Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease Utilizing Structure-Based Molecular Docking

Author(s): Sisir Nandi*, Mohit Kumar and Anil Kumar Saxena*

Volume 19, Issue 5, 2022

Page: [413 - 427] Pages: 15

DOI: 10.2174/1570180818666211007111105

Price: $65

Abstract

Background: COVID-19, first reported in China, from the new strain of severe acute respiratory syndrome coronaviruses (SARS-CoV-2), poses a great threat to the world by claiming uncountable lives. SARS-CoV-2 is a highly infectious virus that has been spreading rapidly throughout the world. In the absence of any specific medicine to cure COVID-19, there is an urgent need to develop novel therapeutics, including drug repositioning along with diagnostics and vaccines to combat the COVID-19. Many antivirals, antimalarials, antiparasitic, antibacterials, immunosuppressive anti-inflammatory, and immunoregulatory agents are being clinically investigated for the treatment of COVID-19.

Objectives: The earlier developed one parameter regression model correlating the dock scores with in vitro anti-SARS-CoV-2 main protease activity well predicted the six drugs viz remdesivir, chloroquine, favipiravir, ribavirin, penciclovir, and nitazoxanide as potential anti-COVID agents. To further validate our earlier model, the biological activity of nine more recently published SARS-CoV-2 main protease inhibitors has been predicted using our previously reported model.

Methods: In the present study, this regression model has been used to screen the existing antiviral, antiparasitic, antitubercular, and anti pneumonia chemotherapeutics utilizing dock score analyses to explore the potential including mechanism of action of these compounds in combating SARS-CoV-2 main protease.

Results: The high correlation (R=0.91) explaining 82.3% variance between the experimental versus predicted activities for the nine compounds is observed. It proves the robustness of our developed model. Therefore, this robust model has been further improved, taking a total number of 15 compounds to formulate another model with an R-value of 0.887 and the explained variance of 78.6%. These models have been used for high throughput screening (HTS) of the 21 diverse compounds belonging to antiviral, antiparasitic, antitubercular, and anti pneumonia chemotherapeutics as potential repurpose agents to combat SARS-CoV-2 main protease. The models screened that the drugs bedaquiline and lefamulin have higher binding affinities (dock scores of -8.989 and -9.153 Kcal/mol respectively) than the reference compound {N}-[2-(5-fluoranyl-1~{H}-indol-3-yl)ethyl]ethanamide (dock score of -7.998 Kcal/Mol), as well as higher predicted activities with pEC50 of 0.783 and 0.937 μM and the 0.611 and 0.724 μM respectively. The clinically used repurposed drugs dexamethasone and cefixime have been predicted with pEC50 values of -0.463 and -0.622 μM and -0.311 and -0.428 μM respectively for optimal inhibition. The drugs such as doxycycline, cefpodoxime, ciprofloxacin, sparfloxacin, moxifloxacin, and TBAJ-876 showed moderate binding affinity corresponding to the moderate predicted activity (-1.540 to -1.109 μM).

Conclusion: In the present study, validation of our previously developed dock score-based one parametric regression model has been carried out by predicting 9 more SARS-CoV-2 main protease inhibitors. Another model has been formulated to explore the model's robustness. These models have been taken as a barometer for the screening of more potent compounds. The HTS revealed that the drugs such as bedaquiline and lefamulin are highly predicted active compounds, whereas dexamethasone and cefixime have optimal inhibition towards SARS-CoV-2 main protease. The drugs such as doxycycline, cefpodoxime, ciprofloxacin, sparfloxacin, moxifloxacin, and TBAJ-876 have moderately active compounds towards the target inhibition.

Keywords: COVID-19, SARS-CoV-2 main protease, drug repurposing, molecular docking, high throughput screening (HTS), structure-based drug design.

Graphical Abstract

[1]
WHO. Novel Coronavirus (2019-nCoV) situation reports. Who. Int., 2019. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports(Accessed on 10 March 2020).
[2]
WHO. Middle East respiratory syndrome coronavirus (MERSCoV). Who. Int., 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov)(Accessed on 11 March 2020).
[3]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[4]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[5]
Wouters, O.J.; McKee, M.; Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA, 2020, 323(9), 844-853.
[http://dx.doi.org/10.1001/jama.2020.1166] [PMID: 32125404]
[6]
Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem., 2020, 295(15), 4773-4779.
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[7]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[8]
De Francesco, R.; Carfí, A. Advances in the development of new therapeutic agents targeting the NS3-4A serine protease or the NS5B RNA-dependent RNA polymerase of the hepatitis C virus. Adv. Drug Deliv. Rev., 2007, 59(12), 1242-1262.
[http://dx.doi.org/10.1016/j.addr.2007.04.016] [PMID: 17869377]
[9]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[10]
Li, G.; Sun, J.; Huang, Y.; Li, Y.; Shi, Y.; Li, Z.; Li, X.; Yang, F.H.; Zhao, J. Enantiomers of chloroquine and hydroxychloroquine exhibit different activities against SARS-CoV-2 in vitro, evidencing S-hydroxychloroquine as a potentially superior drug for COVID-19. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.05.26.114033]
[11]
Tay, M.Y.; Fraser, J.E.; Chan, W.K.; Moreland, N.J.; Rathore, A.P.; Wang, C.; Vasudevan, S.G.; Jans, D.A. Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Res., 2013, 99(3), 301-306.
[http://dx.doi.org/10.1016/j.antiviral.2013.06.002] [PMID: 23769930]
[12]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178104787
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[13]
Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L.; Wei, J.; Xiao, H.; Yang, Y.; Qu, J.; Qing, L.; Chen, L.; Xu, Z.; Peng, L.; Li, Y.; Zheng, H.; Chen, F.; Huang, K.; Jiang, Y.; Liu, D.; Zhang, Z.; Liu, Y.; Liu, L. Treatment of 5 critically Ill patients with COVID-19 with convalescent plasma. JAMA, 2020, 323(16), 1582-1589.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[14]
The National Institutes of Health Covid-19 treatment guidelines panel provides recommendations for dexamethasone in patients with COVID-19. Available from: https://www.covid19treatmentguidelines.nih.gov/dexamethasone/(Accessed 27 June 2020).
[15]
Treatment of SARS CoV-2 pneumonia with the anti-CD6 monoclonal antibody itolizumab. RPCEC, 2020. Available from: https://rpcec.sld.cu/en/trials/RPCEC00000311-En(Accessed 19 December 2020).
[16]
Kumar, Y.; Singh, H.; Patel, C.N. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. J. Infect. Public Health, 2020, 13(9), 1210-1223.
[http://dx.doi.org/10.1016/j.jiph.2020.06.016] [PMID: 32561274]
[17]
Peele, K.A.; Potla Durthi, C.; Srihansa, T.; Krupanidhi, S.; Ayyagari, V.S.; Babu, D.J.; Indira, M.; Reddy, A.R.; Venkateswarulu, T.C. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Informat. Med. Unlocked, 2020, 19100345
[http://dx.doi.org/10.1016/j.imu.2020.100345]
[18]
Narkhede, R.R.; Cheke, R.S.; Ambhore, J.P.; Shinde, S.D. The molecular docking study of potential drug candidates showing anti-COVID-19 activity by exploring of therapeutic targets of SARS-CoV-2. EJMO, 2020, 4(3), 185-195.
[http://dx.doi.org/10.14744/ejmo.2020.31503]
[19]
Hakmi, M.; Bouricha, E.M.; Kandoussi, I.; Harti, J.E.; Ibrahimi, A. Repurposing of known anti-virals as potential inhibitors for SARS-CoV-2 main protease using molecular docking analysis. Bioinformation, 2020, 16(4), 301-306.
[http://dx.doi.org/10.6026/97320630016301] [PMID: 32773989]
[20]
Nandi, S.; Kumar, M.; Saxena, M.; Saxena, A.K. The antiviral and antimalarial drug repurposing in quest of chemotherapeutics to combat COVID-19 utilizing structure-based molecular docking. Comb. Chem. High Throughput Screen., 2020, 2020(23), 1-14.
[http://dx.doi.org/10.2174/1386207323999200824115536] [PMID: 32838713]
[21]
Simmons, B.; Wentzel, H.; Mobarak, S.; Eslami, G.; Sadeghi, A.; Asgari, A.A.; Kasgari, H.A.; Fakheri, H.T.; Merat, S.; Hill, A. Sofosbuvir/daclatasvir regimens for the treatment of COVID-19: An individual patient data meta-analysis. J. Antimicrob. Chemother., 2021, 76(2), 286-291.
[http://dx.doi.org/10.1093/jac/dkaa418]
[22]
Wang, X.; Cao, R.; Zhang, H.; Liu, J.; Xu, M.; Hu, H.; Li, Y.; Zhao, L.; Li, W.; Sun, X.; Yang, X.; Shi, Z.; Deng, F.; Hu, Z.; Zhong, W.; Wang, M. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov., 2020, 6, 28.
[http://dx.doi.org/10.1038/s41421-020-0169-8]
[23]
Shang, L.; Zhao, J.; Hu, Y.; Du, R.; Cao, B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet, 2020, 395(10225), 683-684.
[http://dx.doi.org/10.1016/S0140-6736(20)30361-5] [PMID: 32122468]
[24]
Conforti, C.; Giuffrida, R.; Zalaudek, I.; Di Meo, N. Doxycycline, a widely used antibiotic in dermatology with a possible anti-inflammatory action against IL-6 in COVID-19 outbreak. Dermatol. Ther. , 2020, 33(4)e13437
[http://dx.doi.org/10.1111/dth.13437] [PMID: 32314492]
[25]
Clinical trial of ivermectin plus doxycycline for the treatment of confirmed COVID-19 infection. Available from: https://clinicaltrials.gov/ct2/show/NCT04523831 (Accessed on December 20, 2020)
[26]
Oldenburg, C.E.; Doan, T. Azithromycin for severe COVID-19. Lancet, 2020, 396(10256), 936-937.
[http://dx.doi.org/10.1016/S0140-6736(20)31863-8] [PMID: 32896293]
[27]
Chu, D.K.W.; Pan, Y.; Cheng, S.M.S.; Hui, K.P.Y.; Krishnan, P.; Liu, Y.; Ng, D.Y.M.; Wan, C.K.C.; Yang, P.; Wang, Q.; Peiris, M.; Poon, L.L.M. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem., 2020, 66(4), 549-555.
[http://dx.doi.org/10.1093/clinchem/hvaa029] [PMID: 32031583]
[28]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[29]
Harrison, C. Coronavirus puts drug repurposing on the fast track. Nat. Biotechnol., 2020, 38(4), 379-381.
[http://dx.doi.org/10.1038/d41587-020-00003-1] [PMID: 32205870]
[30]
Chen, J.; Xia, L.; Liu, L.; Xu, Q.; Ling, Y.; Huang, D.; Huang, W.; Song, S.; Xu, S.; Shen, Y.; Lu, H. Antiviral activity and safety of darunavir/cobicistat for the treatment of COVID-19. Open Forum Infecti. Dis. 2020, 7(7) ofaa241
[http://dx.doi.org/10.1093/ofid/ofaa241]
[31]
Cefixime / Azithromycin pK Study. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02708992(Accessed on December 20, 2020).
[32]
Ye, F.; Xu, S.; Rong, Z.; Xu, R.; Liu, X.; Deng, P.; Liu, H.; Xu, X. Delivery of infection from asymptomatic carriers of COVID-19 in a familial cluster. Int. J. Infect. Dis., 2020, 94, 133-138.
[http://dx.doi.org/10.1016/j.ijid.2020.03.042] [PMID: 32247826]
[33]
Dey, R.; Nandi, S.; Samadder, A.; Saxena, A.; Saxena, A.K. Exploring the potential inhibition of candidate drug molecules for clinical investigation based on their docking or crystallographic analyses against M. tuberculosis Enzyme Targets. Curr. Top. Med. Chem., 2020, 20(29), 2662-2680.
[http://dx.doi.org/10.2174/1568026620666200903163921] [PMID: 32885754]
[34]
DeAbate, C.A.; Henry, D.; Bensch, G.; Jubran, A.; Chodosh, S.; Harper, L.; Tipping, D.; Talbot, G.H. Sparfloxacin vs ofloxacin in the treatment of acute bacterial exacerbations of chronic bronchitis: a multicenter, double-blind, randomized, comparative study. Chest, 1998, 114(1), 120-130.
[http://dx.doi.org/10.1378/chest.114.1.120] [PMID: 9674458]
[35]
Poschet, J.F.; Perkett, E.A.; Timmins, G.S.; Deretic, V. Azithromycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.29.008631]
[36]
File, T.M.; Goldberg, L.; Das, A.; Sweeney, C.; Saviski, J.; Gelone, S.P.; Seltzer, E.; Paukner, S.; Wicha, W.W.; Talbot, G.H.; Gasink, L.B. Efficacy and safety of intravenous-to-oral lefamulin, a pleuromutilin antibiotic, for the treatment of community-acquired bacterial pneumonia: The phase III lefamulin evaluation against pneumonia (LEAP 1) trial. Clin. Infect. Dis., 2019, 69(11), 1856-1867.
[http://dx.doi.org/10.1093/cid/ciz090] [PMID: 30722059]
[37]
Mills, N. ChemDraw Ultra 10.0. J. Am. Chem. Soc., 2006, 128(41), 13649-13650.
[http://dx.doi.org/10.1021/ja0697875]
[38]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[39]
Nandi, S.; Bagchi, M.C. 3D-QSAR and molecular docking studies of 4-anilinoquinazoline derivatives: a rational approach to anticancer drug design. Mol. Divers., 2010, 14(1), 27-38.
[http://dx.doi.org/10.1007/s11030-009-9137-9] [PMID: 19330460]
[40]
Nandi, S.; Naaz, A.; Saxena, M. Repurposing of potent mtase inhibitors against ZIKV utilizing structure-based molecular docking. Int. J. Quantitat. Struct.-. Prop. Relat., 2020, 5(4), 53-68.
[http://dx.doi.org/10.4018/IJQSPR.2020100103]
[41]
Thompson, M.A.; Zerner, M.C. A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas viridis. J. Am. Chem. Soc. 1991, 113(22), 8210-8215.
[http://dx.doi.org/10.1021/ja00022a003]
[42]
Fearon, D.; Powell, A.J.; Douangamath, A.; Owen, C.D.; Wild, C.; Krojer, T.; Lukacik, P.; Strain-Damerell, C.M.; Walsh, M.A.; von-Delft, F. PanDDA analysis group deposition-crystal structure of COVID-19 main protease in complex with Z1220452176; Worldwide Protein Data Bank, 2020.

© 2025 Bentham Science Publishers | Privacy Policy