Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Editorial

Droplet Microfluidics has Revealed Diverse Analytical Trends in the Past Decade

Author(s): Rohit Bhatia*

Volume 18, Issue 6, 2022

Published on: 06 January, 2022

Page: [565 - 566] Pages: 2

DOI: 10.2174/1573412918666210927102846

Next »
[1]
Suea-Ngam, A.; Howes, P.D.; Srisa-Art, M.; deMello, A.J. Droplet microfluidics: From proof-of-concept to real-world utility? Chem. Commun. (Camb.), 2019, 55(67), 9895-9903.
[http://dx.doi.org/10.1039/C9CC04750F] [PMID: 31334541]
[2]
Sohrabi, S.; Moraveji, M.K. Droplet microfluidics: Fundamentals and its advanced applications. RSC Advances, 2020, 10(46), 27560-27574.
[http://dx.doi.org/10.1039/D0RA04566G]
[3]
Zhao-Miao, L.I.; Yang, Y.; Yu, D.U.; Yan, P.A. Advances in droplet-based microfluidic technology and its applications. Chin. J. Anal. Chem., 2017, 45(2), 282-296.
[http://dx.doi.org/10.1016/S1872-2040(17)60994-0]
[4]
Azizbeigi, K.; Zamani Pedram, M.; Sanati-Nezhad, A. Microfluidic-based processors and circuits design. Sci. Rep., 2021, 11(1), 10985.
[http://dx.doi.org/10.1038/s41598-021-90485-z] [PMID: 34040102]
[5]
Abate, A.R.; Hung, T.; Sperling, R.A.; Mary, P.; Rotem, A.; Agresti, J.J.; Weiner, M.A.; Weitz, D.A. DNA sequence analysis with droplet-based microfluidics. Lab Chip, 2013, 13(24), 4864-4869.
[http://dx.doi.org/10.1039/c3lc50905b] [PMID: 24185402]
[6]
Goy, C.B.; Chaile, R.E.; Madrid, R.E. Microfluidics and hydrogel: A powerful combination. React. Funct. Polym., 2019, 145, 104314.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104314]
[7]
Schaerli, Y.; Wootton, R.C.; Robinson, T.; Stein, V.; Dunsby, C.; Neil, M.A.; French, P.M.; Demello, A.J.; Abell, C.; Hollfelder, F. Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal. Chem., 2009, 81(1), 302-306.
[http://dx.doi.org/10.1021/ac802038c] [PMID: 19055421]
[8]
Lignos, I.; Morad, V.; Shynkarenko, Y.; Bernasconi, C.; Maceiczyk, R.M.; Protesescu, L.; Bertolotti, F.; Kumar, S.; Ochsenbein, S.T.; Masciocchi, N.; Guagliardi, A.; Shih, C.J.; Bodnarchuk, M.I.; deMello, A.J.; Kovalenko, M.V. Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform. ACS Nano, 2018, 12(6), 5504-5517.
[http://dx.doi.org/10.1021/acsnano.8b01122] [PMID: 29754493]
[9]
Pilkington, C.P.; Seddon, J.M.; Elani, Y. Microfluidic technologies for the synthesis and manipulation of biomimetic membranous nano-assemblies. Phys. Chem. Chem. Phys., 2021, 23(6), 3693-3706.
[http://dx.doi.org/10.1039/D0CP06226J] [PMID: 33533338]
[10]
Niederholtmeyer, H.; Chaggan, C.; Devaraj, N.K. Communication and quorum sensing in non-living mimics of eukaryotic cells. Nat. Commun., 2018, 9(1), 5027.
[http://dx.doi.org/10.1038/s41467-018-07473-7] [PMID: 30487584]
[11]
Shang, L.; Cheng, Y.; Zhao, Y. Emerging droplet microfluidics. Chem. Rev., 2017, 117(12), 7964-8040.
[http://dx.doi.org/10.1021/acs.chemrev.6b00848] [PMID: 28537383]
[12]
Rezvantalab, S.; Drude, N.I.; Moraveji, M.K.; GA1/4vener, N.; Koons, E.K.; Shi, Y.; Lammers, T.; Kiessling, F. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol., 2018, 9, 1260.
[http://dx.doi.org/10.3389/fphar.2018.01260] [PMID: 30450050]
[13]
Sesen, M.; Whyte, G. Image-based single cell sorting automation in droplet microfluidics. Sci. Rep., 2020, 10(1), 8736.
[http://dx.doi.org/10.1038/s41598-020-65483-2] [PMID: 32457421]
[14]
Asghar, W.; Sher, M.; Khan, N.S.; Vyas, J.M.; Demirci, U. Microfluidic chip for detection of fungal infections. ACS Omega, 2019, 4(4), 7474-7481.
[http://dx.doi.org/10.1021/acsomega.9b00499] [PMID: 31080939]

© 2025 Bentham Science Publishers | Privacy Policy