Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Ketogenic Diet: A Promising Neuroprotective Composition for Managing Alzheimer’s Diseases and its Pathological Mechanisms

Author(s): Badrinathan Sridharan and Meng-Jen Lee*

Volume 22, Issue 7, 2022

Published on: 06 January, 2022

Page: [640 - 656] Pages: 17

DOI: 10.2174/1566524021666211004104703

Price: $65

Abstract

Ketogenic diet and ketone bodies gained significant attention in recent years due to their ability to influence the specific energy metabolism and restoration of mitochondrial homeostasis that can help in hindering the progression of many metabolic diseases, including diabetes and neurodegenerative diseases. A ketogenic diet consists of high fat and low carbohydrate contents, which makes the body glucose deprived and rely on alternative sources (ketone bodies) for energy. It has been initially designed and supplemented for the treatment of epilepsy, and, later, its influence on many energyderiving biochemical pathways made it a highly sorted food supplement for many metabolic diseases and even for bodybuilding and calorie restriction in healthy individuals. Among the reported therapeutic action over a range of diseases, neurodegenerative disorders, especially Alzheimer’s disease, gained the attention of many researchers and clinicians because of the higher benefits of the ketogenic diet on this disease. Complex pathology and multiple influencing factors of Alzheimer’s disease make exploration of its therapeutic strategies a demanding task. It was a common phenomenon that energy deprivation in neurological disorders, including Alzheimer’s disease, progress rapidly. The ability of ketone bodies to stabilize the mitochondrial energy metabolism makes it a suitable intervening agent. In this review, we will discuss various research progress made with regards to ketone bodies/ketogenic diet for the management of Alzheimer’s disease and elaborate in detail about the mechanisms that are influenced during their therapeutic action.

Keywords: Ketogenic diet, neurodegenerative disorders, Alzheimer’s disease, metabolic diseases, β- hydroxybutyrate (BHB), endothelial dysfunction.

[1]
Rojas-Morales P, Pedraza-Chaverri J, Tapia E. Ketone bodies, stress response, and redox homeostasis. Redox Biol 2020; 29: 101395.
[http://dx.doi.org/10.1016/j.redox.2019.101395] [PMID: 31926621]
[2]
Cantrell CB, Mohiuddin SS. Biochemistry, ketone metabolismstatpearls. StatPearls Publishing 2020.
[3]
Ludwig DS. The ketogenic diet: evidence for optimism but high-quality research needed. J Nutr 2020; 150(6): 1354-9.
[http://dx.doi.org/10.1093/jn/nxz308] [PMID: 31825066]
[4]
Evans M, Cogan KE, Egan B. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation. J Physiol 2017; 595(9): 2857-71.
[http://dx.doi.org/10.1113/JP273185] [PMID: 27861911]
[5]
Newman JC, Verdin E. Ketone bodies as signaling metabolites. Trends Endocrinol Metab 2014; 25(1): 42-52.
[http://dx.doi.org/10.1016/j.tem.2013.09.002] [PMID: 24140022]
[6]
Balasse EO, Féry F. Ketone body production and disposal: effects of fasting, diabetes, and exercise. Diabetes Metab Rev 1989; 5(3): 247-70.
[http://dx.doi.org/10.1002/dmr.5610050304] [PMID: 2656155]
[7]
Pinckaers PJ, Churchward-Venne TA, Bailey D, van Loon LJ. Ketone bodies and exercise performance: the next magic bullet or merely hype? Sports Med 2017; 47(3): 383-91.
[http://dx.doi.org/10.1007/s40279-016-0577-y] [PMID: 27430501]
[8]
Robinson AM, Williamson DH. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev 1980; 60(1): 143-87.
[http://dx.doi.org/10.1152/physrev.1980.60.1.143] [PMID: 6986618]
[9]
Veech RL, Bradshaw PC, Clarke K, Curtis W, Pawlosky R, King MT. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life 2017; 69(5): 305-14.
[http://dx.doi.org/10.1002/iub.1627] [PMID: 28371201]
[10]
Shilpa J, Mohan V. Ketogenic diets: Boon or bane? Indian J Med Res 2018; 148(3): 251-3.
[http://dx.doi.org/10.4103/ijmr.IJMR_1666_18] [PMID: 30425213]
[11]
Yang H, Shan W, Zhu F, Wu J, Wang Q. Ketone bodies in neurological diseases: focus on neuroprotection and underlying mechanisms. Front Neurol 2019; 10: 585.
[http://dx.doi.org/10.3389/fneur.2019.00585] [PMID: 31244753]
[12]
Kong G, Huang Z, Ji W, et al. The ketone metabolite β-hydroxybutyrate attenuates oxidative stress in spinal cord injury by suppression of class I histone deacetylases. J Neurotrauma 2017; 34(18): 2645-55.
[http://dx.doi.org/10.1089/neu.2017.5192] [PMID: 28683591]
[13]
Batch JT, Lamsal SP, Adkins M, Sultan S, Ramirez MN. Advantages and disadvantages of the ketogenic diet: A review article. Cureus 2020; 12(8): e9639.
[PMID: 32923239]
[14]
Kaspar MB, Austin K, Huecker M, Sarav M. Ketogenic diet: from the historical records to use in elite athletes. Curr Nutr Rep 2019; 8(4): 340-6.
[http://dx.doi.org/10.1007/s13668-019-00294-0] [PMID: 31713719]
[15]
Zhang Y, Xu J, Zhang K, Yang W, Li B. The anticonvulsant effects of ketogenic diet on epileptic seizures and potential mechanisms. Curr Neuropharmacol 2018; 16(1): 66-70.
[PMID: 28521671]
[16]
Uiamek-Kozioi M, Czuczwar SJ, Januszewski S, Pluta R. Ketogenic diet and epilepsy. Nutrients 2019; 11(10): 2510.
[http://dx.doi.org/10.3390/nu11102510] [PMID: 31635247]
[17]
Brunner B, Rauch E, Ari C, D’Agostino DP, Kovács Z. Enhancement of ketone supplements-evoked effect on absence epileptic activity by co-administration of uridine in Wistar albino Glaxo Rijswijk rats. Nutrients 2021; 13(1): 234.
[http://dx.doi.org/10.3390/nu13010234] [PMID: 33467454]
[18]
Napolitano A, Longo D, Lucignani M, et al. The ketogenic diet Increases In Vivo glutathione levels in patients with epilepsy. Metabolites 2020; 10(12): 504.
[http://dx.doi.org/10.3390/metabo10120504] [PMID: 33321705]
[19]
Akram M. A focused review of the role of ketone bodies in health and disease. J Med Food 2013; 16(11): 965-7.
[http://dx.doi.org/10.1089/jmf.2012.2592] [PMID: 24138078]
[20]
Gupta L, Khandelwal D, Kalra S, Gupta P, Dutta D, Aggarwal S. Ketogenic diet in endocrine disorders: Current perspectives. J Postgrad Med 2017; 63(4): 242-51.
[http://dx.doi.org/10.4103/jpgm.JPGM_16_17] [PMID: 29022562]
[21]
Kumar S, Behl T, Sachdeva M, et al. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life Sci 2021; 264: 118661.
[http://dx.doi.org/10.1016/j.lfs.2020.118661] [PMID: 33121986]
[22]
McClean AM, Montorio L, McLaughlin D, McGovern S, Flanagan N. Can a ketogenic diet be safely used to improve glycaemic control in a child with type 1 diabetes? Arch Dis Child 2019; 104(5): 501-4.
[http://dx.doi.org/10.1136/archdischild-2018-314973] [PMID: 30470684]
[23]
Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 2012; 3: 59.
[http://dx.doi.org/10.3389/fphar.2012.00059] [PMID: 22509165]
[24]
Olaso-González G, Serna E, Herrero JR. P-120-MiRNome of epileptic children suggests the involvement of antioxidant pathways in the neuroprotective role of ketogenic diet. Free Radic Biol Med 2018; 120: S80-1.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.267]
[25]
Pinto A, Bonucci A, Maggi E, Corsi M, Businaro R. Anti-oxidant and anti-inflammatory activity of ketogenic diet: new perspectives for neuroprotection in Alzheimer’s disease. Antioxidants 2018; 7(5): 63.
[http://dx.doi.org/10.3390/antiox7050063] [PMID: 29710809]
[26]
Harichandana P, Suneetha WJ, Anila Kumari B, Tejashree M. Therapeutic Roles of Ketogenic Diet Chem Sci Rev lett 2020; 9(34s): 1-7.
[27]
Wheless JW. History of the ketogenic diet. Epilepsia 2008; 49(Suppl. 8): 3-5.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01821.x] [PMID: 19049574]
[28]
Rusek M, Pluta R. Uiamek-Kozioi M, Czuczwar SJ. Ketogenic diet in Alzheimer’s disease. Int J Mol Sci 2019; 20(16): 3892.
[http://dx.doi.org/10.3390/ijms20163892] [PMID: 31405021]
[29]
Feng S, Wang H, Liu J, Aa J, Zhou F, Wang G. Multi-dimensional roles of ketone bodies in cancer biology: Opportunities for cancer therapy. Pharmacol Res 2019; 150: 104500.
[http://dx.doi.org/10.1016/j.phrs.2019.104500] [PMID: 31629092]
[30]
Dabek A, Wojtala M, Pirola L, Balcerczyk A. Modulation of cellular biochemistry, epigenetics and metabolomics by ketone bodies. Implications of the ketogenic diet in the physiology of the organism and pathological states. Nutrients 2020; 12(3): 788.
[http://dx.doi.org/10.3390/nu12030788] [PMID: 32192146]
[31]
Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab 2017; 25(2): 262-84.
[http://dx.doi.org/10.1016/j.cmet.2016.12.022] [PMID: 28178565]
[32]
Jensen NJ, Wodschow HZ, Nilsson M, Rungby J. Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. Int J Mol Sci 2020; 21(22): 8767.
[http://dx.doi.org/10.3390/ijms21228767] [PMID: 33233502]
[33]
Ness GC, Zhao Z, Wiggins L. Insulin and glucagon modulate hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity by affecting immunoreactive protein levels. J Biol Chem 1994; 269(46): 29168-72.
[http://dx.doi.org/10.1016/S0021-9258(19)62026-0] [PMID: 7961882]
[34]
Craig M, Malik A. Biochemistry, cholesterolStatPearls. Treasure Island, FL: StatPearls Publishing 2020.
[35]
Laffel L. Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 1999; 15(6): 412-26.
[http://dx.doi.org/10.1002/(SICI)1520-7560(199911/12)15:6<412:AID-DMRR72>3.0.CO;2-8] [PMID: 10634967]
[36]
Wood TR, Stubbs BJ, Juul SE. Exogenous ketone bodies as promising neuroprotective agents for developmental brain injury. Dev Neurosci 2018; 40(5-6): 451-62.
[http://dx.doi.org/10.1159/000499563] [PMID: 31085911]
[37]
Stubbs BJ, Cox PJ, Evans RD, et al. On the metabolism of exogenous ketones in humans. Front Physiol 2017; 8: 848.
[http://dx.doi.org/10.3389/fphys.2017.00848] [PMID: 29163194]
[38]
Thomsen HH, Rittig N, Johannsen M, et al. Effects of 3-hydroxybutyrate and free fatty acids on muscle protein kinetics and signaling during LPS-induced inflammation in humans: Anticatabolic impact of ketone bodies. Am J Clin Nutr 2018; 108(4): 857-67.
[http://dx.doi.org/10.1093/ajcn/nqy170] [PMID: 30239561]
[39]
Page KA, Williamson A, Yu N, et al. Medium-chain fatty acids improve cognitive function in intensively treated type 1 diabetic patients and support in vitro synaptic transmission during acute hypoglycemia. Diabetes 2009; 58(5): 1237-44.
[http://dx.doi.org/10.2337/db08-1557] [PMID: 19223595]
[40]
Leckey JJ, Ross ML, Quod M, Hawley JA, Burke LM. Ketone diester ingestion impairs time-trial performance in professional cyclists. Front Physiol 2017; 8: 806.
[http://dx.doi.org/10.3389/fphys.2017.00806] [PMID: 29109686]
[41]
Wiodarek D. Role of ketogenic diets in neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). Nutrients 2019; 11(1): 169.
[http://dx.doi.org/10.3390/nu11010169] [PMID: 30650523]
[42]
Fischer T, Och U, Klawon I, et al. Effect of a sodium and calcium DL-β-hydroxybutyrate salt in healthy adults. J Nutr Metab 2018; 2018: 9812806.
[http://dx.doi.org/10.1155/2018/9812806] [PMID: 29850235]
[43]
Grandl G, Straub L, Rudigier C, et al. Short-term feeding of a ketogenic diet induces more severe hepatic insulin resistance than an obesogenic high-fat diet. J Physiol 2018; 596(19): 4597-609.
[http://dx.doi.org/10.1113/JP275173] [PMID: 30089335]
[44]
Masood W, Annamaraju P, Uppaluri KR. Ketogenic Diet. In: StatPearls. StatPearls Publishing 2020.
[45]
Uiamek-Kozioi M, Pluta R, Bogucka-Kocka A, Czuczwar SJ. To treat or not to treat drug-refractory epilepsy by the ketogenic diet? That is the question. Ann Agric Environ Med 2016; 23(4): 533-6.
[http://dx.doi.org/10.5604/12321966.1226841] [PMID: 28030918]
[46]
Uribarri J, Cai W, Peppa M, et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci 2007; 62(4): 427-33.
[http://dx.doi.org/10.1093/gerona/62.4.427] [PMID: 17452738]
[47]
Paoli A, Bosco G, Camporesi EM, Mangar D. Ketosis, ketogenic diet and food intake control: A complex relationship. Front Psychol 2015; 6: 27.
[http://dx.doi.org/10.3389/fpsyg.2015.00027] [PMID: 25698989]
[48]
Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab 2014; 11(3): 177-80.
[PMID: 25568649]
[49]
Kim JM. Ketogenic diet: Old treatment, new beginning. Clin Neurophysiol Pract 2017; 2: 161-2.
[http://dx.doi.org/10.1016/j.cnp.2017.07.001] [PMID: 30214990]
[50]
Krebs HA. The regulation of the release of ketone bodies by the liver. Adv Enzyme Regul 1966; 4: 339-54.
[http://dx.doi.org/10.1016/0065-2571(66)90027-6] [PMID: 4865971]
[51]
Paoli A, Bianco A, Damiani E, Bosco G. Ketogenic diet in neuromuscular and neurodegenerative diseases. BioMed Res Int 2014; 2014: 474296.
[http://dx.doi.org/10.1155/2014/474296] [PMID: 25101284]
[52]
Paoli A. Ketogenic diet for obesity: friend or foe? Int J Environ Res Public Health 2014; 11(2): 2092-107.
[http://dx.doi.org/10.3390/ijerph110202092] [PMID: 24557522]
[53]
den Ouden H, Pellis L, Rutten GEHM, et al. Metabolomic biomarkers for personalised glucose lowering drugs treatment in type 2 diabetes. Metabolomics 2016; 12(2): 27.
[http://dx.doi.org/10.1007/s11306-015-0930-4] [PMID: 26770180]
[54]
Guh JY, Chuang TD, Chen HC, et al. β-hydroxybutyrateinduced growth inhibition and collagen production in HK-2 cells are dependent on TGF-β and Smad3. Kidney Int 2003; 64(6): 2041-51.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00330.x] [PMID: 14633126]
[55]
Rajab BF, Alamrim AE, Alamri AE. Prognosis of chronic complications of diabetes mellitus (DM) after multiple events of diabetic ketoacidosis (DKA). IJMDC 2019; 3(5): 474-9.
[http://dx.doi.org/10.24911/IJMDC.51-1546551993]
[56]
Gallo de Moraes A, Surani S. Effects of diabetic ketoacidosis in the respiratory system. World J Diabetes 2019; 10(1): 16-22.
[http://dx.doi.org/10.4239/wjd.v10.i1.16] [PMID: 30697367]
[57]
Watanabe M, Tozzi R, Risi R, et al. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: A comprehensive review of the literature. Obes Rev 2020; 21(8): e13024.
[http://dx.doi.org/10.1111/obr.13024] [PMID: 32207237]
[58]
Tomita I, Kume S, Sugahara S, et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab 2020; 32(3): 404-419.e6.
[http://dx.doi.org/10.1016/j.cmet.2020.06.020] [PMID: 32726607]
[59]
Kale A, Sankrityayan H, Anders HJ, Bhanudas Gaikwad A. Klotho: A possible mechanism of action of SGLT2 inhibitors preventing episodes of acute kidney injury and cardiorenal complications of diabetes. Drug Discov Today 2021; 20: S1359-6446.
[PMID: 33862192]
[60]
Thomas MC, Cherney DZI. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 2018; 61(10): 2098-107.
[http://dx.doi.org/10.1007/s00125-018-4669-0] [PMID: 30132034]
[61]
Yu SMW, Leventhal JS, Cravedi P. Totally tubular, dude: rethinking DKD pathogenesis in the wake of SGLT2i data. J Nephrol 2021; 34(3): 629-31.
[http://dx.doi.org/10.1007/s40620-020-00868-0] [PMID: 32965657]
[62]
Santos FL, Esteves SS, da Costa Pereira A, Yancy WS Jr, Nunes JPL. Systematic review and meta-analysis of clinical trials of the effects of low carbohydrate diets on cardiovascular risk factors. Obes Rev 2012; 13(11): 1048-66.
[http://dx.doi.org/10.1111/j.1467-789X.2012.01021.x] [PMID: 22905670]
[63]
Bueno NB, de Melo ISV, de Oliveira SL, da Rocha Ataide T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: A meta-analysis of randomised controlled trials. Br J Nutr 2013; 110(7): 1178-87.
[http://dx.doi.org/10.1017/S0007114513000548] [PMID: 23651522]
[64]
Gardner CD, Trepanowski JF, Del Gobbo LC, et al. Effect of low-fat vs. low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: the DIETFITS randomized clinical trial. JAMA 2018; 319(7): 667-79.
[http://dx.doi.org/10.1001/jama.2018.0245] [PMID: 29466592]
[65]
Ebbeling CB, Feldman HA, Klein GL, Wong JMW. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial. BMJ 2020; 371(371): m4264.
[PMID: 33144344]
[66]
Mansoor N, Vinknes KJ, Veierød MB, Retterstøl K. Effects of low-carbohydrate diets v.low-fat diets on body weight and cardiovascular risk factors: A meta-analysis of randomised controlled trials. Br J Nutr 2016; 115(3): 466-79.
[http://dx.doi.org/10.1017/S0007114515004699] [PMID: 26768850]
[67]
Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2013; 304(8): H1060-76.
[http://dx.doi.org/10.1152/ajpheart.00646.2012] [PMID: 23396451]
[68]
Schulze PC, Wu JMF. Ketone bodies for the starving heart. Nat Metab 2020; 2(11): 1183-5.
[http://dx.doi.org/10.1038/s42255-020-00310-6] [PMID: 33106691]
[69]
Longo R, Peri C, Cricrì D, et al. Ketogenic diet: A new light shining on old but gold biochemistry. Nutrients 2019; 11(10): 2497.
[http://dx.doi.org/10.3390/nu11102497] [PMID: 31627352]
[70]
Thomas JG, Veznedaroglu E. ketogenic diet for malignant gliomas: A review. Curr Nutr Rep 2020; 9(3): 258-63.
[http://dx.doi.org/10.1007/s13668-020-00332-2] [PMID: 32720120]
[71]
Klement RJ. Beneficial effects of ketogenic diets for cancer patients: A realist review with focus on evidence and confirmation. Med Oncol 2017; 34(8): 132.
[http://dx.doi.org/10.1007/s12032-017-0991-5] [PMID: 28653283]
[72]
Artzi M, Liberman G, Vaisman N, et al. Changes in cerebral metabolism during ketogenic diet in patients with primary brain tumors: 1H-MRS study. J Neurooncol 2017; 132(2): 267-75.
[http://dx.doi.org/10.1007/s11060-016-2364-x] [PMID: 28074323]
[73]
Urits I, Mukherjee P, Meidenbauer J, Seyfried TN. Dietary restriction promotes vessel maturation in a mouse astrocytoma. J Oncol 2012; 2012: 264039.
[http://dx.doi.org/10.1155/2012/264039] [PMID: 22253625]
[74]
Lin BQ, Zeng ZY, Yang SS, Zhuang CW. Dietary restriction suppresses tumor growth, reduces angiogenesis, and improves tumor microenvironment in human non-small-cell lung cancer xenografts. Lung Cancer 2013; 79(2): 111-7.
[http://dx.doi.org/10.1016/j.lungcan.2012.11.001] [PMID: 23199512]
[75]
Nakamura K, Tonouchi H, Sasayama A, Ashida K. A ketogenic formula prevents tumor progression and cancer cachexia by attenuating systemic inflammation in colon 26 tumor-bearing mice. Nutrients 2018; 10(2): 206.
[http://dx.doi.org/10.3390/nu10020206] [PMID: 29443873]
[76]
Sivananthan AP. Effects of a ketogenic diet on tumor progression in breast cancer PhD, Dissertation 2013.
[77]
Otto C, Kaemmerer U, Illert B, et al. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 2008; 8(1): 122.
[http://dx.doi.org/10.1186/1471-2407-8-122] [PMID: 18447912]
[78]
Mavropoulos JC, Yancy WS, Hepburn J, Westman EC. The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: A pilot study. Nutr Metab (Lond) 2005; 2(1): 35.
[http://dx.doi.org/10.1186/1743-7075-2-35] [PMID: 16359551]
[79]
Paoli A, Mancin L, Giacona MC, Bianco A, Caprio M. Effects of a ketogenic diet in overweight women with polycystic ovary syndrome. J Transl Med 2020; 18(1): 104.
[http://dx.doi.org/10.1186/s12967-020-02277-0] [PMID: 32103756]
[80]
Abdalla MA, Deshmukh H, Atkin S, Sathyapalan T. A review of therapeutic options for managing the metabolic aspects of polycystic ovary syndrome. Ther Adv Endocrinol Metab 2020; 11: 2042018820938305.
[http://dx.doi.org/10.1177/2042018820938305] [PMID: 32670541]
[81]
Anwar S, Shikalgar N. Prevention of type 2 diabetes mellitus in polycystic ovary syndrome: A review. Diabetes Metab Syndr 2017; 11(Suppl. 2): S913-7.
[http://dx.doi.org/10.1016/j.dsx.2017.07.015] [PMID: 28711517]
[82]
Leow ZZX, Guelfi KJ, Davis EA, Jones TW, Fournier PA. The glycaemic benefits of a very-low-carbohydrate ketogenic diet in adults with Type 1 diabetes mellitus may be opposed by increased hypoglycaemia risk and dyslipidaemia. Diabet Med 2018; 35(9): 1258-63.
[http://dx.doi.org/10.1111/dme.13663] [PMID: 29737587]
[83]
Gower BA, Chandler-Laney PC, Ovalle F, et al. Favourable metabolic effects of a eucaloric lower-carbohydrate diet in women with PCOS. Clin Endocrinol (Oxf) 2013; 79(4): 550-7.
[http://dx.doi.org/10.1111/cen.12175] [PMID: 23444983]
[84]
Kani AH, Alavian SM, Esmaillzadeh A, Adibi P, Azadbakht L. Effects of a novel therapeutic diet on liver enzymes and coagulating factors in patients with non-alcoholic fatty liver disease: A parallel randomized trial. Nutrition 2014; 30(7-8): 814-21.
[http://dx.doi.org/10.1016/j.nut.2013.11.008] [PMID: 24984998]
[85]
Schugar RC, Crawford PA. Low-carbohydrate ketogenic diets, glucose homeostasis, and nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 2012; 15(4): 374-80.
[http://dx.doi.org/10.1097/MCO.0b013e3283547157] [PMID: 22617564]
[86]
Browning JD, Baker JA, Rogers T, Davis J, Satapati S, Burgess SC. Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction. Am J Clin Nutr 2011; 93(5): 1048-52.
[http://dx.doi.org/10.3945/ajcn.110.007674] [PMID: 21367948]
[87]
Aydinlar EI, Dikmen PY, Tiftikci A, et al. IgG-based elimination diet in migraine plus irritable bowel syndrome. Headache 2013; 53(3): 514-25.
[http://dx.doi.org/10.1111/j.1526-4610.2012.02296.x] [PMID: 23216231]
[88]
Yancy WS Jr, Foy M, Chalecki AM, Vernon MC, Westman EC. A low-carbohydrate, ketogenic diet to treat type 2 diabetes. Nutr Metab (Lond) 2005; 2(1): 34.
[http://dx.doi.org/10.1186/1743-7075-2-34] [PMID: 16318637]
[89]
Foster GD, Wyatt HR, Hill JO, et al. Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: A randomized trial. Ann Intern Med 2010; 153(3): 147-57.
[http://dx.doi.org/10.7326/0003-4819-153-3-201008030-00005] [PMID: 20679559]
[90]
Al-Zaid NS, Dashti HM, Mathew TC, Juggi JS. Low carbohydrate ketogenic diet enhances cardiac tolerance to global ischaemia. Acta Cardiol 2007; 62(4): 381-9.
[http://dx.doi.org/10.2143/AC.62.4.2022282] [PMID: 17824299]
[91]
Nordmann AJ, Nordmann A, Briel M, et al. Effects of low-carbohydrate vs low-fat diets on weight loss and cardio-vascular risk factors: A meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166(3): 285-93.
[http://dx.doi.org/10.1001/archinte.166.3.285] [PMID: 16476868]
[92]
Allen BG, Bhatia SK, Buatti JM, et al. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer Res 2013; 19(14): 3905-13.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0287] [PMID: 23743570]
[93]
Hao GW, Chen YS, He DM, Wang HY, Wu GH, Zhang B. Growth of human colon cancer cells in nude mice is delayed by ketogenic diet with or without omega-3 fatty acids and medium-chain triglycerides. Asian Pac J Cancer Prev 2015; 16(5): 2061-8.
[http://dx.doi.org/10.7314/APJCP.2015.16.5.2061] [PMID: 25773851]
[94]
Hao G, Wang H, Deming HE. Effect of ketogenic diet on growth of human colon cancer cells in nude mice. Chin J Clin Oncol 2014; 18: 1154-7.
[95]
Shukla SK, Gebregiworgis T, Purohit V, et al. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab 2014; 2(1): 18.
[http://dx.doi.org/10.1186/2049-3002-2-18] [PMID: 25228990]
[96]
Stern L, Iqbal N, Seshadri P, et al. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann Intern Med 2004; 140(10): 778-85.
[http://dx.doi.org/10.7326/0003-4819-140-10-200405180-00007] [PMID: 15148064]
[97]
Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr. Brain metabolism during fasting. J Clin Invest 1967; 46(10): 1589-95.
[http://dx.doi.org/10.1172/JCI105650] [PMID: 6061736]
[98]
Courchesne-Loyer A, Croteau E, Castellano CA, St-Pierre V, Hennebelle M, Cunnane SC. Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: A dual tracer quantitative positron emission tomography study. J Cereb Blood Flow Metab 2017; 37(7): 2485-93.
[http://dx.doi.org/10.1177/0271678X16669366] [PMID: 27629100]
[99]
Cunnane SC, Courchesne-Loyer A, Vandenberghe C, et al. Can ketones help rescue brain fuel supply in later life? Implications for cognitive health during aging and the treatment of Alzheimer’s disease. Front Mol Neurosci 2016; 9: 53.
[http://dx.doi.org/10.3389/fnmol.2016.00053] [PMID: 27458340]
[100]
Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 2005; 94(1): 1-14.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03168.x] [PMID: 15953344]
[101]
Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids 2004; 70(3): 243-51.
[http://dx.doi.org/10.1016/j.plefa.2003.11.001] [PMID: 14769483]
[102]
Fukao T, Song XQ, Mitchell GA, et al. Enzymes of ketone body utilization in human tissues: protein and messenger RNA levels of succinyl-coenzyme A (CoA):3-ketoacid CoA transferase and mitochondrial and cytosolic acetoacetyl-CoA thiolases. Pediatr Res 1997; 42(4): 498-502.
[http://dx.doi.org/10.1203/00006450-199710000-00013] [PMID: 9380443]
[103]
Takahashi S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology 2020; 40(2): 121-37.
[http://dx.doi.org/10.1111/neup.12639] [PMID: 32037635]
[104]
Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Brain Res Rev 2009; 59(2): 293-315.
[http://dx.doi.org/10.1016/j.brainresrev.2008.09.002] [PMID: 18845187]
[105]
Versele R, Corsi M, Fuso A, et al. Ketone bodies promote amyloid-β1-40 clearance in a human in vitro blood-brain barrier model. Int J Mol Sci 2020; 21(3): 934.
[http://dx.doi.org/10.3390/ijms21030934] [PMID: 32023814]
[106]
Choi BH. Oxidative stress and Alzheimer’s disease. Neurobiol Aging 1995; 16(4): 675-8.
[http://dx.doi.org/10.1016/0197-4580(95)00065-M] [PMID: 8544919]
[107]
Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 1991; 12(10): 383-8.
[http://dx.doi.org/10.1016/0165-6147(91)90609-V] [PMID: 1763432]
[108]
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[109]
Wu Y, Gong Y, Luan Y, et al. BHBA treatment improves cognitive function by targeting pleiotropic mechanisms in transgenic mouse model of Alzheimer’s disease. FASEB J 2020; 34(1): 1412-29.
[http://dx.doi.org/10.1096/fj.201901984R] [PMID: 31914599]
[110]
Hertz L, Chen Y, Waagepetersen HS. Effects of ketone bodies in Alzheimer’s disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function. J Neurochem 2015; 134(1): 7-20.
[http://dx.doi.org/10.1111/jnc.13107] [PMID: 25832906]
[111]
Silva DF, Selfridge JE, Lu J. e L, Cardoso SM, Swerdlow RH. Mitochondrial abnormalities in Alzheimer’s disease: possible targets for therapeutic intervention. Adv Pharmacol 2012; 64: 83-126.
[http://dx.doi.org/10.1016/B978-0-12-394816-8.00003-9] [PMID: 22840745]
[112]
Henderson ST. Ketone bodies as a therapeutic for Alzheimer’s disease. Neurotherapeutics 2008; 5(3): 470-80.
[http://dx.doi.org/10.1016/j.nurt.2008.05.004] [PMID: 18625458]
[113]
Streit WJ, Mrak RE, Griffin WST. Microglia and neuroinflammation: A pathological perspective. J Neuroinflammation 2004; 1(1): 14.
[http://dx.doi.org/10.1186/1742-2094-1-14] [PMID: 15285801]
[114]
Welcome MO. Neuroinflammation in CNS diseases: molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PharmaNutrition 2020; 11: 100176.
[http://dx.doi.org/10.1016/j.phanu.2020.100176]
[115]
Dupuis N, Curatolo N, Benoist JF, Auvin S. Ketogenic diet exhibits anti-inflammatory properties. Epilepsia 2015; 56(7): e95-8.
[http://dx.doi.org/10.1111/epi.13038] [PMID: 26011473]
[116]
Rahman M, Muhammad S, Khan MA, et al. The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat Commun 2014; 5(1): 3944.
[http://dx.doi.org/10.1038/ncomms4944] [PMID: 24845831]
[117]
McDonald TJW, Cervenka MC. Ketogenic diets for adult neurological disorders. Neurotherapeutics 2018; 15(4): 1018-31.
[http://dx.doi.org/10.1007/s13311-018-0666-8] [PMID: 30225789]
[118]
Andrews ZB, Diano S, Horvath TL. Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat Rev Neurosci 2005; 6(11): 829-40.
[http://dx.doi.org/10.1038/nrn1767] [PMID: 16224498]
[119]
Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta 2010; 1802(1): 2-10.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.006] [PMID: 19853658]
[120]
Bough KJ, Wetherington J, Hassel B, et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 2006; 60(2): 223-35.
[http://dx.doi.org/10.1002/ana.20899] [PMID: 16807920]
[121]
Lindberg D, Shan D, Ayers-Ringler J, et al. Purinergic signaling and energy homeostasis in psychiatric disorders. Curr Mol Med 2015; 15(3): 275-95.
[http://dx.doi.org/10.2174/1566524015666150330163724] [PMID: 25950756]
[122]
Chen SY, Gao Y, Sun JY, et al. Traditional chinese medicine: role in reducing β-amyloid, apoptosis, autophagy, neuroinflammation, oxidative stress, and mitochondrial dysfunction of alzheimer’s disease. Front Pharmacol 2020; 11: 497.
[http://dx.doi.org/10.3389/fphar.2020.00497] [PMID: 32390843]
[123]
Haces ML, Hernández-Fonseca K, Medina-Campos ON, Montiel T, Pedraza-Chaverri J, Massieu L. Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp Neurol 2008; 211(1): 85-96.
[http://dx.doi.org/10.1016/j.expneurol.2007.12.029] [PMID: 18339375]
[124]
Grabacka M, Pierzchalska M, Dean M, Reiss K. Regulation of ketone body metabolism and the role of PPARα. Int J Mol Sci 2016; 17(12): 2093.
[http://dx.doi.org/10.3390/ijms17122093] [PMID: 27983603]
[125]
Bahn G, Jo DG. Therapeutic approaches to Alzheimer’s disease through modulation of NRF2. Neuromolecular Med 2019; 21(1): 1-11.
[http://dx.doi.org/10.1007/s12017-018-08523-5] [PMID: 30617737]
[126]
McNally MA, Hartman AL. Ketone bodies in epilepsy. J Neurochem 2012; 121(1): 28-35.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07670.x] [PMID: 22268909]
[127]
Takahashi RH, Nagao T, Gouras GK. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol Int 2017; 67(4): 185-93.
[http://dx.doi.org/10.1111/pin.12520] [PMID: 28261941]
[128]
Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med 2010; 12(1): 1-12.
[http://dx.doi.org/10.1007/s12017-009-8104-z] [PMID: 20232515]
[129]
Müller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 2017; 18(5): 281-98.
[http://dx.doi.org/10.1038/nrn.2017.29] [PMID: 28360418]
[130]
Yan R. Physiological functions of the β-site amyloid precursor protein cleaving enzyme 1 and 2. Front Mol Neurosci 2017; 10: 97.
[http://dx.doi.org/10.3389/fnmol.2017.00097] [PMID: 28469554]
[131]
Mondragón-Rodríguez S, Perry G, Zhu X, Moreira PI, Acevedo-Aquino MC, Williams S. Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: implications for Alzheimer’s disease. Oxid Med Cell Longev 2013; 2013: 940603.
[http://dx.doi.org/10.1155/2013/940603] [PMID: 23936615]
[132]
Cheng Y, Bai F. The association of tau with mitochondrial dysfunction in alzheimer’s disease. Front Neurosci 2018; 12: 163.
[http://dx.doi.org/10.3389/fnins.2018.00163] [PMID: 29623026]
[133]
Van der Auwera I, Wera S, Van Leuven F, Henderson ST. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr Metab (Lond) 2005; 2(1): 28.
[http://dx.doi.org/10.1186/1743-7075-2-28] [PMID: 16229744]
[134]
Yao J, Brinton RD. Targeting mitochondrial bioenergetics for Alzheimer’s prevention and treatment. Curr Pharm Des 2011; 17(31): 3474-9.
[http://dx.doi.org/10.2174/138161211798072517] [PMID: 21902662]
[135]
Kodis EJ, Choi S, Swanson E, Ferreira G, Bloom GS. N-methyl-D-aspartate receptor-mediated calcium influx connects amyloid-β oligomers to ectopic neuronal cell cycle reentry in Alzheimer’s disease. Alzheimers Dement 2018; 14(10): 1302-12.
[http://dx.doi.org/10.1016/j.jalz.2018.05.017] [PMID: 30293574]
[136]
Wenk GL. Neuropathologic changes in Alzheimer’s disease: potential targets for treatment. J Clin Psychiatry 2006; 67(Suppl. 3): 3-7.
[PMID: 16649845]
[137]
Parameshwaran K, Dhanasekaran M, Suppiramaniam V. Amyloid beta peptides and glutamatergic synaptic dysregulation. Exp Neurol 2008; 210(1): 7-13.
[http://dx.doi.org/10.1016/j.expneurol.2007.10.008] [PMID: 18053990]
[138]
Pflanz NC, Daszkowski AW, James KA, Mihic SJ. Ketone body modulation of ligand-gated ion channels. Neuropharmacology 2019; 148: 21-30.
[http://dx.doi.org/10.1016/j.neuropharm.2018.12.013] [PMID: 30562540]
[139]
Liu J, Chang L, Song Y, Li H, Wu Y. The role of NMDA receptors in Alzheimer’s disease. Front Neurosci 2019; 13: 43.
[http://dx.doi.org/10.3389/fnins.2019.00043] [PMID: 30800052]
[140]
Lauritzen KH, Hasan-Olive MM, Regnell CE, et al. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiol Aging 2016; 48: 34-47.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.005] [PMID: 27639119]
[141]
Thaler S, Choragiewicz TJ, Rejdak R, et al. Neuroprotection by acetoacetate and β-hydroxybutyrate against NMDA-induced RGC damage in rat--possible involvement of kynurenic acid. Graefes Arch Clin Exp Ophthalmol 2010; 248(12): 1729-35.
[http://dx.doi.org/10.1007/s00417-010-1425-7] [PMID: 20532550]
[142]
Muddapu VR, Dharshini SAP, Chakravarthy VS, Gromiha MM. Neurodegenerative diseases - Is metabolic deficiency the root cause? Front Neurosci 2020; 14: 213.
[http://dx.doi.org/10.3389/fnins.2020.00213] [PMID: 32296300]
[143]
Small GW, Ercoli LM, Silverman DH, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 2000; 97(11): 6037-42.
[http://dx.doi.org/10.1073/pnas.090106797] [PMID: 10811879]
[144]
Reiman EM, Chen K, Alexander GE, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci USA 2004; 101(1): 284-9.
[http://dx.doi.org/10.1073/pnas.2635903100] [PMID: 14688411]
[145]
Castellano CA, Nugent S, Paquet N, et al. Lower brain 18F-fluorodeoxyglucose uptake but normal 11C-acetoacetate metabolism in mild Alzheimer’s disease dementia. J Alzheimers Dis 2015; 43(4): 1343-53.
[http://dx.doi.org/10.3233/JAD-141074] [PMID: 25147107]
[146]
Croteau E, Castellano CA, Fortier M, et al. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp Gerontol 2018; 107: 18-26.
[http://dx.doi.org/10.1016/j.exger.2017.07.004] [PMID: 28709938]
[147]
Fortier M, Castellano CA, Croteau E, et al. A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment. Alzheimers Dement 2019; 15(5): 625-34.
[http://dx.doi.org/10.1016/j.jalz.2018.12.017] [PMID: 31027873]
[148]
Rajapakse AG, Yepuri G, Carvas JM, et al. Hyperactive S6K1 mediates oxidative stress and endothelial dysfunction in aging: inhibition by resveratrol. PLoS One 2011; 6(4): e19237.
[http://dx.doi.org/10.1371/journal.pone.0019237] [PMID: 21544240]
[149]
Alessi DR, Andjelkovic M, Caudwell B, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 1996; 15(23): 6541-51.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb01045.x] [PMID: 8978681]
[150]
Hu LT, Zhu BL, Lai YJ, et al. HMGCS2 promotes autophagic degradation of the amyloid-β precursor protein through ketone body-mediated mechanisms. Biochem Biophys Res Commun 2017; 486(2): 492-8.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.069] [PMID: 28320515]
[151]
McDaniel SS, Rensing NR, Thio LL, Yamada KA, Wong M. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia 2011; 52(3): e7-e11.
[http://dx.doi.org/10.1111/j.1528-1167.2011.02981.x] [PMID: 21371020]
[152]
Zhang H, Wang W, Du Q. Andrographolide attenuates bupivacaine-induced cytotoxicity in SH-SY5Y cells through preserving Akt/mTOR activity. Drug Des Devel Ther 2019; 13: 1659-66.
[http://dx.doi.org/10.2147/DDDT.S201122] [PMID: 31190744]
[153]
Sharifi-Rad M, Lankatillake C, Dias DA, et al. Impact of natural compounds on neurodegenerative disorders: From preclinical to pharmacotherapeutics. J Clin Med 2020; 9(4): 1061.
[http://dx.doi.org/10.3390/jcm9041061] [PMID: 32276438]
[154]
Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010; 468(7327): 1100-4.
[http://dx.doi.org/10.1038/nature09584] [PMID: 21179166]
[155]
Srikanth V, Maczurek A, Phan T, et al. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol Aging 2011; 32(5): 763-77.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.016] [PMID: 19464758]
[156]
Si J, Wang S, Liu N, et al. Anticonvulsant effect of exogenous β-hydroxybutyrate on kainic acid-induced epilepsy. Exp Ther Med 2017; 14(1): 765-70.
[http://dx.doi.org/10.3892/etm.2017.4552] [PMID: 28672997]
[157]
Naithani D, Karn SK. The role of ketone bodies in improving neurological function and efficiency Health Scope 9(2): e86578
[158]
White H, Venkatesh K, Venkatesh B. Systematic review of the use of ketones in the management of acute and chronic neurological disorders. J Neurol Neurosci 2017; 8(2)
[http://dx.doi.org/10.21767/2171-6625.1000188]
[159]
Balietti M, Giorgetti B, Di Stefano G, et al. A ketogenic diet increases succinic dehydrogenase (SDH) activity and recovers age-related decrease in numeric density of SDH-positive mitochondria in cerebellar Purkinje cells of late-adult rats. Micron 2010; 41(2): 143-8.
[http://dx.doi.org/10.1016/j.micron.2009.08.010] [PMID: 19879153]
[160]
Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL. D-β-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA 2000; 97(10): 5440-4.
[http://dx.doi.org/10.1073/pnas.97.10.5440] [PMID: 10805800]
[161]
Kim DY, Vallejo J, Rho JM. Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. J Neurochem 2010; 114(1): 130-41.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06728.x] [PMID: 20374433]
[162]
Seyfried TN, Flores RE, Poff AM, D’Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis 2014; 35(3): 515-27.
[http://dx.doi.org/10.1093/carcin/bgt480] [PMID: 24343361]
[163]
Maurer GD, Brucker DP, Bähr O, et al. Differential utilization of ketone bodies by neurons and glioma cell lines: A rationale for ketogenic diet as experimental glioma therapy. BMC Cancer 2011; 11(1): 315.
[http://dx.doi.org/10.1186/1471-2407-11-315] [PMID: 21791085]
[164]
Zuccoli G, Marcello N, Pisanello A, et al. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet. Case Report Nutr Metab (Lond) 2010; 7(1): 33.
[http://dx.doi.org/10.1186/1743-7075-7-33] [PMID: 20412570]
[165]
Veyrat-Durebex C, Reynier P, Procaccio V, et al. How can a ketogenic diet improve motor function? Front Mol Neurosci 2018; 11: 15.
[http://dx.doi.org/10.3389/fnmol.2018.00015] [PMID: 29434537]
[166]
Appelberg KS, Hovda DA, Prins ML. The effects of a ketogenic diet on behavioral outcome after controlled cortical impact injury in the juvenile and adult rat. J Neurotrauma 2009; 26(4): 497-506.
[http://dx.doi.org/10.1089/neu.2008.0664] [PMID: 19231995]
[167]
Barañano KW, Hartman AL. The ketogenic diet: uses in epilepsy and other neurologic illnesses. urr Treat Options Neurol 2008; 110(6): 410.
[168]
Prins M, Greco T, Alexander D, Giza CC. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech 2013; 6(6): 1307-15.
[http://dx.doi.org/10.1242/dmm.011585] [PMID: 24046353]
[169]
Prins ML, Giza CC. Induction of monocarboxylate transporter 2 expression and ketone transport following traumatic brain injury in juvenile and adult rats. Dev Neurosci 2006; 28(4-5): 447-56.
[http://dx.doi.org/10.1159/000094170] [PMID: 16943667]
[170]
Gross EC, Klement RJ, Schoenen J, D’Agostino DP, Fischer D. Potential protective mechanisms of ketone bodies in migraine prevention. Nutrients 2019; 11(4): 811.
[http://dx.doi.org/10.3390/nu11040811] [PMID: 30974836]
[171]
de Roos NM, van Hemert S, Rovers JMP, Smits MG, Witteman BJM. The effects of a multispecies probiotic on migraine and markers of intestinal permeability-results of a randomized placebo-controlled study. Eur J Clin Nutr 2017; 71(12): 1455-62.
[http://dx.doi.org/10.1038/ejcn.2017.57] [PMID: 28537581]
[172]
Masino SA, Geiger JD. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets? Trends Neurosci 2008; 31(6): 273-8.
[http://dx.doi.org/10.1016/j.tins.2008.02.009] [PMID: 18471903]
[173]
Chang HT, Olson LK, Schwartz KA. Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet therapy. Nutr Metab (Lond) 2013; 10(1): 47.
[http://dx.doi.org/10.1186/1743-7075-10-47] [PMID: 23829383]
[174]
Woolf EC, Curley KL, Liu Q, et al. The ketogenic diet alters the hypoxic response and affects expression of proteins associated with angiogenesis, invasive potential and vascular permeability in a mouse glioma model. PLoS One 2015; 10(6): e0130357.
[http://dx.doi.org/10.1371/journal.pone.0130357] [PMID: 26083629]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy