Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Pharmacokinetic Study of Hypaphorine, a Potential Agent for Treating Osteoclast-based Bone Loss, on Rats Using LC-MS/MS

Author(s): Taiyuan Zhang*, Yan Yan, Yutao Xue, Shan Xiong*, Wenwen Ran and Qiao Xu

Volume 25, Issue 11, 2022

Published on: 04 January, 2022

Page: [1889 - 1896] Pages: 8

DOI: 10.2174/1386207325666211005144429

Price: $65

Abstract

Aims and Objectives: A high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for determining hypaphorine, a potential agent for treating osteoclast- based bone loss, was developed and validated in rat plasma.

Materials and Methods: Plasma samples were pretreated by the protein precipitation. Chromatographic separation was performed using an Inertsil ODS-3 column (50 mm × 4.6 mm, 5 μm). The mobile phase consisted of water (containing 0.1% formic acid) and acetonitrile in a gradient mode at a flow rate of 0.5 mL/min. The transitions from protonated precursor ion [M + H]+ to the particular daughter ion were acquired using selected reaction monitoring (SRM). The mass transitions of hypaphorine and IS were found to be 247 → 188 and m/z 219 → 188, respectively. The method was validated in terms of selectivity, linearity, accuracy and precision, extraction recovery and matrix effect, stability, and carryover.

Results: It showed good linearity over the range of 1-2000 ng/mL (R2 = 0.9978). The intra-batch accuracy was within 93.95-105.81%, and the precision was within 4.92-11.53%. The inter-batch accuracy was within 96.18-100.39% with a precision of 6.22-11.23%. The extraction recovery and matrix factors were acceptable.

Conclusion: The simple and rapid method was successfully applied to the pharmacokinetic study in rats following oral administration of hypaphorine at the doses of 0.5, 1.5, and 4.5 mg/kg.

Keywords: Osteoclasts, hypaphorine, abrine, LC-MS/MS, pharmacokinetics, rats.

Graphical Abstract

[1]
Ozawa, M.; Honda, K.; Nakai, I.; Kishida, A.; Ohsaki, A. Hypaphorine, an indole alkaloid from Erythrina velutina, induced sleep on nor-mal mice. Bioorg. Med. Chem. Lett., 2008, 18(14), 3992-3994.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.002] [PMID: 18571406]
[2]
Amorim, J.; Borges, M.C.; Fabro, A.T.; Contini, S.H.T.; Valdevite, M.; Pereira, A.M.S.; Carmona, F. The ethanolic extract from Erythrina mulungu Benth. flowers attenuates allergic airway inflammation and hyperresponsiveness in a murine model of asthma. J. Ethnopharmacol., 2019, 242, 111467.
[http://dx.doi.org/10.1016/j.jep.2018.08.009] [PMID: 30102994]
[3]
Bel-Kassaoui, H.; Lamnaouer, D.; Jossang, A.; Abdennebi, H.; Charrouf, Z.; Bodo, B. Role of hypaphorine in the toxicity of Astragalus lusitanicus. Nat. Prod. Res., 2008, 22(5), 453-457.
[http://dx.doi.org/10.1080/14786410701591986] [PMID: 18404567]
[4]
Han, D.Q.; Zhao, J.; Xu, J.; Peng, H.S.; Chen, X.J.; Li, S.P. Quality evaluation of Polygonum multiflorum in China based on HPLC analysis of hydrophilic bioactive compounds and chemometrics. J. Pharm. Biomed. Anal., 2013, 72, 223-230.
[http://dx.doi.org/10.1016/j.jpba.2012.08.026] [PMID: 23021005]
[5]
Chen, G.; Luo, H.; Ye, J.; Hu, C. Determination of hypaphorine and oligomeric stilbenes in the root of Caragana sinica by capillary elec-trophoresis with electrochemical detection. Talanta, 2001, 54(6), 1067-1076.
[http://dx.doi.org/10.1016/S0039-9140(01)00375-7] [PMID: 18968328]
[6]
Chen, G.; Luo, H.; Ye, J.; Hu, C. Identification and determination of oligomeric stilbenes in the roots of Caragana species by capillary electrophoresis. Planta Med., 2001, 67(7), 665-668.
[http://dx.doi.org/10.1055/s-2001-17367] [PMID: 11582547]
[7]
Peng, F.Q.; Chen, M.Q.; Lin, L.; Nong, G.L. Determination of contents of hypaphorine,formononetin and maackiain in different varieties of Millettia speciosa Champ. by HPLC. J. Guangzhou Univ. Tradit. Chin. Med., 2018, 35(3), 507-511.
[8]
Kawano, T.; Kawano, N.; Hosoya, H.; Lapeyrie, F. Fungal auxin antagonist hypaphorine competitively inhibits indole-3-acetic acid-dependent superoxide generation by horseradish peroxidase. Biochem. Biophys. Res. Commun., 2001, 288(3), 546-551.
[http://dx.doi.org/10.1006/bbrc.2001.5800] [PMID: 11676477]
[9]
Aswad, M.; Rayan, M.; Abu-Lafi, S.; Falah, M.; Raiyn, J.; Abdallah, Z.; Rayan, A. Nature is the best source of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity. Inflamm. Res., 2018, 67(1), 67-75.
[http://dx.doi.org/10.1007/s00011-017-1096-5] [PMID: 28956064]
[10]
Sun, H.; Zhu, X.; Cai, W.; Qiu, L. Hypaphorine attenuates lipopolysaccharide-induced endothelial inflammation via regulation of TLR4 and PPAR-gamma dependent on PI3K/Akt/mTOR signal pathway. Int. J. Mol. Sci., 2017, 18(4), 844.
[http://dx.doi.org/10.3390/ijms18040844] [PMID: 28420166]
[11]
Sun, H.; Zhu, X.; Lin, W.; Zhou, Y.; Cai, W.; Qiu, L. Interactions of TLR4 and PPARγ, Dependent on AMPK signalling pathway contribute to anti-inflammatory effects of vaccariae hypaphorine in endothelial cells. Cell. Physiol. Biochem., 2017, 42(3), 1227-1239.
[http://dx.doi.org/10.1159/000478920] [PMID: 28683454]
[12]
Luan, G.; Tie, F.; Yuan, Z.; Li, G.; He, J.; Wang, Z.; Wang, H. Hypaphorine, an indole alkaloid isolated from Caragana korshinskii Kom., Inhibites 3T3-L1 Adipocyte differentiation and improves insulin sensitivity in vitro. Chem. Biodivers., 2017, 14(7)
[http://dx.doi.org/10.1002/cbdv.201700038] [PMID: 28398659]
[13]
Sun, H.; Cai, W.; Wang, X.; Liu, Y.; Hou, B.; Zhu, X.; Qiu, L. Vaccaria hypaphorine alleviates lipopolysaccharide-induced inflammation via inactivation of NFκB and ERK pathways in Raw 264.7 cells. BMC Complement. Altern. Med., 2017, 17(1), 120.
[http://dx.doi.org/10.1186/s12906-017-1635-1] [PMID: 28219355]
[14]
Chen, H.; Guo, T.; Wang, D.; Qin, R. Vaccaria hypaphorine impairs RANKL-induced osteoclastogenesis by inhibition of ERK, p38, JNK and NF-κB pathway and prevents inflammatory bone loss in mice. Biomed. Pharmacother., 2018, 97, 1155-1163.
[http://dx.doi.org/10.1016/j.biopha.2017.11.044] [PMID: 29136954]
[15]
Novack, D.V.; Mbalaviele, G. Osteoclasts-key players in skeletal health and disease. Microbiol. Spectr., 2016, 4(3), 10.
[http://dx.doi.org/10.1128/microbiolspec.MCHD-0011-2015] [PMID: 27337470]
[16]
Phan, T.C.; Xu, J.; Zheng, M.H. Interaction between osteoblast and osteoclast: impact in bone disease. Histol. Histopathol., 2004, 19(4), 1325-1344.
[http://dx.doi.org/10.14670/HH-19.1325] [PMID: 15375775]
[17]
Väänänen, K. Mechanism of osteoclast mediated bone resorption--rationale for the design of new therapeutics. Adv. Drug Deliv. Rev., 2005, 57(7), 959-971.
[http://dx.doi.org/10.1016/j.addr.2004.12.018] [PMID: 15876398]
[18]
National Research Council. Guide for the care and use of laboratory animals. NRC; National Academy Press, 1996.
[19]
Li, B.; Lu, M.; Jin, L.; Zheng, M.; Sun, P.; Lei, S.; Xiong, S.; Chen, S. Simultaneous quantification of brigatinib and brigatinib-analog in rat plasma and brain homogenate by LC-MS/MS: application to comparative pharmacokinetic and brain distribution studies. Int. J. Anal. Chem., 2019, 2019, 9028309.
[http://dx.doi.org/10.1155/2019/9028309] [PMID: 31885594]
[20]
Chu, Z.; Xue, M.; Xiong, S. Development and validation of an LC-MS/MS method for quantitative determination of EAI045, a novel EGFR inhibitor, in rat plasma. Curr. Pharm. Anal., 2020, 16(3), 273-279.
[http://dx.doi.org/10.2174/1573412915666190206125557]
[21]
Li, B.; Lu, M.; Chu, Z.; Lei, S.; Sun, P.; Xiong, S.; Chen, S. Evaluation of pharmacokinetics, bioavailability and urinary excretion of sco-polin and its metabolite scopoletin in Sprague Dawley rats by liquid chromatography-tandem mass spectrometry. Biomed. Chromatogr., 2019, 33(12), e4678.
[http://dx.doi.org/10.1002/bmc.4678] [PMID: 31412148]
[22]
Food and Drug Administration. Guidance for industry: bioanalytical method validation. US department of health and human services, food and drug administration, center for drug evaluation and research and center for veterinary medicine. 2018.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy