Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Acetylcholinesterase Enzyme Inhibitor Molecules with Therapeutic Potential for Alzheimer's Disease

Author(s): Bhuvaneswari Sivaraman*, Vijaykumar Raji, Bala Aakash Velmurugan and Ramalakshmi Natarajan

Volume 21, Issue 5, 2022

Published on: 26 November, 2021

Page: [427 - 449] Pages: 23

DOI: 10.2174/1871527320666210928160159

Price: $65

Abstract

Acetylcholinesterase (AchE), hydrolase enzyme, regulates the hydrolysis of acetylcholine neurotransmitter in the neurons. AchE is found majorly in the central nervous system at the site of cholinergic neurotransmission. It is involved in the pathophysiology of Alzheimer’s diseasecausing dementia, cognitive impairment, behavioral and psychological symptoms. Recent findings involved the inhibition of AchE that could aid in the treatment of Alzheimer's. Many drugs of different classes are being analyzed in the clinical trials and examined for their potency. Drugs that are used in the treatment of Alzheimer’s disease are donepezil, galantamine, tacrine, rivastigmine showing major adverse effects. To overcome this, researchers work on novel drugs to elicit inhibition. This review comprises many hybrids and non-hybrid forms of heteroaromatic and nonheteroaromatic compounds that were designed and evaluated for AchE inhibition by Ellman’s method of assay. These novel compounds may assist future perspectives in the discovery of novel moieties against Alzheimer’s disease by the inhibition of AchE.

Keywords: Acetylcholinesterase, Ellman’s assay, hybrid molecules, donepezil, rivastigmine, docking.

Graphical Abstract

[1]
Strange PG. The structure and mechanism of neurotransmitter receptors. Implications for the structure and function of the central nervous system. Biochem J 1988; 249(2): 309-18.
[http://dx.doi.org/10.1042/bj2490309] [PMID: 2893605]
[2]
Herlenius E, Lagercrantz H. Neurotransmitters and neuromodulators during early human development. Early Hum Dev 2001; 65(1): 21-37.
[http://dx.doi.org/10.1016/S0378-3782(01)00189-X] [PMID: 11520626]
[3]
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: Targeting the Cholinergic System. Curr Neuropharmacol 2016; 14(1): 101-15.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[4]
Taylor P, Brown JH. Synthesis, storage and release of acetylcholine. In: Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th ed. Lippincott-Raven 1999.
[5]
Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 2006; 9(1): 101-24.
[http://dx.doi.org/10.1017/S1461145705005833] [PMID: 16083515]
[6]
Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 2013; 11(3): 315-35.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[7]
Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol Med Rep 2019; 20(2): 1479-87.
[PMID: 31257471]
[8]
Radi Z, Taylor P. Structure and function of cholinesterases.Toxicology of Organophosphate & Carbamate Compounds. Academic Press 2006; pp. 161-86.
[http://dx.doi.org/10.1016/B978-012088523-7/50013-2]
[9]
Ballard CG, Greig NH, Guillozet-Bongaarts AL, Enz A, Darvesh S. Cholinesterases: roles in the brain during health and disease. Curr Alzheimer Res 2005; 2(3): 307-18.
[http://dx.doi.org/10.2174/1567205054367838] [PMID: 15974896]
[10]
Greenblatt HM, Dvir H, Silman I, Sussman JL. Acetylcholinesterase: a multifaceted target for structure-based drug design of anticholinesterase agents for the treatment of Alzheimer’s disease. J Mol Neurosci 2003; 20(3): 369-83.
[http://dx.doi.org/10.1385/JMN:20:3:369] [PMID: 14501022]
[11]
Cheung J, Rudolph MJ, Burshteyn F, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 2012; 55(22): 10282-6.
[http://dx.doi.org/10.1021/jm300871x] [PMID: 23035744]
[12]
Saxena A, Saini R. The structural hybrids of acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease: a review. J Alzheimers Neurodegener Dis 2018; 4: 015.
[13]
Ballinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 2016; 91(6): 1199-218.
[http://dx.doi.org/10.1016/j.neuron.2016.09.006] [PMID: 27657448]
[14]
Bartus RT, Dean RL III, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217(4558): 408-14.
[http://dx.doi.org/10.1126/science.7046051] [PMID: 7046051]
[15]
Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother 2008; 8(11): 1703-18.
[http://dx.doi.org/10.1586/14737175.8.11.1703] [PMID: 18986241]
[16]
Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 1982; 215(4537): 1237-9.
[http://dx.doi.org/10.1126/science.7058341] [PMID: 7058341]
[17]
Chen XQ, Mobley WC. Exploring the pathogenesis of Alzheimer disease in basal forebrain cholinergic neurons: converging insights from alternative hypotheses. Front Neurosci 2019; 13: 446.
[http://dx.doi.org/10.3389/fnins.2019.00446] [PMID: 31133787]
[18]
Schachter AS, Davis KL. Alzheimer’s disease. Dialogues Clin Neurosci 2000; 2(2): 91-100.
[http://dx.doi.org/10.31887/DCNS.2000.2.2/asschachter] [PMID: 22034442]
[19]
Košak U, Strašek N, Knez D, et al. N-alkylpiperidine carbamates as potential anti-Alzheimer’s agents. Eur J Med Chem 2020; 197: 112282.
[http://dx.doi.org/10.1016/j.ejmech.2020.112282] [PMID: 32380361]
[20]
Imramovsky A, Stepankova S, Vanco J, et al. Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking. Molecules 2012; 17(9): 10142-58.
[http://dx.doi.org/10.3390/molecules170910142] [PMID: 22922284]
[21]
Krátký M, Štěpánková Š, Vorčáková K, Švarcová M, Vinšová J. Novel cholinesterase inhibitors based on O-aromatic N, N-disubstituted carbamates and thiocarbamates. Molecules 2016; 21(2): 191.
[http://dx.doi.org/10.3390/molecules21020191] [PMID: 26875979]
[22]
Oliveira C, Bagetta D, Cagide F, et al. Benzoic acid-derived nitrones: A new class of potential acetylcholinesterase inhibitors and neuroprotective agents. Eur J Med Chem 2019; 174: 116-29.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.026] [PMID: 31029943]
[23]
Pejchal V, Štěpánková Š, Drabina P. Synthesis of 1-[(1R)-1-(6-fluoro-1, 3-benzothiazol-2-yl) ethyl]-3‐substituted phenyl ureas and their inhibition activity to acetylcholinesterase and butyrylcholinesterase. J Heterocycl Chem 2011; 48(1): 57-62.
[http://dx.doi.org/10.1002/jhet.502]
[24]
Xue XJ, Wang YB, Lu P, et al. Synthesis and in vitro evaluation of 1,3,4-thiadiazol-2-yl urea derivatives as novel AChE inhibitors. Chem Pharm Bull (Tokyo) 2014; 62(6): 524-7.
[http://dx.doi.org/10.1248/cpb.c13-00964] [PMID: 24694376]
[25]
Kurt BZ, Gazioglu I, Basile L, et al. Potential of aryl-urea-benzofuranylthiazoles hybrids as multitasking agents in Alzheimer’s disease. Eur J Med Chem 2015; 102: 80-92.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.005] [PMID: 26244990]
[26]
Salga SM, Ali HM, Abdullah MA, et al. Synthesis, characterization, acetylcholinesterase inhibition, molecular modeling and antioxidant activities of some novel Schiff bases derived from 1-(2-ketoiminoethyl)piperazines. Molecules 2011; 16(11): 9316-30.
[http://dx.doi.org/10.3390/molecules16119316] [PMID: 22064271]
[27]
Rahim F, Ullah H, Taha M, et al. Synthesis and in vitro acetylcholinesterase and butyrylcholinesterase inhibitory potential of hydrazide based Schiff bases. Bioorg Chem 2016; 68: 30-40.
[http://dx.doi.org/10.1016/j.bioorg.2016.07.005] [PMID: 27441832]
[28]
Gao XH, Liu LB, Liu HR, et al. Structure-activity relationship investigation of benzamide and picolinamide derivatives containing dimethylamine side chain as acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2018; 33(1): 110-4.
[http://dx.doi.org/10.1080/14756366.2017.1399885] [PMID: 29166796]
[29]
Mumtaz A, Shoaib M, Zaib S, et al. Synthesis, molecular modelling and biological evaluation of tetrasubstituted thiazoles towards cholinesterase enzymes and cytotoxicity studies. Bioorg Chem 2018; 78: 141-8.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.024] [PMID: 29567428]
[30]
Krátký M, Štěpánková Š, Houngbedji NH, Vosátka R, Vorčáková K, Vinšová J. 2-Hydroxy-N-phenylbenzamides and their esters inhibit acetylcholinesterase and butyrylcholinesterase. Biomolecules 2019; 9(11): 698.
[http://dx.doi.org/10.3390/biom9110698] [PMID: 31694272]
[31]
TuĞrak M, GÜl Hİ, Anil B, GÜlÇİn İ. Synthesis and pharmacological effects of novel benzenesulfonamides carrying benzamide moiety as carbonic anhydrase and acetylcholinesterase inhibitors. Turk J Chem 2020; 44(6): 1601-9.
[http://dx.doi.org/10.3906/kim-2007-37] [PMID: 33488256]
[32]
Pandolfi F, De Vita D, Bortolami M, et al. New pyridine derivatives as inhibitors of acetylcholinesterase and amyloid aggregation. Eur J Med Chem 2017; 141: 197-210.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.022] [PMID: 29031067]
[33]
Kikuchi T, Okamura T, Fukushi K, Irie T. Piperidine-4-methanthiol ester derivatives for a selective acetylcholinesterase assay. Biol Pharm Bull 2010; 33(4): 702-6.
[http://dx.doi.org/10.1248/bpb.33.702] [PMID: 20410609]
[34]
Pourshojaei Y, Abiri A, Eskandari K, Haghighijoo Z, Edraki N, Asadipour A. phenoxyethyl piperidine/Morpholine Derivatives as pAS and cAS inhibitors of cholinesterases: insights for future Drug Design. Sci Rep 2019; 9(1): 19855.
[http://dx.doi.org/10.1038/s41598-019-56463-2] [PMID: 31882733]
[35]
Parlar S. Synthesis and cholinesterase inhibitory activity studies of some piperidinone derivatives. Organic Communications 2019; 12(4): 209.
[http://dx.doi.org/10.25135/acg.oc.69.19.09.1399]
[36]
Pavadai P, Ramalingam S, Panneerselvam T, et al. Synthesis of piperidine-4-one Derivative Containing Dipeptide: An Acetyl cholinesterase and β-secretase Inhibitor. Antiinfect Agents 2020; 18(2): 160-8.
[http://dx.doi.org/10.2174/2211352517666190405155505]
[37]
Mohamed T, Rao PP. Design, synthesis and evaluation of 2,4-disubstituted pyrimidines as cholinesterase inhibitors. Bioorg Med Chem Lett 2010; 20(12): 3606-9.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.108] [PMID: 20472431]
[38]
Kumar J, Gill A, Shaikh M, et al. Pyrimidine-Triazolopyrimidine and Pyrimidine‐Pyridine Hybrids as Potential Acetylcholinesterase Inhibitors for Alzheimer’s Disease. ChemistrySelect 2018; 3(2): 736-47.
[http://dx.doi.org/10.1002/slct.201702599]
[39]
Sadashiva CT, Narendra Sharath Chandra JN, Ponnappa KC, Veerabasappa Gowda T, Rangappa KS. Synthesis and efficacy of 1-[bis(4-fluorophenyl)-methyl]piperazine derivatives for acetylcholinesterase inhibition, as a stimulant of central cholinergic neurotransmission in Alzheimer’s disease. Bioorg Med Chem Lett 2006; 16(15): 3932-6.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.030] [PMID: 16735118]
[40]
Varadaraju KR, Kumar JR, Mallesha L, et al. Virtual screening and biological evaluation of piperazine derivatives as human acetylcholinesterase inhibitors. Int J Alzheimers Dis 2013; 2013: 653962.
[http://dx.doi.org/10.1155/2013/653962] [PMID: 24288651]
[41]
Kumar A, Jain S, Parle M, Jain N, Kumar P. 3-Aryl-1-phenyl-1H-pyrazole derivatives as new multitarget directed ligands for the treatment of Alzheimer’s disease, with acetylcholinesterase and monoamine oxidase inhibitory properties. Excli J 2013; 12: 1030-42.
[PMID: 27298613]
[42]
Turkan F, Cetin A, Taslimi P, Gulçin İ. Some pyrazoles derivatives: Potent carbonic anhydrase, α-glycosidase, and cholinesterase enzymes inhibitors. Arch Pharm (Weinheim) 2018; 351(10): e1800200.
[http://dx.doi.org/10.1002/ardp.201800200] [PMID: 30246264]
[43]
Shaikh S, Dhavan P, Pavale G, Ramana MMV, Jadhav BL. Design, synthesis and evaluation of pyrazole bearing α-aminophosphonate derivatives as potential acetylcholinesterase inhibitors against Alzheimer’s disease. Bioorg Chem 2020; 96: 103589.
[http://dx.doi.org/10.1016/j.bioorg.2020.103589] [PMID: 31978679]
[44]
Mantoani SP, Chierrito TP, Vilela AF, Cardoso CL, Martínez A, Carvalho I. Novel triazole-quinoline derivatives as selective dual binding site acetylcholinesterase inhibitors. Molecules 2016; 21(2): 193.
[http://dx.doi.org/10.3390/molecules21020193] [PMID: 26861273]
[45]
Li JC, Zhang J, Rodrigues MC, et al. Synthesis and evaluation of novel 1,2,3-triazole-based acetylcholinesterase inhibitors with neuroprotective activity. Bioorg Med Chem Lett 2016; 26(16): 3881-5.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.017] [PMID: 27426301]
[46]
Mermer A, Demirbaş N, Şirin Y, Uslu H, Özdemir Z, Demirbas A. Conventional and microwave prompted synthesis, antioxidant, anticholinesterase activity screening and molecular dockingstudies of new quinolone-triazole hybrids. Bioorganic Chemistry 2018; 03: 017.
[47]
Ismail MM, Kamel MM, Mohamed LW, Faggal SI, Galal MA. Synthesis and biological evaluation of thiophene derivatives as acetylcholinesterase inhibitors. Molecules 2012; 17(6): 7217-31.
[http://dx.doi.org/10.3390/molecules17067217] [PMID: 22692245]
[48]
Osmaniye D, Sağlık BN, Acar Çevik U, et al. Synthesis and AChE inhibitory activity of novel thiazolylhydrazone derivatives. Molecules 2019; 24(13): 2392.
[http://dx.doi.org/10.3390/molecules24132392] [PMID: 31261693]
[49]
Skrzypek A, Matysiak J, Karpińska MM, Niewiadomy A. Synthesis and anticholinesterase activities of novel 1,3,4-thiadiazole based compounds. J Enzyme Inhib Med Chem 2013; 28(4): 816-23.
[http://dx.doi.org/10.3109/14756366.2012.688041] [PMID: 22630076]
[50]
Sukumaran SD, Chee CF, Viswanathan G, et al. Synthesis, biological evaluation and molecular modelling of 2′-hydroxychalcones as acetylcholinesterase inhibitors. Molecules 2016; 21(7): 955.
[http://dx.doi.org/10.3390/molecules21070955] [PMID: 27455222]
[51]
Rampa A, Bartolini M, Pruccoli L, et al. Exploiting the chalcone scaffold to develop multifunctional agents for Alzheimer’s disease. Molecules 2018; 23(8): 1902.
[http://dx.doi.org/10.3390/molecules23081902] [PMID: 30061534]
[52]
Piplani P, Jain A, Devi D, Anjali , Sharma A, Silakari P. Design, synthesis and pharmacological evaluation of some novel indanone derivatives as acetylcholinesterase inhibitors for the management of cognitive dysfunction. Bioorg Med Chem 2018; 26(1): 215-24.
[http://dx.doi.org/10.1016/j.bmc.2017.11.033] [PMID: 29195794]
[53]
Farrokhi H, Mozaffarnia S, Rahimpour K, Rashidi MR, Teimuri- Mofrad R. Synthesis, characterization and investigation of AChE and BuChE inhibitory activity of 1-alkyl-4-[(5, 6-dimethoxy-1-indanone-2-yl) methylene] pyridinium halide derivatives. J Indian Chem Soc 2020; 17(3): 593-600.
[54]
Shahrivar-Gargari M, Hamzeh-Mivehroud M, Hemmati S, et al. Design, synthesis, and biological evaluation of novel indanone-based hybrids as multifunctional cholinesterase inhibitors for Alzheimer’s disease. J Mol Struct 2021; 1229: 129787.
[http://dx.doi.org/10.1016/j.molstruc.2020.129787]
[55]
Leng J, Qin HL, Zhu K, et al. Evaluation of multifunctional synthetic tetralone derivatives for treatment of Alzheimer’s disease. Chem Biol Drug Des 2016; 88(6): 889-98.
[http://dx.doi.org/10.1111/cbdd.12822] [PMID: 27434226]
[56]
Prochnow T, Maroneze A, Back DF, Jardim NS, Nogueira CW, Zeni G. Synthesis and anticholinesterase activity of 2-substituted-N-alkynylindoles. Org Biomol Chem 2018; 16(42): 7926-34.
[http://dx.doi.org/10.1039/C8OB02165A] [PMID: 30311614]
[57]
Rodríguez YA, Gutiérrez M, Ramírez D, et al. Novel n-allyl/propargyl tetrahydroquinolines: synthesis via three-component cationic imino diels-alder reaction, binding prediction, and evaluation as cholinesterase inhibitors. Chem Biol Drug Des 2016; 88(4): 498-510.
[http://dx.doi.org/10.1111/cbdd.12773] [PMID: 27085663]
[58]
Bazine I, Cheraiet Z, Bensegueni R, Bensouici C, Boukhari A. Synthesis, antioxidant and anticholinesterase activities of novel quinoline‐aminophosphonate derivatives. J Heterocycl Chem 2020; 57(5): 2139-49.
[http://dx.doi.org/10.1002/jhet.3933]
[59]
Sukumarapillai DK, Kooi-Yeong K, Kia Y, Murugaiyah V, Iyer SK. Design, synthesis and cholinesterase inhibitory evaluation study of fluorescent N-benzylpiperidine-4-one derivatives. Med Chem Res 2016; 25(8): 1705-15.
[http://dx.doi.org/10.1007/s00044-016-1619-6]
[60]
Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Ali MA. Microwave assisted synthesis, cholinesterase enzymes inhibitory activities and molecular docking studies of new pyridopyrimidine derivatives. Bioorg Med Chem 2013; 21(11): 3022-31.
[http://dx.doi.org/10.1016/j.bmc.2013.03.058] [PMID: 23602518]
[61]
Alpan AS, Sarıkaya G, Çoban G, Parlar S, Armagan G, Alptüzün V. Mannich-Benzimidazole Derivatives as Antioxidant and Anticholinesterase Inhibitors: Synthesis, Biological Evaluations, and Molecular Docking Study. Arch Pharm (Weinheim) 2017; 350(7): e1600351.
[http://dx.doi.org/10.1002/ardp.201600351] [PMID: 28379621]
[62]
Acar Cevik U, Saglik BN, Levent S, et al. Synthesis and AChE-inhibitory activity of new benzimidazole derivatives. Molecules 2019; 24(5): 861.
[http://dx.doi.org/10.3390/molecules24050861] [PMID: 30823470]
[63]
Hirbod K, Jalili-Baleh L, Nadri H, et al. Coumarin derivatives bearing benzoheterocycle moiety: synthesis, cholinesterase inhibitory, and docking simulation study. Iran J Basic Med Sci 2017; 20(6): 631-8.
[PMID: 28868119]
[64]
Sonmez F, Zengin Kurt B, Gazioglu I, et al. Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2017; 32(1): 285-97.
[http://dx.doi.org/10.1080/14756366.2016.1250753] [PMID: 28097911]
[65]
Abu-Aisheh MN, Al-Aboudi A, Mustafa MS, et al. Coumarin derivatives as acetyl- and butyrylcholinestrase inhibitors: An in vitro, molecular docking, and molecular dynamics simulations study. Heliyon 2019; 5(4): e01552.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01552] [PMID: 31183424]
[66]
Hu YH, Yang J, Zhang Y, et al. Synthesis and biological evaluation of 3-(4-aminophenyl)-coumarin derivatives as potential anti-Alzheimer’s disease agents. J Enzyme Inhib Med Chem 2019; 34(1): 1083-92.
[http://dx.doi.org/10.1080/14756366.2019.1615484] [PMID: 31117844]
[67]
Alshareef HF, Mohamed HAEH, Salaheldin AM. Synthesis and biological evaluation of new tacrine analogues under microwave irradiation. Chem Pharm Bull (Tokyo) 2017; 65(8): 732-8.
[http://dx.doi.org/10.1248/cpb.c17-00113] [PMID: 28768927]
[68]
Hussein W, Sağlık BN, Levent S, et al. Synthesis and biological evaluation of new cholinesterase inhibitors for Alzheimer’s disease. Molecules 2018; 23(8): 2033.
[http://dx.doi.org/10.3390/molecules23082033] [PMID: 30110946]
[69]
Darvesh S, McDonald RS, Penwell A, et al. Structure-activity relationships for inhibition of human cholinesterases by alkyl amide phenothiazine derivatives. Bioorg Med Chem 2005; 13(1): 211-22.
[http://dx.doi.org/10.1016/j.bmc.2004.09.059] [PMID: 15582466]
[70]
Román GC, Salloway S, Black SE, et al. Randomized, placebo- controlled, clinical trial of donepezil in vascular dementia: differential effects by hippocampal size. Stroke 2010; 41(6): 1213-21.
[http://dx.doi.org/10.1161/STROKEAHA.109.570077] [PMID: 20395618]
[71]
Razay G, Wilcock GK. Galantamine in Alzheimer’s disease. Expert Rev Neurother 2008; 8(1): 9-17.
[http://dx.doi.org/10.1586/14737175.8.1.9] [PMID: 18088197]
[72]
Wilcock GK. Memantine for the treatment of dementia. Lancet Neurol 2003; 2(8): 503-5.
[http://dx.doi.org/10.1016/S1474-4422(03)00486-1] [PMID: 12878438]
[73]
Prasher VP. Review of donepezil, rivastigmine, galantamine and memantine for the treatment of dementia in Alzheimer’s disease in adults with Down syndrome: implications for the intellectual disability population. Int J Geriatr Psychiatry 2004; 19(6): 509-15.
[http://dx.doi.org/10.1002/gps.1077] [PMID: 15211527]
[74]
Wilkinson DG. The pharmacology of donepezil: a new treatment of Alzheimer’s disease. Expert Opin Pharmacother 1999; 1(1): 121-35.
[http://dx.doi.org/10.1517/14656566.1.1.121] [PMID: 11249555]
[75]
Brown EE, Kumar S, Rajji TK, Pollock BG, Mulsant BH. Anticipating and mitigating the impact of the COVID-19 pandemic on Alzheimer’s disease and related dementias. Am J Geriatr Psychiatry 2020; 28(7): 712-21.
[http://dx.doi.org/10.1016/j.jagp.2020.04.010] [PMID: 32331845]
[76]
Emmerton D, Abdelhafiz AH. Care for Older People with Dementia During COVID-19 Pandemic. SN Compr Clin Med 2021; 1-7.
[PMID: 33527095]
[77]
Haussmann R, Mayer-Pelinski R, Beier F, Lange J, Neumann S, Donix M. Neurocognitive Profiles in Affective and Amnestic Mild Cognitive Impairment. SN Compr Clin Med 2019; 1(12): 1009-14.
[http://dx.doi.org/10.1007/s42399-019-00151-9]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy