Review Article

抗病毒化合物合成中的多组分反应

卷 29, 期 12, 2022

发表于: 11 January, 2022

页: [2013 - 2050] 页: 38

弟呕挨: 10.2174/0929867328666211007121837

价格: $65

摘要

背景:多组分反应是合成高度官能化的杂环和杂无环化合物的单罐工艺,通常具有生物活性。 目的:多组分反应被认为是具有高原子经济性的绿色过程。此外,与传统的合成方法相比,它们具有高效率和低废物产生等优点。 方法:在这些反应中,将两种或多种试剂在同一烧瓶中组合在一起,以产生含有原料几乎所有原子的产物。 结果:本综述论述了多组分反应在具有抗病毒活性的化合物合成中的应用。合成根据病毒靶标进行分类。 结论:多组分反应可以应用于药物发现和开发过程的所有阶段,使其在寻找对新兴(病毒)病原体有活性的新药剂方面非常有用。

关键词: 多组分反应,抗病毒活性,DNA / RNA病毒,passerini,ugi,strecker,hantzsch,biginelli。

[1]
Sheldon, R.A. Metrics of green chemistry and sustainability: past, present, and future. ACS Sustain. Chem. Eng., 2018, 6(1), 32-48.
[http://dx.doi.org/10.1021/acssuschemeng.7b03505]
[2]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[3]
Trost, B.M. Atom economy a challenge for organic synthesis: homogeneous catalysis leads the way. Angew. Chem. Int. Ed. Engl., 1995, 34(3), 259-281.
[http://dx.doi.org/10.1002/anie.199502591]
[4]
Simon, M-O.; Li, C-J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[5]
Garbarino, S.; Ravelli, D.; Protti, S.; Basso, A. Photoinduced multicomponent reactions. Angew. Chem. Int. Ed. Engl., 2016, 55(50), 15476-15484.
[http://dx.doi.org/10.1002/anie.201605288] [PMID: 27487327]
[6]
Laurent, A.; Gerhardt, C.F. Multicomponent reactions. Ann. Chim. Phys., 1838, 66, 181.
[7]
Laurent, A.; Gerhardt, C.F. Ueber einige stickstoffverbindungen des benzoyls. Ann. Chim. Phys., 1838, 66, 181.
[8]
Strecker, A. Ueber die künstliche bildung der milchsäure und einen neuen, dem glycocoll homologen körper. Justus Liebigs Ann. Chem., 1850, 75(1), 27-45.
[http://dx.doi.org/10.1002/jlac.18500750103]
[9]
Dömling, A. The discovery of new isocyanide-based multi-component reactions. Curr. Opin. Chem. Biol., 2000, 4(3), 318-323.
[http://dx.doi.org/10.1016/S1367-5931(00)00095-8] [PMID: 10826976]
[10]
Passerini, M.; Isonitriles, I.I. Compounds with aldehydes or with ketones and monobasic organic acids. Gazz. Chim. Ital., 1921, 51, 181-189.
[11]
Ugi, I.; Meyr, R.; Fetzer, U.; Steinbr Ückner, C. Versammlungsberichte. Angew. Chem., 1959, 71, 386.
[12]
Hantzsch, A. Condensationsprodukte aus aldehydammoniak und ketonartigen verbindungen. Ber. Dtsch. Chem. Ges., 1881, 14(2), 1637-1638.
[http://dx.doi.org/10.1002/cber.18810140214]
[13]
Biginelli, P. Ueber Aldehyduramide Des Acetessigäthers. Ber. Dtsch. Chem. Ges., 1891, 24(1), 1317-1319.
[http://dx.doi.org/10.1002/cber.189102401228]
[14]
Weber, L.; Wallbaum, S.; Broger, C.; Gubernator, K. Optimization of the biological activity of combinatorial compound libraries by a genetic algorithm. Angew. Chem. Int. Ed. Engl., 1995, 34(20), 2280-2282.
[http://dx.doi.org/10.1002/anie.199522801]
[15]
Lack, O.; Weber, L. Neue reaktionen für die kombinatorische chemie. Chim. Int. J. Chem., 1996, 50, 445-447.
[16]
Rossen, K.; Pye, P.J.; DiMichele, L.M.; Volante, R.P.; Reider, P.J. An efficient asymmetric hydrogenation approach to the synthesis of the crixivan® piperazine intermediate. Tetrahedron Lett., 1998, 39(38), 6823-6826.
[http://dx.doi.org/10.1016/S0040-4039(98)01484-1]
[17]
Roldão, A.; Silva, A.C.; Mellado, M.C.M.; Alves, P.M.; Carrondo, M.J.T. 1.47 - Viruses and Virus-Like Particles in Biotechnology: Fundamentals and Applications☆. In: Comprehensive Biotechnology (Third Edition); Moo-Young, M., Ed.; Pergamon: Oxford, , 2017; pp. 633-656.
[http://dx.doi.org/10.1016/B978-0-12-809633-8.09046-4]
[18]
Blattner, W.A. 386 - Retroviruses Other Than Human Immunodeficiency Virus. In: Goldman’s Cecil Medicine, 24th ed; Goldman, L.; Schafer, A.I., Eds.; W.B. Saunders: Philadelphia, , 2012; pp. 2136-2140.
[http://dx.doi.org/10.1016/B978-1-4377-1604-7.00386-9]
[19]
Ward, J.W.; Hinman, A.R. What Is Needed to Eliminate Hepatitis B Virus and Hepatitis C Virus as Global Health Threats. Gastroenterology, 2019, 156(2), 297-310.
[http://dx.doi.org/10.1053/j.gastro.2018.10.048] [PMID: 30391470]
[20]
Ryu, W-S. Part II. DNA Viruses.In: Molecular Virology of Human Pathogenic Viruses; Ryu, W-S., Ed.; Academic Press: Boston, 2017, pp. 83-84.https://doi.org/https://doi.org/10.1016/B978-0-12-800838-6.00043-6
[21]
Locarnini, S. Molecular Virology of Hepatitis B Virus.In: Semi. Liver Dis.,; , 2004, 24, pp. (Suppl 1)3-10.
[http://dx.doi.org/10.1055/s-2004-828672]
[22]
Stoltefuss, J.; Goldmann, S.; Krämer, T.; Schlemmer, K.H.; Niewöhner, U.; Paessens, A.; Lottmann, S.; Deres, K.; Weber, O. New dihydropyrimidine derivatives and their corresponding mesomers useful as antiviral agents. Bayer.Leverkusen, Ger. WO Pat.,; , 1999, p. 9.
[23]
Deres, K.; Schröder, C. H.; Paessens, A.; Goldmann, S.; Hacker, H. J.; Weber, O.; Krämer, T.; Niewöhner, U.; Pleiss, U.; Stoltefuss, J. .Inhibition of Hepatitis B Virus Replication by Drug-Induced Depletion of Nucleocapsids. Science (80-. ) 2003, 299(5608), 893-896.
[http://dx.doi.org/10.1126/science.1077215]
[24]
Weber, O.; Schlemmer, K-H.; Hartmann, E.; Hagelschuer, I.; Paessens, A.; Graef, E.; Deres, K.; Goldmann, S.; Niewoehner, U.; Stoltefuss, J.; Haebich, D.; Ruebsamen-Waigmann, H.; Wohlfeil, S. Inhibition of human hepatitis B virus (HBV) by a novel non-nucleosidic compound in a transgenic mouse model. Antiviral Res., 2002, 54(2), 69-78.https://doi.org/https://doi.org/10.1016/S0166-3542(01)00216-9
[http://dx.doi.org/10.1016/S0166-3542(01)00216-9] [PMID: 12062392]
[25]
Ogilvie, W.; Bailey, M.; Poupart, M-A.; Abraham, A.; Bhavsar, A.; Bonneau, P.; Bordeleau, J.; Bousquet, Y.; Chabot, C.; Duceppe, J.S.; Fazal, G.; Goulet, S.; Grand-Maître, C.; Guse, I.; Halmos, T.; Lavallée, P.; Leach, M.; Malenfant, E.; O’Meara, J.; Plante, R.; Plouffe, C.; Poirier, M.; Soucy, F.; Yoakim, C.; Déziel, R. Peptidomimetic inhibitors of the human cytomegalovirus protease. J. Med. Chem., 1997, 40(25), 4113-4135.
[http://dx.doi.org/10.1021/jm970104t] [PMID: 9406601]
[26]
Waxman, L.; Darke, P.L. The herpesvirus proteases as targets for antiviral chemotherapy. Antivir. Chem. Chemother., 2000, 11(1), 1-22.
[http://dx.doi.org/10.1177/095632020001100101] [PMID: 10693650]
[27]
Banfi, L.; Guanti, G.; Riva, R.; Basso, A.; Calcagno, E. Short synthesis of protease inhibitors via modified passerini condensation of N-Boc-α-aminoaldehydes. Tetrahedron Lett., 2002, 43(22), 4067-4069.https://doi.org/https://doi.org/10.1016/S0040-4039(02)00728-1
[http://dx.doi.org/10.1016/S0040-4039(02)00728-1]
[28]
Tong, L.; Qian, C.; Massariol, M-J.; Déziel, R.; Yoakim, C.; Lagacé, L. Conserved mode of peptidomimetic inhibition and substrate recognition of human cytomegalovirus protease. Nat. Struct. Biol., 1998, 5(9), 819-826.
[http://dx.doi.org/10.1038/1860] [PMID: 9731777]
[29]
Xu, P.; Lin, W.; Zou, X. Synthesis of a Peptidomimetic HCMV Protease Inhibitor Library. Synthesis; Stuttg, 2002.
[http://dx.doi.org/10.1055/s-2002-31948]
[30]
Ray, C.G.; Ryan, K.J. Sherris Medical Microbiology; McGraw-Hill Education/Medical, 2014.
[31]
Hays, J.N. Epidemics and Pandemics: Their Impacts on Human History; Abc-clio, 2005.
[32]
Torrence, P.F. Antiviral Drug Discovery for Emerging Diseases and Bioterrorism Threats; John Wiley & Sons, 2005.
[http://dx.doi.org/10.1002/0471716715]
[33]
Mahalingam, S.; Damon, I.K.; Lidbury, B.A. 25 years since the eradication of smallpox: why poxvirus research is still relevant. Trends Immunol., 2004, 25(12), 636-639.
[http://dx.doi.org/10.1016/j.it.2004.10.002] [PMID: 15530831]
[34]
Fan, X.; Zhang, X.; Zhou, L.; Keith, K.A.; Kern, E.R.; Torrence, P.F. Assembling a smallpox biodefense by interrogating 5-substituted pyrimidine nucleoside chemical space. Antiviral Res., 2006, 71(2-3), 201-205.https://doi.org/https://doi.org/10.1016/j.antiviral.2006.04.015
[http://dx.doi.org/10.1016/j.antiviral.2006.04.015] [PMID: 16759713]
[35]
Fan, X.; Zhang, X.; Zhou, L.; Keith, K.A.; Kern, E.R.; Torrence, P.F. A pyrimidine-pyrazolone nucleoside chimera with potent in vitro anti-orthopoxvirus activity. Bioorg. Med. Chem. Lett., 2006, 16(12), 3224-3228.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.043] [PMID: 16603351]
[36]
Fan, X.; Zhang, X.; Zhou, L.; Keith, K.A.; Prichard, M.N.; Kern, E.R.; Torrence, P.F. Toward orthopoxvirus countermeasures: a novel heteromorphic nucleoside of unusual structure. J. Med. Chem., 2006, 49(14), 4052-4054.
[http://dx.doi.org/10.1021/jm060404n] [PMID: 16821766]
[37]
Peyron, C.; Benhida, R.; Bories, C.; Loiseau, P.M. Synthesis and in vitro antileishmanial activity of 5-substituted-2¢-deoxyuridine derivatives. Bioorg. Chem., 2005, 33(6), 439-447.
[http://dx.doi.org/10.1016/j.bioorg.2005.07.001] [PMID: 16168460]
[38]
Murray, H.W.; Berman, J.D.; Davies, C.R.; Saravia, N.G. Advances in leishmaniasis. Lancet, 2005, 366(9496), 1561-1577.
[http://dx.doi.org/10.1016/S0140-6736(05)67629-5] [PMID: 16257344]
[39]
Umesha, K.; Sarojini, B.K.; Raj, C.G.D.; Bhanuprakash, V.; Yogisharadhya, R.; Raghavendra, R.; Khan, M.T.H. In vitro and in silico biological studies of novel thiazolo [3, 2-a] pyrimidine-6-carboxylate derivatives. Med. Chem. Res., 2014, 23(1), 168-180.
[http://dx.doi.org/10.1007/s00044-013-0606-4]
[40]
Ramalingan, C.; Kwak, Y-W. Tetrachlorosilane catalyzed multicomponent one-step fusion of biopertinent pyrimidine heterocycles. Tetrahedron, 2008, 64(22), 5023-5031.
[http://dx.doi.org/10.1016/j.tet.2008.03.078]
[41]
Fan, X.; Zhang, X.; Bories, C.; Loiseau, P.M.; Torrence, P.F. The Ugi reaction in the generation of new nucleosides as potential antiviral and antileishmanial agents. Bioorg. Chem., 2007, 35(2), 121-136.
[http://dx.doi.org/10.1016/j.bioorg.2006.08.004] [PMID: 16996561]
[42]
Bizzarri, B.M.; Pieri, C.; Botta, G.; Arabuli, L.; Mosesso, P.; Cinelli, S.; Schinoppi, A.; Saladino, R. Synthesis and Antioxidant Activity of DOPA Peptidomimetics by a Novel IBX Mediated Aromatic Oxidative Functionalization. RSC Advances, 2015, 5(74), 60354-60364.
[http://dx.doi.org/10.1039/C5RA09464J]
[43]
Bizzarri, B.M.; Tortolini, S.; Rotelli, L.; Botta, G.; Saladino, R. Current advances in L-DOPA and DOPA-peptidomimetics: Chemistry, applications and biological activity. Curr. Med. Chem., 2015, 22(36), 4138-4165.
[http://dx.doi.org/10.2174/0929867322666150625095748] [PMID: 26112144]
[44]
Bizzarri, B.M.; Martini, A.; Serafini, F.; Aversa, D.; Piccinino, D.; Botta, L.; Berretta, N.; Guatteo, E.; Saladino, R. Tyrosinase mediated oxidative functionalization in the synthesis of DOPA-derived peptidomimetics with anti-parkinson activity. RSC Advances, 2017, 7(33), 20502-20509.
[http://dx.doi.org/10.1039/C7RA03326E]
[45]
Rowe, W.P.; Huebner, R.J.; Gilmore, L.K.; Parrott, R.H.; Ward, T.G. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc. Soc. Exp. Biol. Med., 1953, 84(3), 570-573.
[http://dx.doi.org/10.3181/00379727-84-20714] [PMID: 13134217]
[46]
Hakim, F.A.; Tleyjeh, I.M. Severe adenovirus pneumonia in immunocompetent adults: a case report and review of the literature. Eur. J. Clin. Microbiol. Infect. Dis., 2008, 27(2), 153-158.
[http://dx.doi.org/10.1007/s10096-007-0416-z] [PMID: 18030505]
[47]
Curiel, D.T.; Garver, J.R. R.I. I Overview of Adenovirus Biology. Gene Ther. Dis. Lung, 2020.
[48]
Harrach, B.; Benkö, M.; Both, G. W.; Brown, M.; Davison, A. J.; Echavarria, M.; Hess, M.; Jones, M. S.; Kajon, A.; Lehmkuhl, H. D. Virus Taxonomy.Fam. Adenoviridae Classif. Nomencl. Viruses. Ninth Rep. Int. Comm. Taxon. Viruses, 2012, 125-141.
[49]
Benkö, M.; Harrach, B. Molecular evolution of adenoviruses; Adenoviruses Model Vectors Virus-Host Interact, 2003, pp. 3-35.
[50]
Jones, M.S., II; Harrach, B.; Ganac, R.D.; Gozum, M.M.A.; Dela Cruz, W.P.; Riedel, B.; Pan, C.; Delwart, E.L.; Schnurr, D.P. New adenovirus species found in a patient presenting with gastroenteritis. J. Virol., 2007, 81(11), 5978-5984.
[http://dx.doi.org/10.1128/JVI.02650-06] [PMID: 17360747]
[51]
Tang, L.; An, J.; Xie, Z.; Dehghan, S.; Seto, D.; Xu, W.; Ji, Y. Genome and bioinformatic analysis of a HAdV-B14p1 virus isolated from a baby with pneumonia in Beijing, China. PLoS One, 2013, 8(3)e60345
[http://dx.doi.org/10.1371/journal.pone.0060345] [PMID: 23555956]
[52]
Waye, M.M.Y.; Sing, C.W. Anti-viral drugs for human adenoviruses. Pharmaceuticals, 2010, 3(10), 3343-3354.
[http://dx.doi.org/10.3390/ph3103343]
[53]
Salem, M.S.; Sakr, S.I.; El-Senousy, W.M.; Madkour, H.M.F. Synthesis, antibacterial, and antiviral evaluation of new heterocycles containing the pyridine moiety. Arch. Pharm. (Weinheim), 2013, 346(10), 766-773.
[http://dx.doi.org/10.1002/ardp.201300183] [PMID: 24105721]
[54]
Ghashghaei, O.; Caputo, S.; Sintes, M.; Revés, M.; Kielland, N.; Estarellas, C.; Luque, F.J.; Aviñó, A.; Eritja Casadellà, R.; Serna-Gallego, A. Multiple multicomponent reactions: Unexplored substrates, selective processes, and versatile chemotypes in biomedicine. 2018, 24, 14513- 14521.
[55]
Groebke, K.; Weber, L.; Mehlin, F. Synthesis of imidazo [1, 2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett, 1998, 1998(06), 661-663.
[http://dx.doi.org/10.1055/s-1998-1721]
[56]
Jaros, S.W.; Król, J.; Bażanów, B.; Poradowski, D.; Chrószcz, A.; Nesterov, D.S.; Kirillov, A.M.; Smoleński, P. Antiviral, antibacterial, antifungal, and cytotoxic silver(I) BioMOF assembled from 1,3,5-triaza-7-phoshaadamantane and pyromellitic acid. Molecules, 2020, 25(9), 2119.
[http://dx.doi.org/10.3390/molecules25092119] [PMID: 32369972]
[57]
Adalja, A.; Inglesby, T. Broad-spectrum antiviral agents: A crucial pandemic tool. Expert Rev. Anti Infect. Ther., 2019, 17(7), 467-470.
[http://dx.doi.org/10.1080/14787210.2019.1635009] [PMID: 31216912]
[58]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268.
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[59]
Arvin, A.; Campadelli-Fiume, G.; Mocarski, E.; Moore, P.S.; Roizman, B.; Whitley, R.; Yamanishi, K. Early viral gene expression and function-human herpesviruses: Biology, therapy, and immunoprophylaxis. 2007.
[60]
Becerra, J.C.L.; Sieber, R.; Martinetti, G.; Costa, S.T.; Meylan, P.; Bernasconi, E. Infection of the central nervous system caused by varicella zoster virus reactivation: a retrospective case series study. Int. J. Infect. Dis., 2013, 17(7), e529-e534.
[http://dx.doi.org/10.1016/j.ijid.2013.01.031] [PMID: 23566589]
[61]
Cornelissen, C.N.; Harvey, R.A.; Fisher, B.D. Microbiology; Lippincott Williams & Wilkins, 2012, Vol. 3, .
[62]
Tillieux, S.L.; Halsey, W.S.; Thomas, E.S.; Voycik, J.J.; Sathe, G.M.; Vassilev, V. Complete DNA sequences of two oka strain varicella-zoster virus genomes. J. Virol., 2008, 82(22), 11023-11044.
[http://dx.doi.org/10.1128/JVI.00777-08] [PMID: 18787000]
[63]
Holmes, S. J.; Reef, S. E.; Hadler, S. C.; Williams, W. W.; Wharton, M. Prevention of Varicella; Recommendations of the Advisory Committee on Immunization Practices. 1996.
[64]
Gagliardi, A.M.Z.; Andriolo, B.N.G.; Torloni, M.R.; Soares, B.G.O. Vaccines for Preventing Herpes Zoster in Older Adults. Cochrane Database Syst. Rev., 2016, 3.
[http://dx.doi.org/10.1002/14651858.CD008858.pub3]
[65]
Kaoukabi, H.; Kabri, Y.; Curti, C.; Taourirte, M.; Rodriguez-Ubis, J.C.; Snoeck, R.; Andrei, G.; Vanelle, P.; Lazrek, H.B. Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation. Eur. J. Med. Chem., 2018, 155, 772-781.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.028] [PMID: 29945100]
[66]
Zhang, X.; Qu, Y.; Fan, X.; Bores, C.; Feng, D.; Andrei, G.; Snoeck, R.; De Clercq, E.; Loiseau, P.M. Solvent-free synthesis of pyrimidine nucleoside-aminophosphonate hybrids and their biological activity evaluation. Nucleosides Nucleotides Nucleic Acids, 2010, 29(8), 616-627.
[http://dx.doi.org/10.1080/15257770.2010.496281] [PMID: 20661815]
[67]
Lehman, I.R.; Boehmer, P.E. Replication of herpes simplex virus DNA. J. Biol. Chem., 1999, 274(40), 28059-28062.
[http://dx.doi.org/10.1074/jbc.274.40.28059] [PMID: 10497152]
[68]
Boehmer, P.E.; Nimonkar, A.V. Herpes virus replication. IUBMB Life, 2003, 55(1), 13-22.
[http://dx.doi.org/10.1080/1521654031000070645] [PMID: 12716057]
[69]
Vere Hodge, R.A.; Field, H.J. Antiviral agents for herpes simplex virus. Adv. Pharmacol., 2013, 67, 1-38.
[http://dx.doi.org/10.1016/B978-0-12-405880-4.00001-9] [PMID: 23885997]
[70]
Kłysik, K.; Pietraszek, A.; Karewicz, A.; Nowakowska, M. Acyclovir in the Treatment of Herpes Viruses - A Review. Curr. Med. Chem., 2020, 27(24), 4118-4137.
[http://dx.doi.org/10.2174/0929867325666180309105519] [PMID: 29521211]
[71]
Brown, C.E.; Kong, T.; McNulty, J.; D’Aiuto, L.; Williamson, K.; McClain, L.; Piazza, P.; Nimgaonkar, V.L. Discovery of potent antiviral (HSV-1) quinazolinones and initial structure-activity relationship studies. Bioorg. Med. Chem. Lett., 2017, 27(20), 4601-4605.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.026] [PMID: 28943043]
[72]
Shamsabadipour, S.; Ghanadian, M.; Saeedi, H.; Rahimnejad, M.R.; Mohammadi-Kamalabadi, M.; Ayatollahi, S.M.; Salimzadeh, L. Triterpenes and Steroids from Euphorbia denticulata Lam. Iran. J. Pharm. Res., 2013, 12(4), 759-767.
[PMID: 24523756]
[73]
Wachsman, M.B.; Ramirez, J.A.; Galagovsky, L.R.; Coto, C.E. Antiviral activity of brassinosteroids derivatives against measles virus in cell cultures. Antivir. Chem. Chemother., 2002, 13(1), 61-66.
[http://dx.doi.org/10.1177/095632020201300105] [PMID: 12180649]
[74]
Michelini, F.M.; Ramírez, J.A.; Berra, A.; Galagovsky, L.R.; Alché, L.E. Anti-herpetic and anti-inflammatory activities of two new synthetic 22,23-dihydroxylated stigmastane derivatives. J. Steroid Biochem. Mol. Biol., 2008, 111(1-2), 111-116.https://doi.org/https://doi.org/10.1016/j.jsbmb.2008.05.005
[http://dx.doi.org/10.1016/j.jsbmb.2008.05.005] [PMID: 18619833]
[75]
Castilla, V.; Ramírez, J.; Coto, C.E. Plant and animal steroids a new hope to search for antiviral agents. Curr. Med. Chem., 2010, 17(18), 1858-1873.
[http://dx.doi.org/10.2174/092986710791163975] [PMID: 20377516]
[76]
Dávola, M.E.; Alonso, F.; Cabrera, G.M.; Ramírez, J.A.; Barquero, A.A. Sterol analogues with diamide side chains interfere with the intracellular localization of viral glycoproteins. Biochem. Biophys. Res. Commun., 2012, 427(1), 107-112.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.019] [PMID: 22982541]
[77]
Dávola, M.E.; Mazaira, G.I.; Galigniana, M.D.; Alché, L.E.; Ramírez, J.A.; Barquero, A.A. Synthetic pregnenolone derivatives as antiviral agents against acyclovir-resistant isolates of Herpes Simplex Virus Type 1. Antiviral Res., 2015, 122, 55-63.
[http://dx.doi.org/10.1016/j.antiviral.2015.08.002] [PMID: 26259812]
[78]
Gupta, N.; Bhojani, G.; Tak, R.; Jakhar, A.; Khan, N.H.; Chatterjee, S.; Kureshy, R.I. Highly Diastereoselective Syntheses of Spiro-Oxindole Dihydrofuran Derivatives in Aqueous Media and Their Antibacterial Activity. ChemistrySelect, 2017, 2(33), 10902-10907.
[http://dx.doi.org/10.1002/slct.201702314]
[79]
Tangella, Y.; Manasa, K.L.; Laxma Nayak, V.; Sathish, M.; Sridhar, B.; Alarifi, A.; Nagesh, N.; Kamal, A. An efficient one-pot approach for the regio- and diastereoselective synthesis of trans-dihydrofuran derivatives: cytotoxicity and DNA-binding studies. Org. Biomol. Chem., 2017, 15(32), 6837-6853.
[http://dx.doi.org/10.1039/C7OB01456B] [PMID: 28782777]
[80]
Mortensen, D.S.; Rodriguez, A.L.; Carlson, K.E.; Sun, J.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Synthesis and biological evaluation of a novel series of furans: ligands selective for estrogen receptor α. J. Med. Chem., 2001, 44(23), 3838-3848.
[http://dx.doi.org/10.1021/jm010211u] [PMID: 11689070]
[81]
Tangeti, V.S. K., R.V.; Prasad, G.V.S.; Satyanarayana, K.V.V.V Synthesis of C3-dihydrofuran substituted coumarins via multicomponent approach. Synth. Commun., 2016, 46(7), 613-619.
[http://dx.doi.org/10.1080/00397911.2016.1159696]
[82]
Scala, A.; Cordaro, M.; Risitano, F.; Colao, I.; Venuti, A.; Sciortino, M.T.; Primerano, P.; Grassi, G. Diastereoselective multicomponent synthesis and anti-HSV-1 evaluation of dihydrofuran-fused derivatives. Mol. Divers., 2012, 16(2), 325-333.
[http://dx.doi.org/10.1007/s11030-012-9367-0] [PMID: 22528269]
[83]
Pinto, A.M.V.; Leite, J.P.G.; Neves, A.P.; da Silva, G.B.; Vargas, M.D.; Paixão, I.C.N.P. Synthetic aminomethylnaphthoquinones inhibit the in vitro replication of bovine herpesvirus 5. Arch. Virol., 2014, 159(7), 1827-1833.
[http://dx.doi.org/10.1007/s00705-014-1989-3] [PMID: 24493066]
[84]
Roizman, B. Herpes Simplex Viruses and Their Replication. Virology, 1996, 2231-2295.
[85]
Pires de Mello, C.P.; Sardoux, N.S.; Terra, L.; Amorim, L.C.; Vargas, M.D.; da Silva, G.B.; Castro, H.C.; Giongo, V.A.; Madeira, L.F.; Paixão, I.C.N.P. Aminomethylnaphthoquinones and HSV-1: in vitro and in silico evaluations of potential antivirals. Antivir. Ther., 2016, 21(6), 507-515.
[http://dx.doi.org/10.3851/IMP3039] [PMID: 26913545]
[86]
Wagner, E.K.; Martinez, J. Hewlett, Basic Virology; Blackwell: Oxford, 1999.
[87]
Patton, J.T. Segmented Double-Stranded RNA Viruses: Structure and Molecular Biology; Horizon Scientific Press, 2008.
[88]
Znabet, A.; Polak, M.M.; Janssen, E.; de Kanter, F.J.J.; Turner, N.J.; Orru, R.V.A.; Ruijter, E. A highly efficient synthesis of telaprevir by strategic use of biocatalysis and multicomponent reactions. Chem. Commun. (Camb.), 2010, 46(42), 7918-7920.
[http://dx.doi.org/10.1039/c0cc02823a] [PMID: 20856952]
[89]
Nigro, P.; Pompilio, G.; Capogrossi, M.C.; Cyclophilin, A. Cyclophilin A: a key player for human disease. Cell Death Dis., 2013, 4(10), e888-e888.
[http://dx.doi.org/10.1038/cddis.2013.410] [PMID: 24176846]
[90]
Watashi, K.; Hijikata, M.; Hosaka, M.; Yamaji, M.; Shimotohno, K.; Cyclosporin, A. Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes. Hepatology, 2003, 38(5), 1282-1288.
[http://dx.doi.org/10.1053/jhep.2003.50449] [PMID: 14578868]
[91]
Yang, S. K R, J.; Lim, S.; Choi, T.G.; Kim, J.H.; Akter, S.; Jang, M.; Ahn, H.J.; Kim, H.Y.; Windisch, M.P.; Khadka, D.B.; Zhao, C.; Jin, Y.; Kang, I.; Ha, J.; Oh, B.C.; Kim, M.; Kim, S.S.; Cho, W.J. Structure-Based Discovery of Novel Cyclophilin A Inhibitors for the Treatment of Hepatitis C Virus Infections. J. Med. Chem., 2015, 58(24), 9546-9561.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01064] [PMID: 26613291]
[92]
Han, J.; Lee, H.W.; Jin, Y.; Khadka, D.B.; Yang, S.; Li, X.; Kim, M.; Cho, W-J. Molecular design, synthesis, and biological evaluation of bisamide derivatives as cyclophilin A inhibitors for HCV treatment. Eur. J. Med. Chem., 2020, 188112031
[http://dx.doi.org/10.1016/j.ejmech.2019.112031] [PMID: 31923861]
[93]
Manvar, P.; Shaikh, F.; Kakadiya, R.; Mehariya, K.; Khunt, R.; Pandey, B.; Shah, A. Synthesis of Novel Imidazo [1, 2-a] Pyridine-4-Hydroxy-2H-Coumarins by Groebke-Blackburn-Bienaymé Multicomponent Reaction as Potential NS5B Inhibitors. Tetrahedron, 2016, 72(10), 1293-1300.
[http://dx.doi.org/10.1016/j.tet.2016.01.023]
[94]
Sroor, F.M.; Khatab, T.K.; Basyouni, W.M.; El-Bayouki, K.A.M. Synthesis and Molecular Docking Studies of Some New Thiosemicarbazone Derivatives as HCV Polymeraseinhibitors. Synth. Commun., 2019, 49(11), 1444-1456.
[http://dx.doi.org/10.1080/00397911.2019.1605443]
[95]
Chapman, T.M.; Davies, I.G.; Gu, B.; Block, T.M.; Scopes, D.I.C.; Hay, P.A.; Courtney, S.M.; McNeill, L.A.; Schofield, C.J.; Davis, B.G. Glyco- and peptidomimetics from three-component Joullié-Ugi coupling show selective antiviral activity. J. Am. Chem. Soc., 2005, 127(2), 506-507.
[http://dx.doi.org/10.1021/ja043924l] [PMID: 15643858]
[96]
Bowers, M.M.; Carroll, P.; Joullié, M.M. Model studies directed toward the total synthesis of 14-membered cyclopeptide alkaloids: Synthesis of prolyl peptides via a four-component condensation. J. Chem. Soc., Perkin Trans. 1, 1989, (5), 857-865.
[http://dx.doi.org/10.1039/P19890000857]
[97]
Holmes, K.V.; Lai, M.M.C. Coronaviridae: The Viruses and Their Replication. Fields Virol., 1996, 1, 1075-1093.
[98]
Bradburne, A.F.; Bynoe, M.L.; Tyrrell, D.A. Effects of a “new” human respiratory virus in volunteers. BMJ, 1967, 3(5568), 767-769.
[http://dx.doi.org/10.1136/bmj.3.5568.767] [PMID: 6043624]
[99]
van der Hoek, L.; Pyrc, K.; Jebbink, M.F.; Vermeulen-Oost, W.; Berkhout, R.J.M.; Wolthers, K.C.; Wertheim-van Dillen, P.M.E.; Kaandorp, J.; Spaargaren, J.; Berkhout, B. Identification of a new human coronavirus. Nat. Med., 2004, 10(4), 368-373.
[http://dx.doi.org/10.1038/nm1024] [PMID: 15034574]
[100]
Woo, P.C.Y.; Lau, S.K.P.; Chu, C.M.; Chan, K.H.; Tsoi, H.W.; Huang, Y.; Wong, B.H.L.; Poon, R.W.S.; Cai, J.J.; Luk, W.K.; Poon, L.L.; Wong, S.S.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol., 2005, 79(2), 884-895.
[http://dx.doi.org/10.1128/JVI.79.2.884-895.2005] [PMID: 15613317]
[101]
Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820.
[http://dx.doi.org/10.1056/NEJMoa1211721] [PMID: 23075143]
[102]
Chan, J.F.W.; Lau, S.K.P.; To, K.K.W.; Cheng, V.C.C.; Woo, P.C.Y.; Yuen, K-Y. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin. Microbiol. Rev., 2015, 28(2), 465-522.
[http://dx.doi.org/10.1128/CMR.00102-14] [PMID: 25810418]
[103]
Tyrrell, D.A.J.; Bynoe, M.L. Cultivation of a novel type of common-cold virus in organ cultures. BMJ, 1965, 1(5448), 1467-1470.
[http://dx.doi.org/10.1136/bmj.1.5448.1467] [PMID: 14288084]
[104]
Peiris, J.S.M.; Guan, Y.; Yuen, K.Y. Severe acute respiratory syndrome. Nat. Med., 2004, 10(12)(Suppl.), S88-S97.
[http://dx.doi.org/10.1038/nm1143] [PMID: 15577937]
[105]
Hajjar, S.A.; Memish, Z.A.; McIntosh, K. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): a perpetual challenge. Ann. Saudi Med., 2013, 33(5), 427-436.
[http://dx.doi.org/10.5144/0256-4947.2013.427] [PMID: 24188935]
[106]
de Groot, R.J.; Baker, S.C.; Baric, R.S.; Brown, C.S.; Drosten, C.; Enjuanes, L.; Fouchier, R.A.M.; Galiano, M.; Gorbalenya, A.E.; Memish, Z.A.; Perlman, S.; Poon, L.L.; Snijder, E.J.; Stephens, G.M.; Woo, P.C.; Zaki, A.M.; Zambon, M.; Ziebuhr, J. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J. Virol., 2013, 87(14), 7790-7792.
[http://dx.doi.org/10.1128/JVI.01244-13] [PMID: 23678167]
[107]
Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet, 2020, 395(10223), 470-473.
[http://dx.doi.org/10.1016/S0140-6736(20)30185-9] [PMID: 31986257]
[108]
Zumla, A.; Chan, J.F.W.; Azhar, E.I.; Hui, D.S.C.; Yuen, K-Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[109]
Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[110]
Ratia, K.; Saikatendu, K.S.; Santarsiero, B.D.; Barretto, N.; Baker, S.C.; Stevens, R.C.; Mesecar, A.D. Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc. Natl. Acad. Sci. USA, 2006, 103(15), 5717-5722.
[http://dx.doi.org/10.1073/pnas.0510851103] [PMID: 16581910]
[111]
Chen, S.; Chen, L.; Tan, J.; Chen, J.; Du, L.; Sun, T.; Shen, J.; Chen, K.; Jiang, H.; Shen, X. Severe acute respiratory syndrome coronavirus 3C-like proteinase N terminus is indispensable for proteolytic activity but not for enzyme dimerization. Biochemical and thermodynamic investigation in conjunction with molecular dynamics simulations. J. Biol. Chem., 2005, 280(1), 164-173.
[http://dx.doi.org/10.1074/jbc.M408211200] [PMID: 15507456]
[112]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S-H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[113]
Karypidou, K.; Ribone, S.R.; Quevedo, M.A.; Persoons, L.; Pannecouque, C.; Helsen, C.; Claessens, F.; Dehaen, W. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents. Bioorg. Med. Chem. Lett., 2018, 28(21), 3472-3476.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.019] [PMID: 30286952]
[114]
Thomas, J.; Jana, S.; John, J.; Liekens, S.; Dehaen, W. A general metal-free route towards the synthesis of 1,2,3-triazoles from readily available primary amines and ketones. Chem. Commun. (Camb.), 2016, 52(14), 2885-2888.
[http://dx.doi.org/10.1039/C5CC08347H] [PMID: 26744743]
[115]
Jacobs, J.; Grum-Tokars, V.; Zhou, Y.; Turlington, M.; Saldanha, S.A.; Chase, P.; Eggler, A.; Dawson, E.S.; Baez-Santos, Y.M.; Tomar, S.; Mielech, A.M.; Baker, S.C.; Lindsley, C.W.; Hodder, P.; Mesecar, A.; Stauffer, S.R. Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease. J. Med. Chem., 2013, 56(2), 534-546.
[http://dx.doi.org/10.1021/jm301580n] [PMID: 23231439]
[116]
Dömling, A.; Ugi, I. Multicomponent Reactions with Isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[117]
Manta, S.; Tzioumaki, N.; Kollatos, N.; Andrea, P.; Margaritouli, M.; Panagiotopoulou, A.; Papanastasiou, I.; Mitsos, C.; Tsotinis, A.; Schols, D. Polyfunctionalized Pyrrole Derivatives: Easy Three-Component Microwave-Assisted Synthesis, Cytostatic and Antiviral Evaluation. Curr. Microw. Chem., 2018, 5(1), 23-31.
[http://dx.doi.org/10.2174/2213335605666180221155915]
[118]
Kim, C.U.; Lew, W.; Williams, M.A.; Liu, H.; Zhang, L.; Swaminathan, S.; Bischofberger, N.; Chen, M.S.; Mendel, D.B.; Tai, C.Y.; Laver, W.G.; Stevens, R.C. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc., 1997, 119(4), 681-690.
[http://dx.doi.org/10.1021/ja963036t] [PMID: 16526129]
[119]
Ishikawa, H.; Suzuki, T.; Hayashi, Y. High-yielding synthesis of the anti-influenza neuramidase inhibitor (-)-oseltamivir by three “one-pot” operations. Angew. Chem. Int. Ed. Engl., 2009, 48(7), 1304-1307.https://doi.org/https://doi.org/10.1002/anie.200804883
[http://dx.doi.org/10.1002/anie.200804883] [PMID: 19123206]
[120]
Zippilli, C.; Botta, L.; Bizzarri, B.M.; Nencioni, L.; De Angelis, M.; Protto, V.; Giorgi, G.; Baratto, M.C.; Pogni, R.; Saladino, R. Laccase-Catalyzed 1,4-Dioxane-Mediated Synthesis of Belladine N-Oxides with Anti-Influenza A Virus Activity. Int. J. Mol. Sci., 2021, 22(3), 1337.
[http://dx.doi.org/10.3390/ijms22031337] [PMID: 33572794]
[121]
Bizzarri, B.M.; Botta, L.; Capecchi, E.; Celestino, I.; Checconi, P.; Palamara, A.T.; Nencioni, L.; Saladino, R. Regioselective IBX-Mediated Synthesis of Coumarin Derivatives with Antioxidant and Anti-influenza Activities. J. Nat. Prod., 2017, 80(12), 3247-3254.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00665] [PMID: 29236486]
[122]
Botta, G.; Bizzarri, B.M.; Garozzo, A.; Timpanaro, R.; Bisignano, B.; Amatore, D.; Palamara, A.T.; Nencioni, L.; Saladino, R. Carbon nanotubes supported tyrosinase in the synthesis of lipophilic hydroxytyrosol and dihydrocaffeoyl catechols with antiviral activity against DNA and RNA viruses. Bioorg. Med. Chem., 2015, 23(17), 5345-5351.
[http://dx.doi.org/10.1016/j.bmc.2015.07.061] [PMID: 26260341]
[123]
Bizzarri, B.M.; Fanelli, A.; Piccinino, D.; De Angelis, M.; Dolfa, C.; Palamara, A.T.; Nencioni, L.; Zippilli, C.; Crucianelli, M.; Saladino, R. Synthesis of stilbene and chalcone inhibitors of influenza a virus by Sba-15 supported hoveyda-grubbs metathesis. Catalysts, 2019, 9(12)
[http://dx.doi.org/10.3390/catal9120983]
[124]
Zeng, L-Y.; Liu, T.; Yang, J.; Yang, Y.; Cai, C.; Liu, S. “On-Water” Facile Synthesis of Novel Pyrazolo[3,4-b]pyridinones Possessing Anti-influenza Virus Activity. ACS Comb. Sci., 2017, 19(7), 437-446.
[http://dx.doi.org/10.1021/acscombsci.7b00016] [PMID: 28581706]
[125]
Zhang, J.; Hu, Y.; Foley, C.; Wang, Y.; Musharrafieh, R.; Xu, S.; Zhang, Y.; Ma, C.; Hulme, C.; Wang, J. Exploring ugi-azide four-component reaction products for broad-spectrum influenza antivirals with a high genetic barrier to drug resistance. Sci. Rep., 2018, 8(1), 4653.
[http://dx.doi.org/10.1038/s41598-018-22875-9] [PMID: 29545578]
[126]
Gewald, K. Zur Reaktion von α-Oxo-Mercaptanen Mit Nitrilen. Angew. Chem., 1961.
[http://dx.doi.org/10.1002/ange.19610730307]
[127]
Gewald, K.; Schinke, E.; Bottcher, H. 2-amino-thiophene aus methylenaktiven nitrilen, carbonylverbindungen und schwefel. Chem. Ber., 1966, 99, 94-100.
[http://dx.doi.org/10.1002/cber.19660990116]
[128]
Mugnaini, C.; Pedani, V.; Giunta, D.; Sechi, B.; Solinas, M.; Casti, A.; Castelli, M.P.; Giorgi, G.; Corelli, F. Synthesis, structural properties, and pharmacological evaluation of 2-(acylamino) thiophene-3-carboxamides and analogues thereof. RSC Advances, 2014, 4(4), 1782-1793.
[http://dx.doi.org/10.1039/C3RA45546G]
[129]
Romagnoli, R.; Baraldi, P.G.; Lopez-Cara, C.; Salvador, M.K.; Preti, D.; Tabrizi, M.A.; Balzarini, J.; Nussbaumer, P.; Bassetto, M.; Brancale, A.; Fu, X.H. Yang-Gao; Li, J.; Zhang, S.Z.; Hamel, E.; Bortolozzi, R.; Basso, G.; Viola, G. Design, synthesis and biological evaluation of 3,5-disubstituted 2-amino thiophene derivatives as a novel class of antitumor agents. Bioorg. Med. Chem., 2014, 22(18), 5097-5109.
[http://dx.doi.org/10.1016/j.bmc.2013.12.030] [PMID: 24398384]
[130]
Ye, D.; Zhang, Y.; Wang, F.; Zheng, M.; Zhang, X.; Luo, X.; Shen, X.; Jiang, H.; Liu, H. Novel thiophene derivatives as PTP1B inhibitors with selectivity and cellular activity. Bioorg. Med. Chem., 2010, 18(5), 1773-1782.
[http://dx.doi.org/10.1016/j.bmc.2010.01.055] [PMID: 20153651]
[131]
Sun, Y.; Fan, J.; Zhu, Z.; Guo, X.; Zhou, T.; Duan, W.; Shen, X. Small molecule TBTC as a new selective retinoid X receptor α agonist improves behavioral deficit in Alzheimer’s disease model mice. Eur. J. Pharmacol., 2015, 762, 202-213.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.050] [PMID: 26026644]
[132]
Rashad, A.E.; Shamroukh, A.H.; Abdel-Megeid, R.E.; Mostafa, A.; el-Shesheny, R.; Kandeil, A.; Ali, M.A.; Banert, K. Synthesis and screening of some novel fused thiophene and thienopyrimidine derivatives for anti-avian influenza virus (H5N1) activity. Eur. J. Med. Chem., 2010, 45(11), 5251-5257.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.044] [PMID: 20828882]
[133]
Massari, S.; Nannetti, G.; Goracci, L.; Sancineto, L.; Muratore, G.; Sabatini, S.; Manfroni, G.; Mercorelli, B.; Cecchetti, V.; Facchini, M.; Palù, G.; Cruciani, G.; Loregian, A.; Tabarrini, O. Structural investigation of cycloheptathiophene-3-carboxamide derivatives targeting influenza virus polymerase assembly. J. Med. Chem., 2013, 56(24), 10118-10131.
[http://dx.doi.org/10.1021/jm401560v] [PMID: 24313730]
[134]
Lepri, S.; Nannetti, G.; Muratore, G.; Cruciani, G.; Ruzziconi, R.; Mercorelli, B.; Palù, G.; Loregian, A.; Goracci, L. Optimization of small-molecule inhibitors of influenza virus polymerase: from thiophene-3-carboxamide to polyamido scaffolds. J. Med. Chem., 2014, 57(10), 4337-4350.
[http://dx.doi.org/10.1021/jm500300r] [PMID: 24785979]
[135]
Simmons, C.P.; Farrar, J.J.; Nguyen, V.; Wills, B. Dengue. N. Engl. J. Med., 2012, 366(15), 1423-1432.
[http://dx.doi.org/10.1056/NEJMra1110265] [PMID: 22494122]
[136]
Monath, T.P.; Heinz, X. In: Flaviviruses in Fields Virology; Raven, 1996.
[137]
Organization, W.H.; Research, S.P. for; Diseases, T. in T.; Diseases, W. H. O. D. of C. of N. T.; Epidemic, W. H. O.; Alert, P.Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization , 2009.
[138]
Guzmán, M.G.; Kourí, G. Dengue: an update. Lancet Infect. Dis., 2002, 2(1), 33-42.
[http://dx.doi.org/10.1016/S1473-3099(01)00171-2] [PMID: 11892494]
[139]
Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res., 2002, 33(4), 330-342.
[http://dx.doi.org/10.1016/S0188-4409(02)00378-8] [PMID: 12234522]
[140]
Organization, W. H. .Global Strategy for Dengue Prevention and Control 2012-2020. 2012.
[141]
Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; Myers, M.F.; George, D.B.; Jaenisch, T.; Wint, G.R.; Simmons, C.P.; Scott, T.W.; Farrar, J.J.; Hay, S.I. The global distribution and burden of dengue. Nature, 2013, 496(7446), 504-507.
[http://dx.doi.org/10.1038/nature12060] [PMID: 23563266]
[142]
Normile, D. Surprising New Dengue Virus Throws a Spanner in Disease Control Efforts; American Association for the Advancement of Science, 2013.
[http://dx.doi.org/10.1126/science.342.6157.415]
[143]
Kuno, G.; Chang, G-J.J.; Tsuchiya, K.R.; Karabatsos, N.; Cropp, C.B. Phylogeny of the genus Flavivirus. J. Virol., 1998, 72(1), 73-83.
[http://dx.doi.org/10.1128/JVI.72.1.73-83.1998] [PMID: 9420202]
[144]
Kuhn, R.J.; Zhang, W.; Rossmann, M.G.; Pletnev, S.V.; Corver, J.; Lenches, E.; Jones, C.T.; Mukhopadhyay, S.; Chipman, P.R.; Strauss, E.G.; Baker, T.S.; Strauss, J.H. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 2002, 108(5), 717-725.
[http://dx.doi.org/10.1016/S0092-8674(02)00660-8] [PMID: 11893341]
[145]
Mustafa, M.S.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India, 2015, 71(1), 67-70.
[http://dx.doi.org/10.1016/j.mjafi.2014.09.011] [PMID: 25609867]
[146]
Chambers, T.J.; Nestorowicz, A.; Amberg, S.M.; Rice, C.M. Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication. J. Virol., 1993, 67(11), 6797-6807.
[http://dx.doi.org/10.1128/jvi.67.11.6797-6807.1993] [PMID: 8411382]
[147]
Falgout, B.; Pethel, M.; Zhang, Y-M.; Lai, C.J. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J. Virol., 1991, 65(5), 2467-2475.
[http://dx.doi.org/10.1128/jvi.65.5.2467-2475.1991] [PMID: 2016768]
[148]
Leyssen, P.; Balzarini, J.; De Clercq, E.; Neyts, J. The predominant mechanism by which ribavirin exerts its antiviral activity in vitro against flaviviruses and paramyxoviruses is mediated by inhibition of IMP dehydrogenase. J. Virol., 2005, 79(3), 1943-1947.
[http://dx.doi.org/10.1128/JVI.79.3.1943-1947.2005] [PMID: 15650220]
[149]
Klema, V.J.; Ye, M.; Hindupur, A.; Teramoto, T.; Gottipati, K.; Padmanabhan, R.; Choi, K.H. Dengue virus nonstructural protein 5 (NS5) assembles into a dimer with a unique methyltransferase and polymerase interface. PLoS Pathog., 2016, 12(2)e1005451
[http://dx.doi.org/10.1371/journal.ppat.1005451] [PMID: 26895240]
[150]
McBride, W.J.; Mullner, H.; LaBrooy, J.T.; Wronski, I. The 1993 dengue 2 epidemic in North Queensland: a serosurvey and comparison of hemagglutination inhibition with an ELISA. Am. J. Trop. Med. Hyg., 1998, 59(3), 457-461.
[http://dx.doi.org/10.4269/ajtmh.1998.59.457] [PMID: 9749644]
[151]
Fink, K.; Shi, P-Y. Live attenuated vaccine: the first clinically approved dengue vaccine? Expert Rev. Vaccines, 2014, 13(2), 185-188.
[http://dx.doi.org/10.1586/14760584.2014.870888] [PMID: 24350687]
[152]
Stevens, A.J.; Gahan, M.E.; Mahalingam, S.; Keller, P.A. The medicinal chemistry of dengue fever. J. Med. Chem., 2009, 52(24), 7911-7926.
[http://dx.doi.org/10.1021/jm900652e] [PMID: 19739651]
[153]
De Clercq, E. Strategies for the treatment of dengue virus infections: a narrative account. Future Med. Chem., 2010, 2(4), 601-608.
[http://dx.doi.org/10.4155/fmc.10.15] [PMID: 21426010]
[154]
Nitsche, C.; Holloway, S.; Schirmeister, T.; Klein, C.D. Biochemistry and medicinal chemistry of the dengue virus protease. Chem. Rev., 2014, 114(22), 11348-11381.
[http://dx.doi.org/10.1021/cr500233q] [PMID: 25268322]
[155]
Beesetti, H.; Khanna, N.; Swaminathan, S. Drugs for dengue: a patent review (2010-2014). Expert Opin. Ther. Pat., 2014, 24(11), 1171-1184.
[http://dx.doi.org/10.1517/13543776.2014.967212] [PMID: 25283170]
[156]
Zou, B.; Chan, W.L.; Ding, M.; Leong, S.Y.; Nilar, S.; Seah, P.G.; Liu, W.; Karuna, R.; Blasco, F.; Yip, A.; Chao, A.; Susila, A.; Dong, H.; Wang, Q.Y.; Xu, H.Y.; Chan, K.; Wan, K.F.; Gu, F.; Diagana, T.T.; Wagner, T.; Dix, I.; Shi, P.Y.; Smith, P.W. Lead optimization of spiropyrazolopyridones: a new and potent class of dengue virus inhibitors. ACS Med. Chem. Lett., 2015, 6(3), 344-348.
[http://dx.doi.org/10.1021/ml500521r] [PMID: 25878766]
[157]
Lichitsky, B.V.; Komogortsev, A.N.; Dudinov, A.A.; Krayushkin, M.M. Three-Component Condensation of 5-Aminopyrazole Derivatives with Isatins and Meldrum’s Acid. Synthesis of 1, 7-Dihydrospiro [Pyrazolo [3, 4-b]-Pyridine-4, 3¢-Indole]-2¢, 6 (1¢ H, 5H)-. Diones. Russ. Chem. Bull., 2009, 58(7), 1504-1508.
[http://dx.doi.org/10.1007/s11172-009-0202-4]
[158]
Zou, B.; Chen, C.; Leong, S.Y.; Ding, M.; Smith, P.W. An Efficient Synthesis of 4, 6-Dihydrospiro [Azepino [4, 3, 2-Cd] Indole-3, 3¢-Indoline]-2¢, 5 (1H)-Diones via Multi-Component Reaction. Tetrahedron, 2014, 70(3), 578-582.
[http://dx.doi.org/10.1016/j.tet.2013.12.010]
[159]
Yeung, B.K.S.; Zou, B.; Rottmann, M.; Lakshminarayana, S.B.; Ang, S.H.; Leong, S.Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; Goh, A.; Schmitt, E.K.; Krastel, P.; Francotte, E.; Kuhen, K.; Plouffe, D.; Henson, K.; Wagner, T.; Winzeler, E.A.; Petersen, F.; Brun, R.; Dartois, V.; Diagana, T.T.; Keller, T.H. Spirotetrahydro β-carbolines (spiroindolones): a new class of potent and orally efficacious compounds for the treatment of malaria. J. Med. Chem., 2010, 53(14), 5155-5164.
[http://dx.doi.org/10.1021/jm100410f] [PMID: 20568778]
[160]
Xie, X.; Wang, Q-Y.; Xu, H.Y.; Qing, M.; Kramer, L.; Yuan, Z.; Shi, P-Y. Inhibition of dengue virus by targeting viral NS4B protein. J. Virol., 2011, 85(21), 11183-11195.
[http://dx.doi.org/10.1128/JVI.05468-11] [PMID: 21865382]
[161]
van Cleef, K.W.R.; Overheul, G.J.; Thomassen, M.C.; Kaptein, S.J.F.; Davidson, A.D.; Jacobs, M.; Neyts, J.; van Kuppeveld, F.J.M.; van Rij, R.P. Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication. Antiviral Res., 2013, 99(2), 165-171.
[http://dx.doi.org/10.1016/j.antiviral.2013.05.011] [PMID: 23735301]
[162]
Wan, Y.; Wu, S.; Zheng, S.; Liang, E.; Liu, S.; Yao, X.; Zhu, Q. A series of octahydroquinazoline-5-ones as novel inhibitors against dengue virus. Eur. J. Med. Chem., 2020, 200112318
[http://dx.doi.org/10.1016/j.ejmech.2020.112318] [PMID: 32470709]
[163]
Yao, X.; Ling, Y.; Guo, S.; Wu, W.; He, S.; Zhang, Q.; Zou, M.; Nandakumar, K.S.; Chen, X.; Liu, S. Tatanan A from the Acorus calamus L. root inhibited dengue virus proliferation and infections. Phytomedicine, 2018, 42, 258-267.
[http://dx.doi.org/10.1016/j.phymed.2018.03.018] [PMID: 29655694]
[164]
Yao, X.; Guo, S.; Wu, W.; Wang, J.; Wu, S.; He, S.; Wan, Y.; Nandakumar, K.S.; Chen, X.; Sun, N.; Zhu, Q.; Liu, S. Q63, a novel DENV2 RdRp non-nucleoside inhibitor, inhibited DENV2 replication and infection. J. Pharmacol. Sci., 2018, 138(4), 247-256.
[http://dx.doi.org/10.1016/j.jphs.2018.06.012] [PMID: 30518482]
[165]
Cannalire, R.; Tarantino, D.; Piorkowski, G.; Carletti, T.; Massari, S.; Felicetti, T.; Barreca, M.L.; Sabatini, S.; Tabarrini, O.; Marcello, A.; Milani, M.; Cecchetti, V.; Mastrangelo, E.; Manfroni, G.; Querat, G. Broad spectrum anti-flavivirus pyridobenzothiazolones leading to less infective virions. Antiviral Res., 2019, 167, 6-12.
[http://dx.doi.org/10.1016/j.antiviral.2019.03.004] [PMID: 30849420]
[166]
Tay, M.Y.F.; Saw, W.G.; Zhao, Y.; Chan, K.W.K.; Singh, D.; Chong, Y.; Forwood, J.K.; Ooi, E.E.; Grüber, G.; Lescar, J.; Luo, D.; Vasudevan, S.G. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication. J. Biol. Chem., 2015, 290(4), 2379-2394.
[http://dx.doi.org/10.1074/jbc.M114.607341] [PMID: 25488659]
[167]
Felicetti, T.; Burali, M.S.; Gwee, C.P.; Ki Chan, K.W.; Alonso, S.; Massari, S.; Sabatini, S.; Tabarrini, O.; Barreca, M.L.; Cecchetti, V.; Vasudevan, S.G.; Manfroni, G. Sustainable, three-component, one-pot procedure to obtain active anti-flavivirus agents. Eur. J. Med. Chem., 2021, 210112992
[http://dx.doi.org/10.1016/j.ejmech.2020.112992] [PMID: 33208235]
[168]
Cannalire, R.; Ki Chan, K.W.; Burali, M.S.; Gwee, C.P.; Wang, S.; Astolfi, A.; Massari, S.; Sabatini, S.; Tabarrini, O.; Mastrangelo, E.; Barreca, M.L.; Cecchetti, V.; Vasudevan, S.G.; Manfroni, G. Pyridobenzothiazolones exert potent anti-dengue activity by hampering multiple functions of NS5 polymerase. ACS Med. Chem. Lett., 2020, 11(5), 773-782.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00619] [PMID: 32435384]
[169]
Vishvakarma, V.K.; Singh, P.; Kumar, V.; Kumari, K.; Patel, R.; Chandra, R. Pyrrolothiazolones as potential inhibitors for the NsP2B‐nsP3 protease of dengue virus and their mechanism of synthesis. ChemistrySelect, 2019, 4(32), 9410-9419.
[http://dx.doi.org/10.1002/slct.201901119]
[170]
Mishra, R.; Jana, A.; Panday, A.K.; Choudhury, L.H. Synthesis of spirooxindoles fused with pyrazolo-tetrahydropyri-dinone and coumarin-dihydropyridine-pyrazole tetracycles by reaction medium dependent isatin-based multicomponent reactions. New J. Chem., 2019, 43(7), 2920-2932.
[http://dx.doi.org/10.1039/C8NJ05465G]
[171]
Fan, Z.; Yang, Z.; Zhang, H.; Mi, N.; Wang, H.; Cai, F.; Zuo, X.; Zheng, Q.; Song, H. Synthesis, crystal structure, and biological activity of 4-methyl-1,2,3-thiadiazole-containing 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles. J. Agric. Food Chem., 2010, 58(5), 2630-2636.
[http://dx.doi.org/10.1021/jf9029628] [PMID: 20014761]
[172]
Bloom, J.D.; Dushin, R.G.; Curran, K.J.; Donahue, F.; Norton, E.B.; Terefenko, E.; Jones, T.R.; Ross, A.A.; Feld, B.; Lang, S.A.; DiGrandi, M.J. Thiourea inhibitors of herpes viruses. Part 2: N-Benzyl-N'-arylthiourea inhibitors of CMV. Bioorg. Med. Chem. Lett., 2004, 14(13), 3401-3406.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.093] [PMID: 15177441]
[173]
Bloom, J.D.; DiGrandi, M.J.; Dushin, R.G.; Curran, K.J.; Ross, A.A.; Norton, E.B.; Terefenko, E.; Jones, T.R.; Feld, B.; Lang, S.A. Thiourea inhibitors of herpes viruses. Part 1: bis-(aryl)thiourea inhibitors of CMV. Bioorg. Med. Chem. Lett., 2003, 13(17), 2929-2932.
[http://dx.doi.org/10.1016/S0960-894X(03)00586-9] [PMID: 14611860]
[174]
Xie, D.; Zhang, A.; Liu, D.; Yin, L.; Wan, J.; Zeng, S.; Hu, D. Synthesis and antiviral activity of novel a-aminophosphonates containing 6-fluorobenzothiazole moiety. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(9), 1061-1067.
[http://dx.doi.org/10.1080/10426507.2017.1323895]
[175]
Kafarski, P.; Górniak, M.G.; Andrasiak, I. Kabachnik-Fields reaction under green conditions—a critical over-view. Curr. Green Chem., 2015, 5, 218-222.
[http://dx.doi.org/10.2174/2213346102666150109203606]
[176]
Keglevich, G.; Bálint, E. The Kabachnik-Fields reaction: mechanism and synthetic use. Molecules, 2012, 17(11), 12821-12835.
[http://dx.doi.org/10.3390/molecules171112821] [PMID: 23117425]
[177]
Rao, A.J.; Rao, P.V.; Rao, V.K.; Mohan, C.; Raju, C.N.; Reddy, C.S. Microwave assisted one-pot synthesis of novel α-aminophosphonates and heir biological activity. Bull. Korean Chem. Soc., 2010, 31(7), 1863-1868.
[http://dx.doi.org/10.5012/bkcs.2010.31.7.1863]
[178]
Ryu, W-S. Chapter 17 - Retroviruses. In: Molecular Virology of Human Pathogenic Viruses; Ryu, W-S., Ed.; Academic Press: Boston, 2017, pp. 227-246.
[http://dx.doi.org/10.1016/B978-0-12-800838-6.00017-5]
[179]
Karn, J. Retroviruses. In: Brenner’s Encyclopedia of Genetics, 2nd ed; Maloy, S.; Hughes, K., Eds.; Academic Press: San Diego, , 2013; pp. 211-215.
[http://dx.doi.org/10.1016/B978-0-12-374984-0.01323-1]
[180]
Weiss, R. A. How does HIV cause AIDS?Science (80-), 1993, 260(5112), 1273-1279
[181]
Douek, D.C.; Roederer, M.; Koup, R.A. Emerging concepts in the immunopathogenesis of AIDS. Annu. Rev. Med., 2009, 60, 471-484.
[http://dx.doi.org/10.1146/annurev.med.60.041807.123549] [PMID: 18947296]
[182]
Powell, M.K.; Benková, K.; Selinger, P.; Dogoši, M.; Kinkorová Luňáčková, I.; Koutníková, H.; Laštíková, J.; Roubíčková, A.; Špůrková, Z.; Laclová, L.; Eis, V.; Šach, J.; Heneberg, P. Opportunistic infections in HIV-infected patients differ strongly in frequencies and spectra between patients with low CD4+ cell counts examined postmortem and compensated patients examined antemortem irrespective of the HAART era. PLoS One, 2016, 11(9)e0162704
[http://dx.doi.org/10.1371/journal.pone.0162704] [PMID: 27611681]
[183]
Organization, W.H. Guidelines: Updated Recommendations on HIV Prevention; Infant Diagnosis, Antiretroviral Initiation and Monitoring, 2021.
[184]
Antonelli, G.; Turriziani, O. Antiviral therapy: old and current issues. Int. J. Antimicrob. Agents, 2012, 40(2), 95-102.https://doi.org/https://doi.org/10.1016/j.ijantimicag.2012.04.005
[http://dx.doi.org/10.1016/j.ijantimicag.2012.04.005] [PMID: 22727532]
[185]
Leonard, J.T.; Roy, K. The HIV entry inhibitors revisited. Curr. Med. Chem., 2006, 13(8), 911-934.
[http://dx.doi.org/10.2174/092986706776361030] [PMID: 16611075]
[186]
Nishizawa, R.; Nishiyama, T.; Hisaichi, K.; Matsunaga, N.; Minamoto, C.; Habashita, H.; Takaoka, Y.; Toda, M.; Shibayama, S.; Tada, H.; Sagawa, K.; Fukushima, D.; Maeda, K.; Mitsuya, H. Spirodiketopiperazine-based CCR5 antagonists: Lead optimization from biologically active metabolite. Bioorg. Med. Chem. Lett., 2007, 17(3), 727-731.
[http://dx.doi.org/10.1016/j.bmcl.2006.10.084] [PMID: 17118654]
[187]
Tiberi, M.; Tintori, C.; Ceresola, E.R.; Fazi, R.; Zamperini, C.; Calandro, P.; Franchi, L.; Selvaraj, M.; Botta, L.; Sampaolo, M.; Saita, D.; Ferrarese, R.; Clementi, M.; Canducci, F.; Botta, M. 2-Aminothiazolones as anti-HIV agents that act as gp120-CD4 inhibitors. Antimicrob. Agents Chemother., 2014, 58(6), 3043-3052.
[http://dx.doi.org/10.1128/AAC.02739-13] [PMID: 24614386]
[188]
Rinaldi, M.; Tintori, C.; Franchi, L.; Vignaroli, G.; Innitzer, A.; Massa, S.; Esté, J.A.; Gonzalo, E.; Christ, F.; Debyser, Z.; Botta, M. A versatile and practical synthesis toward the development of novel HIV-1 integrase inhibitors. ChemMedChem, 2011, 6(2), 343-352.
[http://dx.doi.org/10.1002/cmdc.201000510] [PMID: 21246739]
[189]
Siddiqui, I.R.; Siddique, S.A.; Srivastava, V.; Singh, P.K.; Singh, J. A novel anthranilic acid based multi-component strategy for expeditious synthesis of 4(3H)-quinazolinone N-nucleosides. ARKIVOC, 2008, 2008(12), 277-285.
[http://dx.doi.org/10.3998/ark.5550190.0009.c30]
[190]
Tintori, C.; Brai, A.; Dasso Lang, M.C.; Deodato, D.; Greco, A.M.; Bizzarri, B.M.; Cascone, L.; Casian, A.; Zamperini, C.; Dreassi, E.; Crespan, E.; Maga, G.; Vanham, G.; Ceresola, E.; Canducci, F.; Ariën, K.K.; Botta, M. Development and in vitro evaluation of a microbicide gel formulation for a novel non-nucleoside reverse transcriptase inhibitor belonging to the n-dihydroalkyloxybenzyloxo-pyrimidines (N-DABOs) family. J. Med. Chem., 2016, 59(6), 2747-2759.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01979] [PMID: 26898379]
[191]
Elleder, D.; Baiga, T.J.; Russell, R.L.; Naughton, J.A.; Hughes, S.H.; Noel, J.P.; Young, J.A.T. Identification of a 3-aminoimidazo[1,2-a]pyridine inhibitor of HIV-1 reverse transcriptase. Virol. J., 2012, 9(1), 305.
[http://dx.doi.org/10.1186/1743-422X-9-305] [PMID: 23231773]
[192]
Elleder, D.; Young, A.T. J.; Baiga J., T.; Noel P., J. Non Nucleoside Reverse Transcriptase Inhibitors Presentation. WO 2009/061856 Al, 2008.
[193]
Bode, M.L.; Gravestock, D.; Moleele, S.S.; van der Westhuyzen, C.W.; Pelly, S.C.; Steenkamp, P.A.; Hoppe, H.C.; Khan, T.; Nkabinde, L.A. Imidazo[1,2-a]pyridin-3-amines as potential HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem., 2011, 19(14), 4227-4237.
[http://dx.doi.org/10.1016/j.bmc.2011.05.062] [PMID: 21700466]
[194]
Yehia, N.A.M.; Antuch, W.; Beck, B.; Hess, S.; Schauer-Vukasinović, V.; Almstetter, M.; Furer, P.; Herdtweck, E.; Dömling, A. Novel nonpeptidic inhibitors of HIV-1 protease obtained via a new multicomponent chemistry strategy. Bioorg. Med. Chem. Lett., 2004, 14(12), 3121-3125.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.026] [PMID: 15149657]
[195]
Lv, Z.; Chu, Y.; Wang, Y. HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS (Auckl.), 2015, 7, 95-104.
[PMID: 25897264]
[196]
Sari, O.; Roy, V.; Métifiot, M.; Marchand, C.; Pommier, Y.; Bourg, S.; Bonnet, P.; Schinazi, R.F.; Agrofoglio, L.A. Synthesis of dihydropyrimidine α,γ-diketobutanoic acid derivatives targeting HIV integrase. Eur. J. Med. Chem., 2015, 104, 127-138.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.015] [PMID: 26451771]
[197]
Pommier, Y.; Johnson, A.A.; Marchand, C. Integrase inhibitors to treat HIV/AIDS. Nat. Rev. Drug Discov., 2005, 4(3), 236-248.
[http://dx.doi.org/10.1038/nrd1660] [PMID: 15729361]
[198]
Kolontsova, A.N.; Ivantsova, M.N.; Tokareva, M.I.; Mironov, M.A. Reaction of isocyanides with thiophenols and gem-diactivated olefins: a one-pot synthesis of substituted 2-aminopyrroles. Mol. Divers., 2010, 14(3), 543-550.
[http://dx.doi.org/10.1007/s11030-010-9233-x] [PMID: 20213288]
[199]
Bennett, S.M.; Nguyen-Ba, N.; Ogilvie, K.K. Synthesis and antiviral activity of some acyclic and C-acyclic pyrrolo[2,3-d]pyrimidine nucleoside analogues. J. Med. Chem., 1990, 33(8), 2162-2173.
[http://dx.doi.org/10.1021/jm00170a019] [PMID: 2165163]
[200]
Bergstrom, F.W. Heterocyclic Nitrogen Compounds. Part IIA. Hexacyclic Compounds: Pyridine, Quinoline, and Isoquinoline. Chem. Rev., 1944, 35(2), 77-277.
[http://dx.doi.org/10.1021/cr60111a001]
[201]
Ali, O.M.; Amer, H.H.; Abdel-Rahman, A.A-H. Synthesis of N4-β-D-glycoside cytosines and sugar N4-acetylcytosin-1-ylmethylhydrazones as antiviral agents. J. Chem. Res., 2007, 2007, 281-283.
[http://dx.doi.org/10.3184/030823407X215889]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy