Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Hemozoin (beta-hematin) Formation Inhibitors: Promising Target for the Development of New Antimalarials: Current Update and Future Prospect

Author(s): Suraj N. Mali* and Anima Pandey

Volume 25, Issue 11, 2022

Published on: 13 January, 2022

Page: [1859 - 1874] Pages: 16

DOI: 10.2174/1386207325666210924104036

Price: $65

Abstract

Background: Malaria is responsible for social and economic burden in most lowincome malaria-affected countries. Thus, newer antimalarials are needed to tackle morbidities and mortalities associated with the drug-resistant malarial strains. Haemoglobin digestion inside the food vacuole of malarial parasite would lead to producing redox-active and toxic-free heme. The detoxification process adopted by Plasmodium sp. would give rise to hemozoin (Hz) (betahematin) formation. Targeting the pathway of hemozoin formation is considered a validated target for the discovery of newer antimalarials.

Objective: This study aims to collect detailed information about aspects of hemozoin (Hz) (betahematin) inhibitors.

Methods: A systemic search has been carried out using PubMed, Google Scholar, CNKI, etc., for relevant studies having the keyword, 'hemozoin or beta-hematin' for almost the last 2 decades (2000-2021).

Results: This review tries to summarize all the recent advancements made for the developments of synthetic, natural isolated phytoconstituents and plant extracts inhibiting the hemozoin (betahematin) formation.

Conclusion: Thus they would act as promising antimalarial candidates in the near future.

Keywords: SOX9, IL1A, potential gene, biomarkers, oral cancer, bioinformatics.

Graphical Abstract

[1]
World malaria report 2020. Available from: https://www.who.int/publications/i/item/9789240015791 (Accessed on 11-08-2021).
[2]
Olliaro, P. Mode of action and mechanisms of resistance for antimalarial drugs. Pharmacol. Ther., 2001, 89(2), 207-219.
[http://dx.doi.org/10.1016/S0163-7258(00)00115-7] [PMID: 11316521]
[3]
Dondorp, A.M.; Yeung, S.; White, L.; Nguon, C.; Day, N.P.; Socheat, D.; von Seidlein, L. Artemisinin resistance: current status and sce-narios for containment. Nat. Rev. Microbiol., 2010, 8(4), 272-280.
[http://dx.doi.org/10.1038/nrmicro2331] [PMID: 20208550]
[4]
Fong, K.Y.; Sandlin, R.D.; Wright, D.W. Identification of β-hematin inhibitors in the MMV Malaria Box. Int. J. Parasitol. Drugs Drug Resist., 2015, 5(3), 84-91.
[http://dx.doi.org/10.1016/j.ijpddr.2015.05.003] [PMID: 26150923]
[5]
Combrinck, J.M.; Mabotha, T.E.; Ncokazi, K.K.; Ambele, M.A.; Taylor, D.; Smith, P.J.; Hoppe, H.C.; Egan, T.J. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem. Biol., 2013, 8(1), 133-137.
[http://dx.doi.org/10.1021/cb300454t] [PMID: 23043646]
[6]
Olivier, M.; Van Den Ham, K.; Shio, M.T.; Kassa, F.A.; Fougeray, S. Malarial pigment hemozoin and the innate inflammatory response. Front. Immunol., 2014, 5, 25.
[http://dx.doi.org/10.3389/fimmu.2014.00025] [PMID: 24550911]
[7]
Keller, C.C.; Yamo, O.; Ouma, C.; Ong’echa, J.M.; Ounah, D.; Hittner, J.B.; Vulule, J.M.; Perkins, D.J. Acquisition of hemozoin by mono-cytes down-regulates interleukin-12 p40 (IL-12p40) transcripts and circulating IL-12p70 through an IL-10-dependent mechanism: in vivo and in vitro findings in severe malarial anemia. Infect. Immun., 2006, 74(9), 5249-5260.
[http://dx.doi.org/10.1128/IAI.00843-06] [PMID: 16926419]
[8]
Luty, A.J.; Perkins, D.J.; Lell, B.; Schmidt-Ott, R.; Lehman, L.G.; Luckner, D.; Greve, B.; Matousek, P.; Herbich, K.; Schmid, D.; Wein-berg, J.B.; Kremsner, P.G. Low interleukin-12 activity in severe Plasmodium falciparum malaria. Infect. Immun., 2000, 68(7), 3909-3915.
[http://dx.doi.org/10.1128/IAI.68.7.3909-3915.2000] [PMID: 10858202]
[9]
Griffith, J.W.; Sun, T.; McIntosh, M.T.; Bucala, R. Pure Hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. J. Immunol., 2009, 183(8), 5208-5220.
[http://dx.doi.org/10.4049/jimmunol.0713552] [PMID: 19783673]
[10]
(a) Inactivation of Malaria Parasites in Blood: PDT vs Inhibition of Hemozoin Formation. Current Topics in Malaria, 2016. Available from: https://www.intechopen.com/books/current-topics-inmalaria/ inactivation-of-malaria-parasites-in-blood-pdt-vsinhibition- of-hemozoin-formation
[http://dx.doi.org/10.5772/65053]
(b) Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar. J., 2011, 10(1), 144.
[http://dx.doi.org/10.1186/1475-2875-10-144] [PMID: 21609473]
[11]
Deda, D.K.; Budu, A.; Cruz, L.N.; Araki, K.; Garcia, C.R. Strategies for development of antimalarials based on encapsulated porphyrin derivatives. Mini Rev. Med. Chem., 2015, 14(13), 1055-1071.
[http://dx.doi.org/10.2174/1389557515666150101094829] [PMID: 25553431]
[12]
Basilico, N.; Monti, D.; Olliaro, P.; Taramelli, D. Non-iron porphyrins inhibit β-haematin (malaria pigment) polymerisation. FEBS Lett., 1997, 409(2), 297-299.
[http://dx.doi.org/10.1016/S0014-5793(97)00533-4] [PMID: 9202165]
[13]
Monti, D.; Vodopivec, B.; Basilico, N.; Olliaro, P.; Taramelli, D. A novel endogenous antimalarial: Fe(II)-protoporphyrin IX α (heme) inhibits hematin polymerization to β-hematin (malaria pigment) and kills malaria parasites. Biochemistry, 1999, 38(28), 8858-8863.
[http://dx.doi.org/10.1021/bi990085k] [PMID: 10413458]
[14]
Bhat, A.R.; Athar, F.; Van Zyl, R.L.; Chen, C.T.; Azam, A. Synthesis and Biological Evaluation of Novel 4‐Substituted 1‐{[4‐(10, 15, 20‐Triphenylporphyrin‐5‐yl) phenyl] methylidene} thiosemicarbazides as New Class of Potential Antiprotozoal Agents. Chem. Biodivers., 2008, 5(5), 764-776.
[http://dx.doi.org/10.1002/cbdv.200890073] [PMID: 18493963]
[15]
Abada, Z.; Cojean, S.; Pomel, S.; Ferrié, L.; Akagah, B.; Lormier, A.T.; Loiseau, P.M.; Figadère, B. Synthesis and antiprotozoal activity of original porphyrin precursors and derivatives. Eur. J. Med. Chem., 2013, 67, 158-165.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.002] [PMID: 23851117]
[16]
Rodriguez, M.; Bonnet-Delpon, D.; Bégué, J.P.; Robert, A.; Meunier, B. Alkylation of manganese(II) tetraphenylporphyrin by antimalarial fluorinated artemisinin derivatives. Bioorg. Med. Chem. Lett., 2003, 13(6), 1059-1062.
[http://dx.doi.org/10.1016/S0960-894X(03)00076-3] [PMID: 12643911]
[17]
Benoit-Vical, F.; Robert, A.; Meunier, B. Potentiation of artemisinin activity against chloroquine-resistant Plasmodium falciparum strains by using heme models. Antimicrob. Agents Chemother., 1999, 43(10), 2555-2558.
[http://dx.doi.org/10.1128/AAC.43.10.2555] [PMID: 10508044]
[18]
Benoit-Vical, F.; Robert, A.; Meunier, B. In vitro and in vivo potentiation of artemisinin and synthetic endoperoxide antimalarial drugs by metalloporphyrins. Antimicrob. Agents Chemother., 2000, 44(10), 2836-2841.
[http://dx.doi.org/10.1128/AAC.44.10.2836-2841.2000] [PMID: 10991867]
[19]
Cole, K.A.; Ziegler, J.; Evans, C.A.; Wright, D.W. Metalloporphyrins inhibit β-hematin (hemozoin) formation. J. Inorg. Biochem., 2000, 78(2), 109-115.
[http://dx.doi.org/10.1016/S0162-0134(99)00216-0] [PMID: 10766333]
[20]
Chemaly, S.M.; Chen, C.T.; van Zyl, R.L. Naturally occurring cobalamins have antimalarial activity. J. Inorg. Biochem., 2007, 101(5), 764-773.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.01.006] [PMID: 17343914]
[21]
Begum, K.; Kim, H.S.; Kumar, V.; Stojiljkovic, I.; Wataya, Y. In vitro antimalarial activity of metalloporphyrins against Plasmodium falci-parum. Parasitol. Res., 2003, 90(3), 221-224.
[http://dx.doi.org/10.1007/s00436-003-0830-9] [PMID: 12783311]
[22]
Sullivan, D.J., Jr; Gluzman, I.Y.; Russell, D.G.; Goldberg, D.E. On the molecular mechanism of chloroquine’s antimalarial action. Proc. Natl. Acad. Sci. USA, 1996, 93(21), 11865-11870.
[http://dx.doi.org/10.1073/pnas.93.21.11865] [PMID: 8876229]
[23]
Egan, T.J.; Ncokazi, K.K. Quinoline antimalarials decrease the rate of beta-hematin formation. J. Inorg. Biochem., 2005, 99(7), 1532-1539.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.04.013] [PMID: 15927260]
[24]
Hartwig, C.L.; Lauterwasser, E.M.; Mahajan, S.S.; Hoke, J.M.; Cooper, R.A.; Renslo, A.R. Investigating the antimalarial action of 1,2,4-trioxolanes with fluorescent chemical probes. J. Med. Chem., 2011, 54(23), 8207-8213.
[http://dx.doi.org/10.1021/jm2012003] [PMID: 22023506]
[25]
Herraiz, T.; Guillén, H.; González-Peña, D.; Arán, V.J. Antimalarial quinoline drugs inhibit β-hematin and increase free hemin catalyzing peroxidative reactions and inhibition of cysteine proteases. Sci. Rep., 2019, 9(1), 15398.
[http://dx.doi.org/10.1038/s41598-019-51604-z] [PMID: 31659177]
[26]
Attram, H.D.; Wittlin, S.; Chibale, K. Incorporation of an intramolecular hydrogen bonding motif in the side chain of antimalarial benzim-idazoles. MedChemComm, 2019, 10(3), 450-455.
[http://dx.doi.org/10.1039/C8MD00608C] [PMID: 31015908]
[27]
Mbaba, M.; Dingle, L.M.K.; Swart, T.; Cash, D.; Laming, D.; de la Mare, J.A.; Taylor, D.; Hoppe, H.C.; Biot, C.; Edkins, A.L.; Khanye, S.D. The in vitro antiplasmodial and antiproliferative activity of new ferrocene-based α-aminocresols targeting hemozoin inhibition and dna interaction. ChemBioChem, 2020, 21(18), 2643-2658.
[http://dx.doi.org/10.1002/cbic.202000132] [PMID: 32307798]
[28]
L’abbate, F.P.; Müller, R.; Openshaw, R.; Combrinck, J.M.; de Villiers, K.A.; Hunter, R.; Egan, T.J. Hemozoin inhibiting 2-phenylbenzimidazoles active against malaria parasites. Eur. J. Med. Chem., 2018, 159, 243-254.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.060] [PMID: 30296683]
[29]
de Sousa, A.C.C.; Combrinck, J.M.; Maepa, K.; Egan, T.J. Virtual screening as a tool to discover new β-haematin inhibitors with activity against malaria parasites. Sci. Rep., 2020, 10(1), 3374.
[http://dx.doi.org/10.1038/s41598-020-60221-0] [PMID: 32099045]
[30]
Valverde, E.A.; Romero, A.H.; Acosta, M.E.; Gamboa, N.; Henriques, G.; Rodrigues, J.R.; Ciangherotti, C.; López, S.E. Synthesis, β-hematin inhibition studies and antimalarial evaluation of new dehydroxy isoquine derivatives against Plasmodium berghei: A promising antimalarial agent. Eur. J. Med. Chem., 2018, 148, 498-506.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.051] [PMID: 29126722]
[31]
Aguiar, A.C.C.; Murce, E.; Cortopassi, W.A.; Pimentel, A.S.; Almeida, M.M.F.S.; Barros, D.C.S.; Guedes, J.S.; Meneghetti, M.R.; Krettli, A.U. Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity. Int. J. Parasitol. Drugs Drug Resist., 2018, 8(3), 459-464.
[http://dx.doi.org/10.1016/j.ijpddr.2018.10.002] [PMID: 30396013]
[32]
Abu-Lafi, S.; Akkawi, M.; Abu-Remeleh, Q.; Qutob, M.; Lutgen, P. Curcumin, a natural isolate from Curcuma longa (turmeric) with high β-hematin inhibitory potential. Pharm. Pharmacol. Int. J., 2019, 7(1), 22-26.
[http://dx.doi.org/10.15406/ppij.2019.07.00228]
[33]
Kumar, M.; Okombo, J.; Mambwe, D.; Taylor, D.; Lawrence, N.; Reader, J.; van der Watt, M.; Fontinha, D.; Sanches-Vaz, M.; Bezuiden-hout, B.C.; Lauterbach, S.B.; Liebenberg, D.; Birkholtz, L.M.; Coetzer, T.L.; Prudêncio, M.; Egan, T.J.; Wittlin, S.; Chibale, K. Multistage antiplasmodium activity of astemizole analogues and inhibition of hemozoin formation as a contributor to their mode of action. ACS Infect. Dis., 2019, 5(2), 303-315.
[http://dx.doi.org/10.1021/acsinfecdis.8b00272] [PMID: 30525439]
[34]
Lawong, A.; Gahalawat, S.; Okombo, J.; Striepen, J.; Yeo, T.; Mok, S.; Deni, I.; Bridgford, J.L.; Niederstrasser, H.; Zhou, A.; Posner, B.; Wittlin, S.; Gamo, F.J.; Crespo, B.; Churchyard, A.; Baum, J.; Mittal, N.; Winzeler, E.; Laleu, B.; Palmer, M.J.; Charman, S.A.; Fidock, D.A.; Ready, J.M.; Phillips, M.A. Novel Antimalarial Tetrazoles and Amides Active against the Hemoglobin Degradation Pathway in Plas-modium falciparum. J. Med. Chem., 2021, 64(5), 2739-2761.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02022] [PMID: 33620219]
[35]
Romero, J.A.; Acosta, M.E.; Gamboa, N.D.; Mijares, M.R.; De Sanctis, J.B.; Charris, J.E. Optimization of antimalarial, and anticancer ac-tivities of (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4-hydroxyphenyl) acrylate. Bioorg. Med. Chem., 2018, 26(4), 815-823.
[http://dx.doi.org/10.1016/j.bmc.2017.12.022] [PMID: 29398445]
[36]
de Sousa, A.C.C.; Maepa, K.; Combrinck, J.M.; Egan, T.J. Lapatinib, nilotinib and lomitapide inhibit haemozoin formation in malaria para-sites. Molecules, 2020, 25(7), 1571.
[http://dx.doi.org/10.3390/molecules25071571] [PMID: 32235391]
[37]
Bailly, C. Pyronaridine: An update of its pharmacological activities and mechanisms of action. Biopolymers, 2021, 112(4), e23398.
[http://dx.doi.org/10.1002/bip.23398] [PMID: 33280083]
[38]
Kumar, G.; Tanwar, O.; Kumar, J.; Akhter, M.; Sharma, S.; Pillai, C.R.; Alam, M.M.; Zama, M.S. Pyrazole-pyrazoline as promising novel antimalarial agents: A mechanistic study. Eur. J. Med. Chem., 2018, 149, 139-147.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.082] [PMID: 29499486]
[39]
Birrell, G.W.; Challis, M.P.; De Paoli, A.; Anderson, D.; Devine, S.M.; Heffernan, G.D.; Jacobus, D.P.; Edstein, M.D.; Siddiqui, G.; Creek, D.J. Multi-omic Characterization of the Mode of Action of a Potent New Antimalarial Compound, JPC-3210, Against Plasmodium falcipa-rum. Mol. Cell. Proteomics, 2020, 19(2), 308-325.
[http://dx.doi.org/10.1074/mcp.RA119.001797] [PMID: 31836637]
[40]
Yi, S.; Hao, C. ShuJun, C.; ChaoJiang, X.; Xiang, D.; Bei, J. Chemical constituents of Dobinea delavayi and their β-hematin formation inhibition activity. Nat. Prod. Res. Develop., 2019, 31(6), 1017-1022.
[41]
Subramanian, G.; Sadeer, A.; Mukherjee, K.; Kojima, T.; Tripathi, P.; Naidu, R.; Tay, S.W.; Pang, J.H.; Pullarkat, S.A.; Chandramohana-das, R. Evaluation of ferrocenyl phosphines as potent antimalarials targeting the digestive vacuole function of Plasmodium falciparum. Dalton Trans., 2019, 48(3), 1108-1117.
[http://dx.doi.org/10.1039/C8DT04263B] [PMID: 30605200]
[42]
Kondaparla, S.; Manhas, A.; Dola, V.R.; Srivastava, K.; Puri, S.K.; Katti, S.B. Design, synthesis and antiplasmodial activity of novel imid-azole derivatives based on 7-chloro-4-aminoquinoline. Bioorg. Chem., 2018, 80, 204-211.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.012] [PMID: 29940342]
[43]
Xiang, P.; Xiao, C.J.; Xu, W.; Shan, H.; Qiu, L.; Li, Y.; Dong, X.; Jiang, B. New abietane diterpenoid glucosides from underground parts of Isodon taliensis. J. Asian Nat. Prod. Res., 2019, 21(12), 1177-1183.
[http://dx.doi.org/10.1080/10286020.2018.1518321] [PMID: 30415590]
[44]
Abu-Lafi, S.; Akkawi, M.; Al-Rimawi, F. Morin, quercetin, catechin and quercitrin as novel natural antimalarial candidates. Pharm. Pharmacol. Int. J., 2020, 8(3), 184-190.
[http://dx.doi.org/10.15406/ppij.2020.08.00295]
[45]
Maicheena, C.; Ungwitayatornb, J. Antimalarial and β-hematin formation inhibitory activities of chromone derivatives. Sci. Asia, 2019, 45(3), 221-228.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2019.45.221]
[46]
Romero, J.A.; Acosta, M.E.; Gamboa, N.D.; Mijares, M.R.; De Sanctis, J.B.; Llovera, L.J.; Charris, J.E. Synthesis, antimalarial, antiprolif-erative, and apoptotic activities of benzimidazole-5-carboxamide derivatives. Med. Chem. Res., 2019, 28(1), 13-27.
[http://dx.doi.org/10.1007/s00044-018-2258-x]
[47]
Mina, P.R.; Kumar, Y.; Verma, A.K.; Khan, F.; Tandon, S.; Pal, A.; Darokar, M.P. Silymarin, a polyphenolic flavonoid impede Plasmodi-um falciparum growth through interaction with heme. Nat. Prod. Res., 2020, 34(18), 2647-2651.
[http://dx.doi.org/10.1080/14786419.2018.1548449] [PMID: 30663356]
[48]
Colmenarez, C.; Acosta, M.; Rodríguez, M.; Charris, J. Synthesis and antimalarial activity of (S)-methyl-(7-chloroquinolin-4-ylthio) acet-amidoalquilate derivatives. J. Chem. Res., 2020, 44(3-4), 161-166.
[http://dx.doi.org/10.1177/1747519819890559]
[49]
Osman, C.P.; Ismail, N.H.; Widyawaruyanti, A.; Imran, S.; Tumewu, L.; Choo, C.Y.; Ideris, S. Evaluation of a series of 9, 10-anthraquinones as antiplasmodial agents. Lett. Drug Des. Discov., 2019, 16(3), 353-363.
[http://dx.doi.org/10.2174/1570180815666180607085102]
[50]
Stringer, T.; Wiesner, L.; Smith, G.S. Ferroquine-derived polyamines that target resistant Plasmodium falciparum. Eur. J. Med. Chem., 2019, 179, 78-83.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.023] [PMID: 31238252]
[51]
Charris, J.E.; Monasterios, M.C.; Acosta, M.E.; Rodríguez, M.A.; Gamboa, N.D.; Martínez, G.P.; Rojas, H.R.; Mijares, M.R.; De Sanctis, J.B. Antimalarial, antiproliferative, and apoptotic activity of quinoline-chalcone and quinoline-pyrazoline hybrids. A dual action. Med. Chem. Res., 2019, 28(11), 2050-2066.
[http://dx.doi.org/10.1007/s00044-019-02435-0]
[52]
Moyo, P.; Shamburger, W.; van der Watt, M.E.; Reader, J.; de Sousa, A.C.C.; Egan, T.J.; Maharaj, V.J.; Bringmann, G.; Birkholtz, L.M. Naphthylisoquinoline alkaloids, validated as hit multistage antiplasmodial natural products. Int. J. Parasitol. Drugs Drug Resist., 2020, 13, 51-58.
[http://dx.doi.org/10.1016/j.ijpddr.2020.05.003] [PMID: 32505117]
[53]
Sharma, K.; Shrivastava, A.; Mehra, R.N.; Deora, G.S.; Alam, M.M.; Zaman, M.S.; Akhter, M. Synthesis of novel benzimidazole acryloni-triles for inhibition of Plasmodium falciparum growth by dual target inhibition. Arch. Pharm. (Weinheim), 2018, 351(1), 1700251.
[http://dx.doi.org/10.1002/ardp.201700251] [PMID: 29227011]
[54]
Vincent, S.G.; Joseph, J. Evaluation of antioxidant activity and antimalarial activity of flavone based tetradentate ligand and its metal com-plexes. Mater. Today Proc., 2021, 45, 2159-2165.
[http://dx.doi.org/10.1016/j.matpr.2020.10.008]
[55]
Li, Y.; Chen, H.; Liu, J.; Luo, X.L.; Xiao, C.J.; Jiang, B. A new prenylated coumestan from the roots of Campylotropis hirtella. J. Asian Nat. Prod. Res., 2021, 23(8), 789-795.
[http://dx.doi.org/10.1080/10286020.2020.1779706] [PMID: 32614662]
[56]
Openshaw, R.; Maepa, K.; Benjamin, S.J.; Wainwright, L.; Combrinck, J.M.; Hunter, R.; Egan, T.J. A diverse range of hemozoin inhibiting scaffolds act on Plasmodium falciparum as heme complexes. ACS Infect. Dis., 2021, 7(2), 362-376.
[http://dx.doi.org/10.1021/acsinfecdis.0c00680] [PMID: 33430579]
[57]
Tahghighi, A.; Mehrizi, A.A.; Zakeri, S. In vitro anti-plasmodial activity of new synthetic derivatives of 1-(heteroaryl)-2-((5-nitroheteroaryl) methylene) hydrazine. Asian Pac. J. Trop. Med., 2021, 14(3), 128.
[http://dx.doi.org/10.4103/1995-7645.306740]
[58]
Opsenica, I.; Selaković, M.; Tot, M.; Verbić, T.; Srbljanović, J.; Štajner, T.; Djaković, O.D.; Šolaja, B.A. New 4-aminoquinolines as mod-erate inhibitors of P. falciparum malaria. J. Serb. Chem. Soc., 2021, 86(2), 115-123.
[http://dx.doi.org/10.2298/JSC201225005O]
[59]
de Souza Pereira, C.; Costa Quadros, H.; Magalhaes Moreira, D.R.; Castro, W.; Santos De Deus Da Silva, R.I.; Botelho Pereira Soares, M.; Fontinha, D.; Prudêncio, M.; Schmitz, V.; Dos Santos, H.F.; Gendrot, M.; Fonta, I.; Mosnier, J.; Pradines, B.; Navarro, M. A novel hybrid of chloroquine and primaquine linked by gold(I): multitarget and multiphase antiplasmodial agent. ChemMedChem, 2021, 16(4), 662-678.
[http://dx.doi.org/10.1002/cmdc.202000653] [PMID: 33231370]
[60]
Akkawi, M.; Abu-Lafi, S.; Abu-Remeleh, Q. Screening of guava (Psidium guajava) leaves extracts against β-hematin formation. Pharm. Pharmacol. Int. J., 2021, 9(1), 11-15.
[http://dx.doi.org/10.15406/ppij.2021.09.00319]
[61]
Ekasari, W.; Basuki, D.R.; Arwati, H.; Wahyuni, T.S. Antiplasmodial activity of Ethanolic extract of Cassia spectabilis DC leaf and its inhibition effect in Heme detoxification. BMC Complementary Medicine and Therapies, 2021, 21(1), 71.
[http://dx.doi.org/10.1186/s12906-021-03239-9] [PMID: 33607987]
[62]
Jaber, S.; Abu-Lafi, S.; Lutgen, P.; Abu-Remeleh, Q.; Akkawi, M. Bicarbonate in vitro effect on beta-hematin inhibition by artemisia sieberi aqueous infusion. J. Pharm. Pharmacol., 2015, 3, 63-72.
[http://dx.doi.org/10.17265/2328-2150/2015.02.003]
[63]
Wande, O.M.; Babatunde, S.B. In vitro screening of ten Combretaceae plants for antimalarial activities applying the inhibition of beta-hematin formation. Int. J. Biol. Chem. Sci., 2017, 11(6), 2971-2981.
[http://dx.doi.org/10.4314/ijbcs.v11i6.33]
[64]
Vargas, S.; Ndjoko Ioset, K.; Hay, A.E.; Ioset, J.R.; Wittlin, S.; Hostettmann, K. Screening medicinal plants for the detection of novel anti-malarial products applying the inhibition of β-hematin formation. J. Pharm. Biomed. Anal., 2011, 56(5), 880-886.
[http://dx.doi.org/10.1016/j.jpba.2011.06.026] [PMID: 21872416]
[65]
Akkawi, M.; Jaber, S.; Abu-Remeleh, Q.; Ogwang, P.E.; Lutgen, P. Investigations of Artemisia annua and Artemisia sieberi water extracts inhibitory effects on β-hematin formation. Med. Aromat. Plants, 2014, 3(150), 2167-0412.
[66]
Mojarrab, M.; Naderi, R.; Heshmati Afshar, F. Screening of different extracts from artemisia species for their potential antimalarial activi-ty. Iran. J. Pharm. Res., 2015, 14(2), 603-608.
[PMID: 25901169]
[67]
Mojarrab, M.; Shiravand, A.; Delazar, A.; Heshmati Afshar, F. Evaluation of in vitro antimalarial activity of different extracts of Artemisia aucheri Boiss. and A. armeniaca Lam. and fractions of the most potent extracts. ScientificWorldJournal, 2014, 2014, 825370.
[http://dx.doi.org/10.1155/2014/825370] [PMID: 24558335]
[68]
Daskum, A.M.; Godly, C.; Qadeer, M.A.; Ling, L.Y. Effect of Senna occidentalis (Fabaceae) leaves extract on the formation of β-hematin and evaluation of in vitro antimalarial activity. Int. J. Herb. Med., 2019, 7(3), 46-51.
[69]
Abiodun, O.O.; Oladepo, O.M. Beta hematin inhibition: evaluating the mechanism of action of some selected antimalarial plants. Acta Pharm. Sci., 2018, 56(3), 61-69.
[http://dx.doi.org/10.23893/1307-2080.APS.05618]
[70]
Sashidhara, K.V.; Singh, S.P.; Singh, S.V.; Srivastava, R.K.; Srivastava, K.; Saxena, J.K.; Puri, S.K. Isolation and identification of β-hematin inhibitors from Flacourtia indica as promising antiplasmodial agents. Eur. J. Med. Chem., 2013, 60, 497-502.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.019] [PMID: 23354072]
[71]
Asnaashari, S.; Heshmati Afshar, F.; Ebrahimi, A.; Bamdad Moghadam, S.; Delazar, A. In vitro antimalarial activity of different extracts of Eremostachys macrophylla Montbr. & Auch. Bioimpacts, 2015, 5(3), 135-140.
[http://dx.doi.org/10.15171/bi.2015.17] [PMID: 26457251]
[72]
Attieh, H.A.; Abu Lafi, S.; Jaber, S.; Abu-Remeleh, Q.; Lutgen, P.; Akkawi, M. Cinnamon bark water-infusion as an in vitro inhibitor of β-hematin formation. Med. Plants Res., 2015, 9(38), 998-1005.
[http://dx.doi.org/10.5897/JMPR2015.5931]
[73]
Heshmati Afshar, F.; Delazar, A.; Asnaashari, S.; Vaez, H.; Zolali, E.; Asgharian, P. Screening of anti-malarial activity of different extracts obtained from three species of Scrophularia growing in Iran. Iran. J. Pharm. Res., 2018, 17(2), 668-676.
[PMID: 29881424]
[74]
Abu-Lafi, S.A.; Akkawi, M.; Abu-Remeleh, Q.; Jaber, S.; Qutob, M.; Lutgen, P. Pure Isolates and Preparative HPLC Fractions or Crude Extract of Inulaviscosa: Effect on β-hematin Inhibition in vitro. Pharm. Pharmacol. Int. J., 2018, 6(1), 4-9.
[http://dx.doi.org/10.15406/ppij.2018.06.00145]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy