Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Thieno[3,2-c] Quinoline Heterocyclic Synthesis and Reactivity Part (VI)

Author(s): Moustafa A. Gouda*, Ameen A. Abu-Hashem* and Ahmed A.M. Abdelgawad

Volume 19, Issue 5, 2022

Published on: 13 January, 2022

Page: [629 - 653] Pages: 25

DOI: 10.2174/1570193X18666211004102537

Price: $65

Abstract

The biological and medicinal properties of thieno[3, 2-c] quinoline have prompted enormous research aimed at developing synthetic routes for these systems. This review focuses on the chemical properties associated with this system. The most reported reactions are Bischler- Napieralski, Suzuki−Miyaura−Schlüter, Pictet-Spengler, Stille coupling and Friedlander and Beckmann rearrangement reaction.

Keywords: Arylamine, bischler-napieralski cyclization, suzuki cross-coupling reaction, beckmann rearrangement, stille coupling reaction, fluorescent rhodamine dyes.

Graphical Abstract

[1]
Normand-Bayle, M.; Bénard, C.; Zouhiri, F.; Mouscadet, J.F.; Leh, H.; Thomas, C.M.; Mbemba, G.; Desmaële, D.; d’Angelo, J. New HIV-1 replication inhibitors of the styryquinoline class bearing aroyl/acyl groups at the C-7 position: synthesis and biological activity. Bioorg. Med. Chem. Lett., 2005, 15(18), 4019-4022.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.036] [PMID: 16002283]
[2]
Goda, F.E.; Abdel-Aziz, A.A.; Ghoneim, H.A. Synthesis and biological evaluation of novel 6-nitro-5-substituted amino-quinolines as local anesthetic and anti-arrhythmic agents: molecular modeling study. Bioorg. Med. Chem., 2005, 13(9), 3175-3183.
[http://dx.doi.org/10.1016/j.bmc.2005.02.050] [PMID: 15809153]
[3]
Hazeldine, S.T.; Polin, L.; Kushner, J.; White, K.; Corbett, T.H.; Biehl, J.; Horwitz, J.P. Part 3: Synthesis and biological evaluation of some analogs of the antitumor agents, 2-4-[(7-chloro-2- -quinoxalinyl)oxy]phenoxypropionic acid, and 2-4-[7-bromo-2-quinolinyl)-oxy]phenoxypropionic acid. Bioorg. Med. Chem., 2005, 13, 1069-1081.
[http://dx.doi.org/10.1016/j.bmc.2004.11.034] [PMID: 15670915]
[4]
Dardari, Z.; Lemrani, M.; Bahloul, A.; Sebban, A.; Hassar, M.; Kitane, S.; Berrada, M.; Boudouma, M. Antileishmanial activity of a new 8-hydroxyquinoline derivative designed 7-[5-(3′-phenylisoxazolino)methyl]-8-hydroxyquinoline: preliminary study. Farmaco, 2004, 59, 195-199.
[http://dx.doi.org/10.1016/j.farmac.2003.11.001] [PMID: 14987982]
[5]
Abdel-Moty, S.G.; Abdel-Rahman, M.H.; Elsherief, H.A.; Kafafy, A.H.N. Synthesis of some quinoline thiosemicarbazone derivatives of potential antimicrobial activity. Bull. Pharm. Sci., 2005, 28, 79-93.
[http://dx.doi.org/10.21608/bfsa.2005.65235]
[6]
Vlahov, R.; Vlahov, J.; Nickel, P.; Snatzke, G. Synthesis of some new quinoline derivatives - potential antimalarial drugs. Pure Appl. Chem., 1990, 62, 1303-1306.
[http://dx.doi.org/10.1351/pac199062071303]
[7]
Jarak, I.; Kralj, M.; Suman, L.; Pavlović, G.; Dogan, J.; Piantanida, I.; Zinić, M.; Pavelić, K.; Karminski-Zamola, G. Novel cyano- and N-isopropylamidino-substituted derivatives of benzo[b]thiophene-2-carboxanilides and benzo[b]thieno[2,3-c]quinolones: synthesis, photochemical synthesis, crystal structure determination, and antitumor evaluation. 2. J. Med. Chem., 2005, 48(7), 2346-2360.
[http://dx.doi.org/10.1021/jm049541f] [PMID: 15801828]
[8]
Mphahlele, M.J.; Maluleka, M.M.; Makhafola, T.J.; Mabeta, P. Novel polycarbo-substituted alkyl (thieno[3,2-c]quinoline)-2-carboxylates: synthesis and cytotoxicity studies. Molecules, 2014, 19(11), 18527-18542.
[http://dx.doi.org/10.3390/molecules191118527] [PMID: 25401397]
[9]
Castrillo, A.; Pennington, D.J.; Otto, F.; Parker, P.J.; Owen, M.J.; Boscá, L. Protein kinase Cepsilon is required for macrophage activation and defense against bacterial infection. J. Exp. Med., 2001, 194(9), 1231-1242.
[http://dx.doi.org/10.1084/jem.194.9.1231] [PMID: 11696589]
[10]
Cesare, P.; Dekker, L.V.; Sardini, A.; Parker, P.J.; McNaughton, P.A. Specific involvement of PKC-ε in sensitization of the neuronal response to painful heat. Neuron, 1999, 23(3), 617-624.
[http://dx.doi.org/10.1016/S0896-6273(00)80813-2] [PMID: 10433272]
[11]
Elbastawesy, M.A.I.; Ramadan, M.; El-Shaier, Y.A.M.M.; Aly, A.A.; Abuo-Rahma, G.E.A. Arylidenes of Quinolin-2-one scaffold as Erlotinib analogues with activities against leukemia through inhibition of EGFR TK/STAT-3 pathways. Bioorg. Chem., 2020, 96103628
[http://dx.doi.org/10.1016/j.bioorg.2020.103628] [PMID: 32062064]
[12]
Prakash, G.A.; Rajendran, S.P. A convenient synthesis of 8,9,10,11-tetrahydrodibenzo [b, h][1,6]naphthyridin-6(5H)ones. Heterocycl. Commun., 2001, 7(4), 353-358.
[http://dx.doi.org/10.1515/HC.2001.7.4.353]
[13]
Chilin, A.; Marzaro, G.; Marzano, C.; Dalla Via, L.; Ferlin, M.G.; Pastorini, G.; Guiotto, A. Synthesis and antitumor activity of novel amsacrine analogs: the critical role of the acridine moiety in determining their biological activity. Bioorg. Med. Chem., 2009, 17(2), 523-529.
[http://dx.doi.org/10.1016/j.bmc.2008.11.072] [PMID: 19101158]
[14]
Salvati, E.; Botta, L.; Amato, J.; Di Leva, F.S.; Zizza, P.; Gioiello, A.; Pagano, B.; Graziani, G.; Tarsounas, M.; Randazzo, A.; Novellino, E.; Biroccio, A.; Cosconati, S. Lead discovery of dual G-quadruplex stabilizers and poly(ADP-ribose) polymerases (PARPs) inhibitors: A new avenue in anticancer treatment. J. Med. Chem., 2017, 60(9), 3626-3635.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01563] [PMID: 28445046]
[15]
Ohashi, T.; Oguro, Y.; Tanaka, T.; Shiokawa, Z.; Shibata, S.; Sato, Y.; Yamakawa, H.; Hattori, H.; Yamamoto, Y.; Kondo, S.; Miyamoto, M.; Tojo, H.; Baba, A.; Sasaki, S. Discovery of pyrrolo[3,2-c]quinoline-4-one derivatives as novel hedgehog signaling inhibitors. Bioorg. Med. Chem., 2012, 20(18), 5496-5506.
[http://dx.doi.org/10.1016/j.bmc.2012.07.039] [PMID: 22910224]
[16]
Abdel-Wadood, F.K.; Abdel-Monem, M.I.; Fahmy, A.M.; Geies, A.A. Synthesis, reactions, and biological activities of some new thieno[3,2-c]quinoline and pyrrolo[3,2-c]quinoline derivatives. Arch. Pharm. (Weinheim), 2014, 347(2), 142-152.
[http://dx.doi.org/10.1002/ardp.201300167] [PMID: 24375769]
[17]
Brooke, G.M.; Bower, M.J.; Chambers, R.D.; Drury, C.J.; Bower, M.J. Remarkable orientational effects in the displacement of the fluorine from heptafluoro-isoquinoline and -quinoline towards sulfur nucleophiles. Further reactions with oxygen nucleophiles. J. Chem. Soc., Perkin Trans. 1, 1993, (18), 2201-2209.
[http://dx.doi.org/10.1039/p19930002201]
[18]
Brooke, G.M.; Drury, C.J. Partially fluorinated heterocyclic compounds. Part 30 [1 Cyclisation reactions of lithium 1,3,4,5,7,8-hexafluoro-6-isoquinolinethiolate and lithium 2,3,5,6,7,8-hexafluoro-4-quinolinethiolate with dimethyl acetylenedicarboxylate. J. Fluor. Chem., 1994, 67(2), 143-147.
[http://dx.doi.org/10.1016/0022-1139(93)02942-8]
[19]
Bhanvadia, V.J.; Choudhury, A.; Iyer, P.K.; Zade, S.S.; Patel, A.L. Constructing fused bis-isatins from pyrroloindoles using direct oxidation approach and revisiting indophenine reaction. Polymer (Guildf.), 2020, 210123032
[http://dx.doi.org/10.1016/j.polymer.2020.123032]
[20]
Wang, T.; Wang, H.; Li, G.; Li, M.; Bo, Z.; Chen, Y. Thiophene-fused 1,10-phenanthroline and its conjugated polymers. Macromolecules, 2016, 49(11), 4088-4094.
[http://dx.doi.org/10.1021/acs.macromol.6b00236]
[21]
Celiker, T.; Isci, R.; Kaya, K.; Ozturk, T.; Yagci, Y. Photoinduced step‐growth polymerization of thieno [3, 4‐b] thiophene derivatives. The substitution effect on the reactivity and electrochemical properties. J. Polym. Sci., 2020, 58(17), 2327-2334.
[http://dx.doi.org/10.1002/pol.20200398]
[22]
Shaikh, J.; Freeman, D.M.; Bronstein, H.; Clarke, T.M. Energy-transfer pathways and triplet lifetime manipulation in a zinc porphyrin/F8BT hybrid polymer. J. Phys. Chem. C, 2018, 122(42), 23950-23958.
[http://dx.doi.org/10.1021/acs.jpcc.8b07880]
[23]
Zhou, S.; Jia, D.; Liu, J. Synthesis and characterization of novel cross-linking light-emitting polyfluorene derivatives. High Perform. Polym., 2015, 27(2), 226-232.
[http://dx.doi.org/10.1177/0954008314544340]
[24]
Kang, M.; Nag, O.K.; Nayak, R.R.; Hwang, S.; Suh, H.; Woo, H.Y. Signal amplification by changing counterions in conjugated polyelectrolyte-based FRET DNA detection. Macromolecules, 2009, 42(7), 2708-2714.
[http://dx.doi.org/10.1021/ma802647u]
[25]
Alkan, E.A.; Goker, S.; Sarigul, H.; Yıldırım, E.; Udum, Y.A.; Toppare, L. The impact of [1, 2, 5] chalcogenazolo [3, 4‐f]‐benzo [1, 2, 3] triazole structure on the optoelectronic properties of conjugated polymers. J. Polym. Sci., 2020, 58(7), 956-968.
[http://dx.doi.org/10.1002/pol.20190275]
[26]
Oprea, C.I.; Panait, P.; Essam, Z.M.; Abd El-Aal, R.M.; Gîrțu, M.A. Photoexcitation processes in oligomethine cyanine dyes for dye-sensitized solar cells-synthesis and computational study. Nanomaterials (Basel), 2020, 10(4), 662.
[http://dx.doi.org/10.3390/nano10040662] [PMID: 32252286]
[27]
Yan, C.; Sun, Z.; Guo, H.; Wu, C.; Chen, Y. Thiophene-fused 1,10-phenanthroline toward a far-red emitting conjugated polymer and its polymer dots: synthesis, properties and subcellular imaging. Mater. Chem. Front., 2017, 1(12), 2638-2642.
[http://dx.doi.org/10.1039/C7QM00379J]
[28]
Chen, G.Y.; Lan, S.C.; Lin, P.Y.; Chu, C.W.; Wei, K.H. Synthesis and characterization of a thiadiazole/benzimidazole-based copolymer for solar cell applications. J. Polym. Sci., Part A-1. Polym. Chem., 2010, 48(20), 4456-4464.
[http://dx.doi.org/10.1002/pola.24235]
[29]
Yuan, W.; Ren, X-K.; Li, M.; Guo, H.; Han, Y.; Wu, M.; Wang, Q.; Li, M.; Chen, Y.; From, S.; From, S. N-heteroacene to large discotic polycyclic aromatic hydrocarbons (PAHs): Liquid crystal versus plastic crystalline materials with tunable mechanochromic fluorescence. Angew. Chem. Int. Ed. Engl., 2018, 57(21), 6161-6165.
[http://dx.doi.org/10.1002/anie.201801488] [PMID: 29600531]
[30]
Yang, S.Y.; Zhang, Y.L.; Khan, A.; Yu, Y.J.; Kumar, S.; Jiang, Z.Q.; Liao, L.S. Nondoped organic light-emitting diodes with low efficiency roll-off: the combination of aggregation-induced emission, hybridized local and charge-transfer state as well as high photoluminescence efficiency. J. Mater. Chem., C Mater. Opt. Electron., 2020, 8(9), 3079-3087.
[http://dx.doi.org/10.1039/C9TC06444C]
[31]
Wakamiya, A.; Sato, M.; Murata, Y. . Polymer having wide range light-absorption properties and high charge transportation properties, a photoelectric material, a charge transporting material, materials for an organic solar cell, an organic transistor, and an organic light emitting diode. JP 2015172131 A 2015.
[32]
Satou, M.; Nakamura, T.; Aramaki, Y.; Okazaki, S.; Murata, M.; Wakamiya, A.; Murata, Y. Near-infrared emissive donor–acceptor-type molecules containing thiazole-fused benzothiadiazole as an electron-acceptor moiety. Chem. Lett., 2016, 45(8), 892-894.
[http://dx.doi.org/10.1246/cl.160519]
[33]
Ning, X.S.; Liang, X.; Hu, K.F.; Yao, C.Z.; Qu, J.P.; Kang, Y.B. Pd-tBuONO cocatalyzed aerobic indole synthesis. Adv. Synth. Catal., 2018, 360(8), 1590-1594.
[http://dx.doi.org/10.1002/adsc.201701512]
[34]
Jung, I.H.; Zhao, D.; Jang, J.; Chen, W.; Landry, E.S.; Lu, L.; Talapin, D.V.; Yu, L. Development and structure/property relationship of new electron accepting polymers based on thieno[2′,3′:4,5]pyrido[2,3-g]thieno[3,2-c]quinoline-4,10-dione for all-polymer solar cells. Chem. Mater., 2015, 27(17), 5941-5948.
[http://dx.doi.org/10.1021/acs.chemmater.5b01928]
[35]
Chen, J.; Xiao, M.; Duan, L.; Wang, Q.; Tan, H.; Su, N.; Liu, Y.; Yang, R.; Zhu, W. Benzodi(pyridothiophene): A novel acceptor unit for application in A1-A-A1 type photovoltaic small molecules. Phys. Chem. Chem. Phys., 2016, 18(3), 1507-1515.
[http://dx.doi.org/10.1039/C5CP05474E] [PMID: 26667581]
[36]
Ehrenreich, P.; Groh, A.; Goodwin, H.; Huster, J.; Deschler, F.; Mecking, S.; Schmidt-Mende, L. Tailored interface energetics for efficient charge separation in metal oxide-polymer solar cells. Sci. Rep., 2019, 9(1), 74.
[http://dx.doi.org/10.1038/s41598-018-36271-w] [PMID: 30635589]
[37]
Zhou, Z.; Palermo, E.F. Templated ring-opening metathesis (TROM) of cyclic olefins tethered to unimolecular oligo (thiophene) s. Macromolecules, 2018, 51(15), 6127-6137.
[http://dx.doi.org/10.1021/acs.macromol.8b00998]
[38]
Zhou, Y.; Qin, Y.; Ni, C.; Xiong, Y.; Xiong, L.; Zhang, J.; Xiao, W.; Yan, H.; Ai, Y. D-A type chlorinated conjugated polymer and preparation method thereof. CN Patent 111621003 A, 2020.
[39]
Zou, J.; Qin, Y.; Zeng, G. Fluorinated copolymer with good thermal stability for solar cell and preparation method thereof. CN Patent 108997562 A, 2018.
[40]
Reddy, M.A.; Kumar, C.P.; Ashok, A.; Sharma, A.; Sharma, G.D.; Chandrasekharam, M. Hetero aromatic donors as effective terminal groups for DPP based organic solar cells. RSC Advances, 2016, 6(11), 9023-9036.
[http://dx.doi.org/10.1039/C5RA24610E]
[41]
Gyul’budagyan, L.V.; Van Ngok, Q.; Durgaryan, V.G.; Kvochko, T.V. New derivatives of 2,3-dihydrothieno[3,2-c]quinoline. Armyanskii Khim. Zh, 1976, 29(4), 365-367.
[42]
Gyul’budagyan, L.V.; Van Ngoc, H.; Durgaryan, V.L. Nucleophilic substitution reactions of 2-(dichloromethyl)-4-methyl-2,3-dihydrothieno[3,2-c]quinolines. Armyanskii Khim. Zh, 1978, 31(4), 254-259.
[43]
Makisumi, Y.; Murabayashi, A. The thio-Claisen rearrangements of allyl and propargyl 4-quinolyl sulfides. Tetrahedron Lett., 1969, 10(24), 1971-1974.
[http://dx.doi.org/10.1016/S0040-4039(01)88061-8]
[44]
Nitti, A.; Osw, P.; Calcagno, G.; Botta, C.; Etkind, S.I.; Bianchi, G.; Po, R.; Swager, T.M.; Pasini, D. One-pot regiodirected annulations for the rapid synthesis of π-extended oligomers. Org. Lett., 2020, 22(8), 3263-3267.
[http://dx.doi.org/10.1021/acs.orglett.0c01043] [PMID: 32255355]
[45]
Neidlein, R.; Heid, H. Synthese und Reaktionsverhalten von 2-Bromo-3-formyl-1-benzothiophen. Synthesis, 1977, 1977(01), 65-66.
[http://dx.doi.org/10.1055/s-1977-24282]
[46]
Bogza, Y.P.; Rastrepin, A.A.; Nider, V.V.; Zheleznova, T.Y.; Stasyuk, A.J.; Kurowska, A.; Laba, K.; Ulyankin, E.B.; Domagala, W.; Fisyuk, A.S. Synthesis and optical properties of 2-functionally substituted 4, 5-dihydrothieno [3, 2-c] quinolines. Dyes Pigm., 2018, 159, 419-428.
[http://dx.doi.org/10.1016/j.dyepig.2018.06.031]
[47]
Zhang, H.; Liu, M.; Yang, W.; Judin, L.; Hukka, T.I.; Priimagi, A.; Deng, Z.; Vivo, P. Thionation enhances the performance of polymeric dopant‐free hole‐transporting materials for perovskite solar cells. Adv. Mater. Interfaces, 2019, 6(18)1901036
[http://dx.doi.org/10.1002/admi.201901036]
[48]
Cao, Y.; Guo, Z-H.; Chen, Z-Y.; Yuan, J-S.; Dou, J-H.; Zheng, Y-Q.; Wang, J-Y.; Pei, J. Pentacyclic aromatic bislactam-based conjugated polymers: constructed by Beckmann rearrangement and application in organic field-effect transistor. Polym. Chem., 2014, 5(18), 5369-5374.
[http://dx.doi.org/10.1039/C4PY00272E]
[49]
Castle, L.W.; Elmaaty, T.A. A new method for the synthesis of substituted indeno[1,2-b] thiophene with subsequent ring expansion to form substituted thieno[3,2-c]quinoline. J. Heterocycl. Chem., 2006, 43(3), 629-631.
[http://dx.doi.org/10.1002/jhet.5570430316]
[50]
Burk, R.M.; Donde, Y. Preparation of oxabicycloheptyloxazolecarboxamide prostaglandin analogs as FP receptor antagonists. WO Patent 2002022620 A2, 2002.
[51]
Gronowitz, S.; Timari, G. On the synthesis of thieno[3,2-c] quinoline N-oxide and thieno-[3,2-C]isoquinolineN-oxide. The nmr spectra of the six isomeric thieno-fused quinoline and isoquinolineN-oxides. J. Heterocycl. Chem., 1990, 27(4), 1127-1129.
[http://dx.doi.org/10.1002/jhet.5570270460]
[52]
Gronowitz, S.; Timari, G. Some reactions of thieno-fused quinolineN-oxides. J. Heterocycl. Chem., 1990, 27(5), 1501-1504.
[http://dx.doi.org/10.1002/jhet.5570270559]
[53]
Podlesný, J.; Pytela, O.; Klikar, M.; Jelínková, V.; Kityk, I.V.; Ozga, K.; Jedryka, J.; Rudysh, M.; Bureš, F. Small isomeric push-pull chromophores based on thienothiophenes with tunable optical (non)linearities. Org. Biomol. Chem., 2019, 17(14), 3623-3634.
[http://dx.doi.org/10.1039/C9OB00487D] [PMID: 30916108]
[54]
Gronowitz, S.; Hoernfeldt, A.B.; Yang, Y.H. A new convenient synthesis of phenanthridine and some benzo- and thieno-c-fused quinolines and 1,8-naphthyridines. Chem. Scr., 1986, 26(2), 311-314.
[http://dx.doi.org/10.1002/chin.198643177]
[55]
Beydoun, K.; Doucet, H. One-pot synthesis of furo- or thienoquinolines through sequential imination and intramolecular palladium-catalyzed direct arylation. Eur. J. Org. Chem., 2012, 2012(34), 6745-6751.
[http://dx.doi.org/10.1002/ejoc.201201142]
[56]
Coghlan, R.D.; Fobare, W.F.; Trybulski, E.J. Preparation of thienoisoquinoline-phenylsulfonamides and their use as ER-NFkB inhibitors. WO Patent 2006069182 A2, 2006.
[57]
Gronowitz, S.; Timari, G. On the bromination of the six thieno analogs of phenanthridine N-oxide. Chem. Scr., 1989, 29(4), 309-311.
[58]
Gronowitz, S.; Timari, G. On the nitration of the six isomeric thieno-fused analogs of phenanthridine N-oxide. Chem. Scr., 1989, 29(4), 305-308.
[59]
Görlitzer, K.; Gabriel, B.; Jomaa, H.; Wiesner, J. Thieno[3,2-c]quinoline-4-yl-amines--synthesis and investigation of activity against malaria. Pharmazie, 2006, 61(4), 278-284.
[http://dx.doi.org/10.1002/chin.200629140] [PMID: 16649537]
[60]
Liu, J.; Diwu, Z.; Leung, W-Y.; Lu, Y.; Patch, B.; Haugland, R.P. Rational design and synthesis of a novel class of highly fluorescent rhodamine dyes that have strong absorption at long wavelengths. Tetrahedron Lett., 2003, 44(23), 4355-4359.
[http://dx.doi.org/10.1016/S0040-4039(03)00938-9]
[61]
David, E.; Lejeune, J.; Pellet-Rostaing, S.; Schulz, J.; Lemaire, M.; Chauvin, J.; Deronzier, A. Synthesis of fluorescent rhodamine dyes using an extension of the Heck reaction. Tetrahedron Lett., 2008, 49(11), 1860-1864.
[http://dx.doi.org/10.1016/j.tetlet.2008.01.021]
[62]
David, E.; Pellet-Rostaing, S.; Lemaire, M. Heck-like coupling and Pictet–Spengler reaction for the synthesis of benzothieno[3,2-c] quinolines. Tetrahedron, 2007, 63(36), 8999-9006.
[http://dx.doi.org/10.1016/j.tet.2007.05.110]
[63]
Fournier Dit Chabert, J.; Chatelain, G.; Pellet-Rostaing, S.; Bouchu, D.; Lemaire, M. Benzo[b]thiophene as a template for substituted quinolines and tetrahydroquinolines. Tetrahedron Lett., 2006, 47(6), 1015-1018..
[http://dx.doi.org/10.1016/j.tetlet.2005.11.108]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy