2020; 279: 102157.
[http://dx.doi.org/10.1016/j.cis.2020.102157] [PMID: 32330734]
[74]
Ziental D, Czarczynska-Goslinska B, Mlynarczyk DT, et al. Titanium dioxide nanoparticles: Prospects and applications in medicine. Nanomaterials (Basel) 2020; 10(2): 10.
[http://dx.doi.org/10.3390/nano10020387] [PMID: 32102185]
[75]
Tanino R, Amano Y, Tong X, et al. Anticancer activity of ZnO nanoparticles against human small-cell lung cancer in an orthotopic mouse model. Mol Cancer Ther 2020; 19(2): 502-12.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0018] [PMID: 31784453]
[76]
Guo X, Wu Z, Li W, et al. Appropriate size of magnetic nanoparticles for various bioapplications in cancer diagnostics and therapy. ACS Appl Mater Interfaces 2016; 8(5): 3092-106.
[http://dx.doi.org/10.1021/acsami.5b10352] [PMID: 26754032]
[77]
Ge J, Lan M, Zhou B, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 2014; 5: 4596.
[http://dx.doi.org/10.1038/ncomms5596] [PMID: 25105845]
[78]
Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release 2011; 155(3): 344-57.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.004] [PMID: 21723891]
[79]
Qin L, Jiang S, He H, Ling G, Zhang P. Functional black phosphorus nanosheets for cancer therapy. J Control Release 2020; 318: 50-66.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.013] [PMID: 31837354]
[80]
Jiang W, Yin L, Chen H, et al. NaCl nanoparticles as a cancer therapeutic. Adv Mater 2019; 31(46): e1904058.
[http://dx.doi.org/10.1002/adma.201904058] [PMID: 31553099]
[81]
Yang J, Yang Y-W. Metal-organic frameworks for biomedical applications. Small 2020; 16(10): e1906846.
[http://dx.doi.org/10.1002/smll.201906846] [PMID: 32026590]
[82]
Zhu WW, Dong ZL, Fu TT, et al. Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy. Adv Funct Mater 2016; 26: 5490-8.
[http://dx.doi.org/10.1002/adfm.201600676]
[83]
Zeng WW, Zhang HJ, Deng YM, et al. Dual-response oxygen-generating MnO2 nanoparticles with polydopamine modification for combined photothermal-photodynamic therapy. Chem Eng J 2020; 389.
[http://dx.doi.org/10.1016/j.cej.2020.124494]

© 2025 Bentham Science Publishers | Privacy Policy