Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Drug Discovery and Target Identification against Schistosomiasis: A Reality Check on Progress and Future Prospects

Author(s): Peter Mubanga Cheuka*

Volume 22, Issue 19, 2022

Published on: 23 September, 2021

Page: [1595 - 1610] Pages: 16

DOI: 10.2174/1568026621666210924101805

Price: $65

Abstract

Schistosomiasis ranks among the most important infectious diseases, with over 200 million people currently being infected and > 280,000 deaths reported annually. Chemotherapeutic treatment has relied on one drug, praziquantel, for four decades, while other drugs, such as oxamniquine and metrifonate, are no longer preferred for clinical use due to their narrow spectrum of activity - these are only active against S. mansoni and S. haematobium, respectively. Despite being cheap, safe, and effective against all schistosome species, praziquantel is ineffective against immature worms, which may lead to reinfections and treatment failure in endemic areas; a situation that necessitates repeated administration besides other limitations. Therefore, novel drugs are urgently needed to overcome this situation. In this paper, an up to date review of drug targets identified and validated against schistosomiasis while also encompassing promising clinical and preclinical candidate drugs is presented. While there are considerable efforts aimed at identifying and validating drug targets, the pipeline for new antischistosomals is dry. Moreover, the majority of compounds evaluated preclinically are not really advanced because most of them were evaluated in very small preclinical species such as mice alone. Overall, it appears that although a lot of research is going on at discovery phases, unfortunately, it does not translate to advanced preclinical and clinical evaluation.

Keywords: Schistosomiasis, Drug discovery, Drug targets, Clinical trials, Preclinical, Antischistosomal.

Graphical Abstract

[1]
King, C.H.; Dickman, K.; Tisch, D.J. Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet, 2005, 365(9470), 1561-1569.
[http://dx.doi.org/10.1016/S0140-6736(05)66457-4] [PMID: 15866310]
[2]
King, C.H.; Dangerfield-Cha, M. The unacknowledged impact of chronic schistosomiasis. Chronic Illn., 2008, 4(1), 65-79.
[http://dx.doi.org/10.1177/1742395307084407] [PMID: 18322031]
[3]
Gryseels, B.; Polman, K.; Clerinx, J.; Kestens, L. Human schistosomiasis. Lancet, 2006, 368(9541), 1106-1118.
[http://dx.doi.org/10.1016/S0140-6736(06)69440-3] [PMID: 16997665]
[4]
King, C.H. Parasites and poverty: the case of schistosomiasis. Acta Trop., 2010, 113(2), 95-104.
[http://dx.doi.org/10.1016/j.actatropica.2009.11.012] [PMID: 19962954]
[5]
Warren, K.S. The secret of the immunopathogenesis of schistosomiasis: In vivo models. Immunol. Rev., 1982, 61(1), 189-213.
[http://dx.doi.org/10.1111/j.1600-065X.1982.tb00377.x] [PMID: 7037609]
[6]
World Health Organization. Schistosomiasis, Available from: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis(Accessed Apr 5, 2021)
[7]
Xiao, S-H.; Catto, B.A.; Webster, L.T., Jr Effects of praziquantel on different developmental stages of Schistosoma mansoni in vitro and in vivo. J. Infect. Dis., 1985, 151(6), 1130-1137.
[http://dx.doi.org/10.1093/infdis/151.6.1130] [PMID: 3998507]
[8]
Caffrey, C.R. Chemotherapy of schistosomiasis: present and future. Curr. Opin. Chem. Biol., 2007, 11(4), 433-439.
[http://dx.doi.org/10.1016/j.cbpa.2007.05.031] [PMID: 17652008]
[9]
Olliaro, P.; Delgado-Romero, P.; Keiser, J. The little we know about the pharmacokinetics and pharmacodynamics of praziquantel (racemate and R-enantiomer). J. Antimicrob. Chemother., 2014, 69(4), 863-870.
[http://dx.doi.org/10.1093/jac/dkt491] [PMID: 24390933]
[10]
Meyer, T.; Sekljic, H.; Fuchs, S.; Bothe, H.; Schollmeyer, D.; Miculka, C. Taste, a new incentive to switch to (R)-praziquantel in schistosomiasis treatment. PLoS Negl. Trop. Dis., 2009, 3(1), e357.
[http://dx.doi.org/10.1371/journal.pntd.0000357] [PMID: 19159015]
[11]
Coles, G.C.; Bruce, J.I.; Kinoti, G.K.; Mutahi, W.T.; Dias, L.C.S.; Rocha, R.S.; Katz, N. The potential for drug resistance in schistosomiasis. Parasitol. Today, 1987, 3(11), 349-350.
[http://dx.doi.org/10.1016/0169-4758(87)90121-9] [PMID: 15462884]
[12]
Danso-Appiah, A.; De Vlas, S.J. Interpreting low praziquantel cure rates of Schistosoma mansoni infections in Senegal. Trends Parasitol., 2002, 18(3), 125-129.
[http://dx.doi.org/10.1016/S1471-4922(01)02209-7] [PMID: 11854090]
[13]
Crellen, T.; Walker, M.; Lamberton, P.H.L.; Kabatereine, N.B.; Tukahebwa, E.M.; Cotton, J.A.; Webster, J.P. Reduced efficacy of praziquantel against Schistosoma mansoni is associated with multiple rounds of mass drug administration. Clin. Infect. Dis., 2016, 63(9), 1151-1159.
[PMID: 27470241]
[14]
Lago, E.M.; Xavier, R.P.; Teixeira, T.R.; Silva, L.M.; da Silva Filho, A.A.; de Moraes, J. Antischistosomal agents: state of art and perspectives. Future Med. Chem., 2018, 10(1), 89-120.
[http://dx.doi.org/10.4155/fmc-2017-0112] [PMID: 29235368]
[15]
Abdul-Ghani, R.A.; Loutfy, N.; Hassan, A. Experimentally promising antischistosomal drugs: a review of some drug candidates not reaching the clinical use. Parasitol. Res., 2009, 105(4), 899-906.
[http://dx.doi.org/10.1007/s00436-009-1546-2] [PMID: 19588166]
[16]
Cheuka, P.M.; Mayoka, G.; Mutai, P.; Chibale, K. The role of natural products in drug discovery and development against neglected tropical diseases. Molecules, 2016, 22(1), 58.
[http://dx.doi.org/10.3390/molecules22010058] [PMID: 28042865]
[17]
Caffrey, C. R.; El‐Sakkary, N.; Mäder, P.; Krieg, R.; Becker, K.; Schlitzer, M.; Drewry, D. H.; Vennerstrom, J. L.; Grevelding, C. G. Drug discovery and development for schistosomiasis. 2019, 187-225.
[http://dx.doi.org/10.1002/9783527808656.ch8]
[18]
Greenberg, R.M. Ion channels and drug transporters as targets for anthelmintics. Curr. Clin. Microbiol. Rep., 2014, 1(3-4), 51-60.
[http://dx.doi.org/10.1007/s40588-014-0007-6] [PMID: 25554739]
[19]
Bais, S.; Greenberg, R.M. Schistosome TRP channels: An appraisal. Int. J. Parasitol. Drugs Drug Resist., 2020, 13, 1-7.
[http://dx.doi.org/10.1016/j.ijpddr.2020.02.002] [PMID: 32250774]
[20]
Caffrey, C.R.; McKerrow, J.H.; Salter, J.P.; Sajid, M. Blood ‘n’ guts: an update on schistosome digestive peptidases. Trends Parasitol., 2004, 20(5), 241-248.
[http://dx.doi.org/10.1016/j.pt.2004.03.004] [PMID: 15105025]
[21]
Delcroix, M.; Sajid, M.; Caffrey, C.R.; Lim, K-C.; Dvorák, J.; Hsieh, I.; Bahgat, M.; Dissous, C.; McKerrow, J.H. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J. Biol. Chem., 2006, 281(51), 39316-39329.
[http://dx.doi.org/10.1074/jbc.M607128200] [PMID: 17028179]
[22]
Correnti, J.M.; Brindley, P.J.; Pearce, E.J. Long-term suppression of cathepsin B levels by RNA interference retards schistosome growth. Mol. Biochem. Parasitol., 2005, 143(2), 209-215.
[http://dx.doi.org/10.1016/j.molbiopara.2005.06.007] [PMID: 16076506]
[23]
Sajid, M.; McKerrow, J.H.; Hansell, E.; Mathieu, M.A.; Lucas, K.D.; Hsieh, I.; Greenbaum, D.; Bogyo, M.; Salter, J.P.; Lim, K.C.; Franklin, C.; Kim, J.H.; Caffrey, C.R. Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Mol. Biochem. Parasitol., 2003, 131(1), 65-75.
[http://dx.doi.org/10.1016/S0166-6851(03)00194-4] [PMID: 12967713]
[24]
Caffrey, C.R.; Ruppel, A. Cathepsin B-like activity predominates over cathepsin L-like activity in adult Schistosoma mansoni and S. japonicum. Parasitol. Res., 1997, 83(6), 632-635.
[http://dx.doi.org/10.1007/s004360050310] [PMID: 9211519]
[25]
Sajid, M.; Robertson, S. A.; Brinen, L. S.; McKerrow, J.H. Cruzain 2011, 100-115.
[26]
McKerrow, J.H. Update on drug development targeting parasite cysteine proteases. PLoS Negl. Trop. Dis., 2018, 12(8), e0005850.
[http://dx.doi.org/10.1371/journal.pntd.0005850] [PMID: 30138309]
[27]
Abdulla, M-H.; Lim, K-C.; Sajid, M.; McKerrow, J.H.; Caffrey, C.R. Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor. PLoS Med., 2007, 4(1), e14.
[http://dx.doi.org/10.1371/journal.pmed.0040014] [PMID: 17214506]
[28]
Jílková, A.; Řezáčová, P.; Lepšík, M.; Horn, M.; Váchová, J.; Fanfrlík, J.; Brynda, J.; McKerrow, J.H.; Caffrey, C.R.; Mareš, M. Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni. J. Biol. Chem., 2011, 286(41), 35770-35781.
[http://dx.doi.org/10.1074/jbc.M111.271304] [PMID: 21832058]
[29]
Ruthenburg, A.J.; Li, H.; Patel, D.J.; Allis, C.D. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol., 2007, 8(12), 983-994.
[http://dx.doi.org/10.1038/nrm2298] [PMID: 18037899]
[30]
Dubois, F.; Caby, S.; Oger, F.; Cosseau, C.; Capron, M.; Grunau, C.; Dissous, C.; Pierce, R.J. Histone deacetylase inhibitors induce apoptosis, histone hyperacetylation and up-regulation of gene transcription in Schistosoma mansoni. Mol. Biochem. Parasitol., 2009, 168(1), 7-15.
[http://dx.doi.org/10.1016/j.molbiopara.2009.06.001] [PMID: 19538992]
[31]
Marek, M.; Kannan, S.; Hauser, A-T.; Moraes Mourão, M.; Caby, S.; Cura, V.; Stolfa, D.A.; Schmidtkunz, K.; Lancelot, J.; Andrade, L.; Renaud, J-P.; Oliveira, G.; Sippl, W.; Jung, M.; Cavarelli, J.; Pierce, R.J.; Romier, C. Structural basis for the inhibition of histone deacetylase 8 (HDAC8), a key epigenetic player in the blood fluke Schistosoma mansoni. PLoS Pathog., 2013, 9(9), e1003645.
[http://dx.doi.org/10.1371/journal.ppat.1003645] [PMID: 24086136]
[32]
Schubert, U.; Antón, L.C.; Gibbs, J.; Norbury, C.C.; Yewdell, J.W.; Bennink, J.R. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature, 2000, 404(6779), 770-774.
[http://dx.doi.org/10.1038/35008096] [PMID: 10783891]
[33]
Wolf, D.H.; Hilt, W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim. Biophys. Acta, 2004, 1695(1-3), 19-31.
[http://dx.doi.org/10.1016/j.bbamcr.2004.10.007] [PMID: 15571806]
[34]
Nabhan, J.F.; El-Shehabi, F.; Patocka, N.; Ribeiro, P. The 26S proteasome in Schistosoma mansoni: bioinformatics analysis, developmental expression, and RNA interference (RNAi) studies. Exp. Parasitol., 2007, 117(3), 337-347.
[http://dx.doi.org/10.1016/j.exppara.2007.08.002] [PMID: 17892869]
[35]
Kisselev, A.F.; Goldberg, A.L. Proteasome inhibitors: from research tools to drug candidates. Chem. Biol., 2001, 8(8), 739-758.
[http://dx.doi.org/10.1016/S1074-5521(01)00056-4] [PMID: 11514224]
[36]
Kuntz, A.N.; Davioud-Charvet, E.; Sayed, A.A.; Califf, L.L.; Dessolin, J.; Arnér, E.S.J.; Williams, D.L. Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target. PLoS Med., 2007, 4(6), e206.
[http://dx.doi.org/10.1371/journal.pmed.0040206] [PMID: 17579510]
[37]
Song, L.; Li, J.; Xie, S.; Qian, C.; Wang, J.; Zhang, W.; Yin, X.; Hua, Z.; Yu, C. Thioredoxin glutathione reductase as a novel drug target: evidence from Schistosoma japonicum. PLoS One, 2012, 7(2), e31456.
[http://dx.doi.org/10.1371/journal.pone.0031456] [PMID: 22384025]
[38]
Brown, M.S.; Goldstein, J.L. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J. Lipid Res., 1980, 21(5), 505-517.
[http://dx.doi.org/10.1016/S0022-2275(20)42221-7] [PMID: 6995544]
[39]
Rojo-Arreola, L.; Long, T.; Asarnow, D.; Suzuki, B.M.; Singh, R.; Caffrey, C.R. Chemical and genetic validation of the statin drug target to treat the helminth disease, schistosomiasis. PLoS One, 2014, 9(1), e87594.
[http://dx.doi.org/10.1371/journal.pone.0087594] [PMID: 24489942]
[40]
Shi, Y.; Lan, F.; Matson, C.; Mulligan, P.; Whetstine, J.R.; Cole, P.A.; Casero, R.A.; Shi, Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7), 941-953.
[http://dx.doi.org/10.1016/j.cell.2004.12.012] [PMID: 15620353]
[41]
Metzger, E.; Wissmann, M.; Yin, N.; Müller, J.M.; Schneider, R.; Peters, A.H.F.M.; Günther, T.; Buettner, R.; Schüle, R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature, 2005, 437(7057), 436-439.
[http://dx.doi.org/10.1038/nature04020] [PMID: 16079795]
[42]
Hayami, S.; Kelly, J.D.; Cho, H-S.; Yoshimatsu, M.; Unoki, M.; Tsunoda, T.; Field, H.I.; Neal, D.E.; Yamaue, H.; Ponder, B.A.J.; Nakamura, Y.; Hamamoto, R. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int. J. Cancer, 2011, 128(3), 574-586.
[http://dx.doi.org/10.1002/ijc.25349] [PMID: 20333681]
[43]
Padalino, G.; Ferla, S.; Brancale, A.; Chalmers, I.W.; Hoffmann, K.F. Combining bioinformatics, cheminformatics, functional genomics and whole organism approaches for identifying epigenetic drug targets in Schistosoma mansoni. Int. J. Parasitol. Drugs Drug Resist., 2018, 8(3), 559-570.
[http://dx.doi.org/10.1016/j.ijpddr.2018.10.005] [PMID: 30455056]
[44]
Ross, A.C.; Zolfaghari, R. Cytochrome P450s in the regulation of cellular retinoic acid metabolism. Annu. Rev. Nutr., 2011, 31, 65-87.
[http://dx.doi.org/10.1146/annurev-nutr-072610-145127] [PMID: 21529158]
[45]
Tomaszewski, P.; Kubiak-Tomaszewska, G.; Pachecka, J. Cytochrome P450 polymorphism--molecular, metabolic, and pharmacogenetic aspects. II. Participation of CYP isoenzymes in the metabolism of endogenous substances and drugs. Acta Pol. Pharm., 2008, 65(3), 307-318.
[PMID: 18646550]
[46]
Ziniel, P.D.; Karumudi, B.; Barnard, A.H.; Fisher, E.M.S.; Thatcher, G.R.J.; Podust, L.M.; Williams, D.L. The Schistosoma mansoni cytochrome P450 (CYP3050A1) is essential for worm survival and egg development. PLoS Negl. Trop. Dis., 2015, 9(12), e0004279.
[http://dx.doi.org/10.1371/journal.pntd.0004279] [PMID: 26713732]
[47]
Archambault, V.; Lépine, G.; Kachaner, D. Understanding the polo kinase machine. Oncogene, 2015, 34(37), 4799-4807.
[http://dx.doi.org/10.1038/onc.2014.451] [PMID: 25619835]
[48]
Archambault, V.; Glover, D.M. Yeast Polo-like kinase substrates are nailed with the right tools. Genome Biol., 2008, 9(1), 203.
[http://dx.doi.org/10.1186/gb-2008-9-1-203] [PMID: 18254925]
[49]
Archambault, V.; Glover, D.M. Polo-like kinases: conservation and divergence in their functions and regulation. Nat. Rev. Mol. Cell Biol., 2009, 10(4), 265-275.
[http://dx.doi.org/10.1038/nrm2653] [PMID: 19305416]
[50]
Barr, F.A.; Silljé, H.H.W.; Nigg, E.A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol., 2004, 5(6), 429-440.
[http://dx.doi.org/10.1038/nrm1401] [PMID: 15173822]
[51]
Long, T.; Neitz, R.J.; Beasley, R.; Kalyanaraman, C.; Suzuki, B.M.; Jacobson, M.P.; Dissous, C.; McKerrow, J.H.; Drewry, D.H.; Zuercher, W.J.; Singh, R.; Caffrey, C.R. Structure-bioactivity relationship for benzimidazole thiophene inhibitors of polo-like kinase 1 (PLK1), a potential drug target in Schistosoma mansoni. PLoS Negl. Trop. Dis., 2016, 10(1), e0004356.
[http://dx.doi.org/10.1371/journal.pntd.0004356] [PMID: 26751972]
[52]
Maurice, D.H.; Ke, H.; Ahmad, F.; Wang, Y.; Chung, J.; Manganiello, V.C. Advances in targeting cyclic nucleotide phosphodiesterases. Nat. Rev. Drug Discov., 2014, 13(4), 290-314.
[http://dx.doi.org/10.1038/nrd4228] [PMID: 24687066]
[53]
Conti, M.; Beavo, J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu. Rev. Biochem., 2007, 76, 481-511.
[http://dx.doi.org/10.1146/annurev.biochem.76.060305.150444] [PMID: 17376027]
[54]
Kametani, F.; Haga, S. Accumulation of carboxy-terminal fragments of APP increases phosphodiesterase 8B. Neurobiol. Aging, 2015, 36(2), 634-637.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.09.029] [PMID: 25457556]
[55]
Francis, S.H.; Houslay, M.D.; Conti, M. Phosphodiesterase inhibitors: factors that influence potency, selectivity, and action. Handb. Exp. Pharmacol., 2011, (204), 47-84.
[http://dx.doi.org/10.1007/978-3-642-17969-3_2] [PMID: 21695635]
[56]
Long, T.; Rojo-Arreola, L.; Shi, D.; El-Sakkary, N.; Jarnagin, K.; Rock, F.; Meewan, M.; Rascón, A.A., Jr; Lin, L.; Cunningham, K.A.; Lemieux, G.A.; Podust, L.; Abagyan, R.; Ashrafi, K.; McKerrow, J.H.; Caffrey, C.R. Phenotypic, chemical and functional characterization of cyclic nucleotide phosphodiesterase 4 (PDE4) as a potential anthelmintic drug target. PLoS Negl. Trop. Dis., 2017, 11(7), e0005680.
[http://dx.doi.org/10.1371/journal.pntd.0005680] [PMID: 28704396]
[57]
Pereira, A.S.A.; Amaral, M.S.; Vasconcelos, E.J.R.; Pires, D.S.; Asif, H.; daSilva, L.F.; Morales-Vicente, D.A.; Carneiro, V.C.; Angeli, C.B.; Palmisano, G.; Fantappie, M.R.; Pierce, R.J.; Setubal, J.C.; Verjovski-Almeida, S. Inhibition of histone methyltransferase EZH2 in Schistosoma mansoni in vitro by GSK343 reduces egg laying and decreases the expression of genes implicated in DNA replication and noncoding RNA metabolism. PLoS Negl. Trop. Dis., 2018, 12(10), e0006873.
[http://dx.doi.org/10.1371/journal.pntd.0006873] [PMID: 30365505]
[58]
Supuran, C.T. Carbonic anhydrases--an overview. Curr. Pharm. Des., 2008, 14(7), 603-614.
[http://dx.doi.org/10.2174/138161208783877884] [PMID: 18336305]
[59]
Gilmour, K.M. Perspectives on carbonic anhydrase. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2010, 157(3), 193-197.
[http://dx.doi.org/10.1016/j.cbpa.2010.06.161] [PMID: 20541618]
[60]
Da’dara, A.A.; Angeli, A.; Ferraroni, M.; Supuran, C.T.; Skelly, P.J. Crystal structure and chemical inhibition of essential schistosome host-interactive virulence factor carbonic anhydrase SmCA. Commun. Biol., 2019, 2(1), 333.
[http://dx.doi.org/10.1038/s42003-019-0578-0] [PMID: 31508507]
[61]
MacDonald, K.; Buxton, S.; Kimber, M.J.; Day, T.A.; Robertson, A.P.; Ribeiro, P. Functional characterization of a novel family of acetylcholine-gated chloride channels in Schistosoma mansoni. PLoS Pathog., 2014, 10(6), e1004181.
[http://dx.doi.org/10.1371/journal.ppat.1004181] [PMID: 24945827]
[62]
MacDonald, K.; Kimber, M.J.; Day, T.A.; Ribeiro, P. A constitutively active G protein-coupled acetylcholine receptor regulates motility of larval Schistosoma mansoni. Mol. Biochem. Parasitol., 2015, 202(1), 29-37.
[http://dx.doi.org/10.1016/j.molbiopara.2015.09.001] [PMID: 26365538]
[63]
Venkatachalam, K.; Montell, C. TRP channels. Annu. Rev. Biochem., 2007, 76, 387-417.
[http://dx.doi.org/10.1146/annurev.biochem.75.103004.142819] [PMID: 17579562]
[64]
Hardie, R.C. TRP channels and lipids: from Drosophila to mammalian physiology. J. Physiol., 2007, 578(Pt 1), 9-24.
[http://dx.doi.org/10.1113/jphysiol.2006.118372] [PMID: 16990401]
[65]
Bais, S.; Churgin, M.A.; Fang-Yen, C.; Greenberg, R.M. Evidence for novel pharmacological sensitivities of transient receptor potential (TRP) channels in Schistosoma mansoni. PLoS Negl. Trop. Dis., 2015, 9(12), e0004295.
[http://dx.doi.org/10.1371/journal.pntd.0004295] [PMID: 26655809]
[66]
Oger, F.; Dubois, F.; Caby, S.; Noël, C.; Cornette, J.; Bertin, B.; Capron, M.; Pierce, R.J. The class I histone deacetylases of the platyhelminth parasite Schistosoma mansoni. Biochem. Biophys. Res. Commun., 2008, 377(4), 1079-1084.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.090] [PMID: 18977200]
[67]
Haberland, M.; Montgomery, R.L.; Olson, E.N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet., 2009, 10(1), 32-42.
[http://dx.doi.org/10.1038/nrg2485] [PMID: 19065135]
[68]
Chakrabarti, A.; Oehme, I.; Witt, O.; Oliveira, G.; Sippl, W.; Romier, C.; Pierce, R.J.; Jung, M. HDAC8: a multifaceted target for therapeutic interventions. Trends Pharmacol. Sci., 2015, 36(7), 481-492.
[http://dx.doi.org/10.1016/j.tips.2015.04.013] [PMID: 26013035]
[69]
Wolfson, N.A.; Pitcairn, C.A.; Fierke, C.A. HDAC8 substrates: Histones and beyond. Biopolymers, 2013, 99(2), 112-126.
[http://dx.doi.org/10.1002/bip.22135] [PMID: 23175386]
[70]
Gregoretti, I.V.; Lee, Y-M.; Goodson, H.V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol., 2004, 338(1), 17-31.
[http://dx.doi.org/10.1016/j.jmb.2004.02.006] [PMID: 15050820]
[71]
Shahbazian, M.D.; Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem., 2007, 76(1), 75-100.
[http://dx.doi.org/10.1146/annurev.biochem.76.052705.162114] [PMID: 17362198]
[72]
Hu, E.; Chen, Z.; Fredrickson, T.; Zhu, Y.; Kirkpatrick, R.; Zhang, G-F.; Johanson, K.; Sung, C-M.; Liu, R.; Winkler, J. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J. Biol. Chem., 2000, 275(20), 15254-15264.
[http://dx.doi.org/10.1074/jbc.M908988199] [PMID: 10748112]
[73]
Bibo-Verdugo, B.; Wang, S.C.; Almaliti, J.; Ta, A.P.; Jiang, Z.; Wong, D.A.; Lietz, C.B.; Suzuki, B.M.; El-Sakkary, N.; Hook, V.; Salvesen, G.S.; Gerwick, W.H.; Caffrey, C.R.; O’Donoghue, A.J. The proteasome as a drug target in the metazoan pathogen, Schistosoma mansoni. ACS Infect. Dis., 2019, 5(10), 1802-1812.
[http://dx.doi.org/10.1021/acsinfecdis.9b00237] [PMID: 31355632]
[74]
Bhattacharyya, S.; Yu, H.; Mim, C.; Matouschek, A. Regulated protein turnover: snapshots of the proteasome in action. Nat. Rev. Mol. Cell Biol., 2014, 15(2), 122-133.
[http://dx.doi.org/10.1038/nrm3741] [PMID: 24452470]
[75]
Brooks, P.; Fuertes, G.; Murray, R.Z.; Bose, S.; Knecht, E.; Rechsteiner, M.C.; Hendil, K.B.; Tanaka, K.; Dyson, J.; Rivett, J. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem. J., 2000, 346(Pt 1), 155-161.
[http://dx.doi.org/10.1042/bj3460155] [PMID: 10657252]
[76]
Glickman, M.H.; Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev., 2002, 82(2), 373-428.
[http://dx.doi.org/10.1152/physrev.00027.2001] [PMID: 11917093]
[77]
Friedman, J.; Xue, D. To live or die by the sword: the regulation of apoptosis by the proteasome. Dev. Cell, 2004, 6(4), 460-461.
[http://dx.doi.org/10.1016/S1534-5807(04)00104-2] [PMID: 15068786]
[78]
Tanaka, K. Proteasomes: structure and biology. J. Biochem., 1998, 123(2), 195-204.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021922] [PMID: 9538192]
[79]
Arendt, C.S.; Hochstrasser, M. Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc. Natl. Acad. Sci. USA, 1997, 94(14), 7156-7161.
[http://dx.doi.org/10.1073/pnas.94.14.7156] [PMID: 9207060]
[80]
Bibo-Verdugo, B.; Jiang, Z.; Caffrey, C.R.; O’Donoghue, A.J. Targeting proteasomes in infectious organisms to combat disease. FEBS J., 2017, 284(10), 1503-1517.
[http://dx.doi.org/10.1111/febs.14029] [PMID: 28122162]
[81]
Li, H.; Ponder, E.L.; Verdoes, M.; Asbjornsdottir, K.H.; Deu, E.; Edgington, L.E.; Lee, J.T.; Kirk, C.J.; Demo, S.D.; Williamson, K.C.; Bogyo, M. Validation of the proteasome as a therapeutic target in plasmodium using an epoxyketone inhibitor with parasite-specific toxicity. Chem. Biol., 2012, 19(12), 1535-1545.
[http://dx.doi.org/10.1016/j.chembiol.2012.09.019] [PMID: 23142757]
[82]
Yoo, E.; Stokes, B.H.; de Jong, H.; Vanaerschot, M.; Kumar, T.; Lawrence, N.; Njoroge, M.; Garcia, A.; Van der Westhuyzen, R.; Momper, J.D.; Ng, C.L.; Fidock, D.A.; Bogyo, M. Defining the determinants of specificity of plasmodium proteasome inhibitors. J. Am. Chem. Soc., 2018, 140(36), 11424-11437.
[http://dx.doi.org/10.1021/jacs.8b06656] [PMID: 30107725]
[83]
Jalovecka, M.; Hartmann, D.; Miyamoto, Y.; Eckmann, L.; Hajdusek, O.; O’Donoghue, A.J.; Sojka, D. Validation of Babesia proteasome as a drug target. Int. J. Parasitol. Drugs Drug Resist., 2018, 8(3), 394-402.
[http://dx.doi.org/10.1016/j.ijpddr.2018.08.001] [PMID: 30103207]
[84]
Kirkman, L.A.; Zhan, W.; Visone, J.; Dziedziech, A.; Singh, P.K.; Fan, H.; Tong, X.; Bruzual, I.; Hara, R.; Kawasaki, M.; Imaeda, T.; Okamoto, R.; Sato, K.; Michino, M.; Alvaro, E.F.; Guiang, L.F.; Sanz, L.; Mota, D.J.; Govindasamy, K.; Wang, R.; Ling, Y.; Tumwebaze, P.K.; Sukenick, G.; Shi, L.; Vendome, J.; Bhanot, P.; Rosenthal, P.J.; Aso, K.; Foley, M.A.; Cooper, R.A.; Kafsack, B.; Doggett, J.S.; Nathan, C.F.; Lin, G. Antimalarial proteasome inhibitor reveals collateral sensitivity from intersubunit interactions and fitness cost of resistance. Proc. Natl. Acad. Sci. USA, 2018, 115(29), E6863-E6870.
[http://dx.doi.org/10.1073/pnas.1806109115] [PMID: 29967165]
[85]
Zhan, W.; Visone, J.; Ouellette, T.; Harris, J.C.; Wang, R.; Zhang, H.; Singh, P.K.; Ginn, J.; Sukenick, G.; Wong, T-T.; Okoro, J.I.; Scales, R.M.; Tumwebaze, P.K.; Rosenthal, P.J.; Kafsack, B.F.C.; Cooper, R.A.; Meinke, P.T.; Kirkman, L.A.; Lin, G. Improvement of asparagine ethylenediamines as anti-malarial plasmodium-selective proteasome inhibitors. J. Med. Chem., 2019, 62(13), 6137-6145.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00363] [PMID: 31177777]
[86]
Wyllie, S.; Brand, S.; Thomas, M.; De Rycker, M.; Chung, C.W.; Pena, I.; Bingham, R.P.; Bueren-Calabuig, J.A.; Cantizani, J.; Cebrian, D.; Craggs, P.D.; Ferguson, L.; Goswami, P.; Hobrath, J.; Howe, J.; Jeacock, L.; Ko, E-J.; Korczynska, J.; MacLean, L.; Manthri, S.; Martinez, M.S.; Mata-Cantero, L.; Moniz, S.; Nühs, A.; Osuna-Cabello, M.; Pinto, E.; Riley, J.; Robinson, S.; Rowland, P.; Simeons, F.R.C.; Shishikura, Y.; Spinks, D.; Stojanovski, L.; Thomas, J.; Thompson, S.; Viayna Gaza, E.; Wall, R.J.; Zuccotto, F.; Horn, D.; Ferguson, M.A.J.; Fairlamb, A.H.; Fiandor, J.M.; Martin, J.; Gray, D.W.; Miles, T.J.; Gilbert, I.H.; Read, K.D.; Marco, M.; Wyatt, P.G. Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proc. Natl. Acad. Sci. USA, 2019, 116(19), 9318-9323.
[http://dx.doi.org/10.1073/pnas.1820175116] [PMID: 30962368]
[87]
Xie, S.C.; Gillett, D.L.; Spillman, N.J.; Tsu, C.; Luth, M.R.; Ottilie, S.; Duffy, S.; Gould, A.E.; Hales, P.; Seager, B.A.; Charron, C.L.; Bruzzese, F.; Yang, X.; Zhao, X.; Huang, S-C.; Hutton, C.A.; Burrows, J.N.; Winzeler, E.A.; Avery, V.M.; Dick, L.R.; Tilley, L. Target validation and identification of novel boronate inhibitors of the Plasmodium falciparum proteasome. J. Med. Chem., 2018, 61(22), 10053-10066.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01161] [PMID: 30373366]
[88]
Li, H.; O’Donoghue, A.J.; van der Linden, W.A.; Xie, S.C.; Yoo, E.; Foe, I.T.; Tilley, L.; Craik, C.S.; da Fonseca, P.C.A.; Bogyo, M. Structure- and function-based design of plasmodium-selective proteasome inhibitors. Nature, 2016, 530(7589), 233-236.
[http://dx.doi.org/10.1038/nature16936] [PMID: 26863983]
[89]
Khare, S.; Nagle, A.S.; Biggart, A.; Lai, Y.H.; Liang, F.; Davis, L.C.; Barnes, S.W.; Mathison, C.J.N.; Myburgh, E.; Gao, M-Y.; Gillespie, J.R.; Liu, X.; Tan, J.L.; Stinson, M.; Rivera, I.C.; Ballard, J.; Yeh, V.; Groessl, T.; Federe, G.; Koh, H.X.Y.; Venable, J.D.; Bursulaya, B.; Shapiro, M.; Mishra, P.K.; Spraggon, G.; Brock, A.; Mottram, J.C.; Buckner, F.S.; Rao, S.P.S.; Wen, B.G.; Walker, J.R.; Tuntland, T.; Molteni, V.; Glynne, R.J.; Supek, F. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature, 2016, 537(7619), 229-233.
[http://dx.doi.org/10.1038/nature19339] [PMID: 27501246]
[90]
Guerra-Sá, R.; Castro-Borges, W.; Evangelista, E.A.; Kettelhut, I.C.; Rodrigues, V. Schistosoma mansoni: functional proteasomes are required for development in the vertebrate host. Exp. Parasitol., 2005, 109(4), 228-236.
[http://dx.doi.org/10.1016/j.exppara.2005.01.002] [PMID: 15755420]
[91]
Adams, J.; Behnke, M.; Chen, S.; Cruickshank, A.A.; Dick, L.R.; Grenier, L.; Klunder, J.M.; Ma, Y-T.; Plamondon, L.; Stein, R.L. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg. Med. Chem. Lett., 1998, 8(4), 333-338.
[http://dx.doi.org/10.1016/S0960-894X(98)00029-8] [PMID: 9871680]
[92]
Concannon, C.G.; Koehler, B.F.; Reimertz, C.; Murphy, B.M.; Bonner, C.; Thurow, N.; Ward, M.W.; Villunger, A.; Strasser, A.; Kögel, D.; Prehn, J.H.M. Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway. Oncogene, 2007, 26(12), 1681-1692.
[http://dx.doi.org/10.1038/sj.onc.1209974] [PMID: 16983338]
[93]
Imajoh-Ohmi, S.; Kawaguchi, T.; Sugiyama, S.; Tanaka, K.; Omura, S.; Kikuchi, H. Lactacystin, a specific inhibitor of the proteasome, induces apoptosis in human monoblast U937 cells. Biochem. Biophys. Res. Commun., 1995, 217(3), 1070-1077.
[http://dx.doi.org/10.1006/bbrc.1995.2878] [PMID: 8554559]
[94]
Prast-Nielsen, S.; Huang, H-H.; Williams, D.L. Thioredoxin glutathione reductase: its role in redox biology and potential as a target for drugs against neglected diseases. Biochim. Biophys. Acta, 2011, 1810(12), 1262-1271.
[http://dx.doi.org/10.1016/j.bbagen.2011.06.024] [PMID: 21782895]
[95]
Tripathi, T.; Suttiprapa, S.; Sripa, B. Unusual thiol-based redox metabolism of parasitic flukes. Parasitol. Int., 2017, 66(4), 390-395.
[http://dx.doi.org/10.1016/j.parint.2016.05.013] [PMID: 27238582]
[96]
Edwards, P.A.; Ericsson, J. Sterols and isoprenoids: signaling molecules derived from the cholesterol biosynthetic pathway. Annu. Rev. Biochem., 1999, 68(1), 157-185.
[http://dx.doi.org/10.1146/annurev.biochem.68.1.157] [PMID: 10872447]
[97]
Lombard, J.; Moreira, D. Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol. Biol. Evol., 2011, 28(1), 87-99.
[http://dx.doi.org/10.1093/molbev/msq177] [PMID: 20651049]
[98]
Rauthan, M.; Pilon, M. The mevalonate pathway in C. elegans. Lipids Health Dis., 2011, 10(1), 243.
[http://dx.doi.org/10.1186/1476-511X-10-243] [PMID: 22204706]
[99]
Endo, A. The discovery and development of HMG-CoA reductase inhibitors. J. Lipid Res., 1992, 33(11), 1569-1582.
[http://dx.doi.org/10.1016/S0022-2275(20)41379-3] [PMID: 1464741]
[100]
Manzoni, M.; Rollini, M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotechnol., 2002, 58(5), 555-564.
[http://dx.doi.org/10.1007/s00253-002-0932-9] [PMID: 11956737]
[101]
Jenuwein, T. Translating the histone code. Science (80-.), 2001, 293(5532), 1074-1080.
[102]
Cho, H-S.; Suzuki, T.; Dohmae, N.; Hayami, S.; Unoki, M.; Yoshimatsu, M.; Toyokawa, G.; Takawa, M.; Chen, T.; Kurash, J.K.; Field, H.I.; Ponder, B.A.J.; Nakamura, Y.; Hamamoto, R. Demethylation of RB regulator MYPT1 by histone demethylase LSD1 promotes cell cycle progression in cancer cells. Cancer Res., 2011, 71(3), 655-660.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2446] [PMID: 21115810]
[103]
Lv, S.; Bu, W.; Jiao, H.; Liu, B.; Zhu, L.; Zhao, H.; Liao, J.; Li, J.; Xu, X. LSD1 is required for chromosome segregation during mitosis. Eur. J. Cell Biol., 2010, 89(7), 557-563.
[http://dx.doi.org/10.1016/j.ejcb.2010.01.004] [PMID: 20189264]
[104]
Li, Y.; Deng, C.; Hu, X.; Patel, B.; Fu, X.; Qiu, Y.; Brand, M.; Zhao, K.; Huang, S. Dynamic interaction between TAL1 oncoprotein and LSD1 regulates TAL1 function in hematopoiesis and leukemogenesis. Oncogene, 2012, 31(48), 5007-5018.
[http://dx.doi.org/10.1038/onc.2012.8] [PMID: 22310283]
[105]
Godmann, M.; Auger, V.; Ferraroni-Aguiar, V.; Di Sauro, A.; Sette, C.; Behr, R.; Kimmins, S. Dynamic regulation of histone H3 methylation at lysine 4 in mammalian spermatogenesis. Biol. Reprod., 2007, 77(5), 754-764.
[http://dx.doi.org/10.1095/biolreprod.107.062265] [PMID: 17634443]
[106]
Musri, M.M.; Carmona, M.C.; Hanzu, F.A.; Kaliman, P.; Gomis, R.; Párrizas, M. Histone demethylase LSD1 regulates adipogenesis. J. Biol. Chem., 2010, 285(39), 30034-30041.
[http://dx.doi.org/10.1074/jbc.M110.151209] [PMID: 20656681]
[107]
Zhou, H.; Li, W.; Zhu, S.; Joo, J.Y.; Do, J.T.; Xiong, W.; Kim, J.B.; Zhang, K.; Schöler, H.R.; Ding, S. Conversion of mouse epiblast stem cells to an earlier pluripotency state by small molecules. J. Biol. Chem., 2010, 285(39), 29676-29680.
[http://dx.doi.org/10.1074/jbc.C110.150599] [PMID: 20705612]
[108]
Foster, C.T.; Dovey, O.M.; Lezina, L.; Luo, J.L.; Gant, T.W.; Barlev, N.; Bradley, A.; Cowley, S.M. Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol. Cell. Biol., 2010, 30(20), 4851-4863.
[http://dx.doi.org/10.1128/MCB.00521-10] [PMID: 20713442]
[109]
Scoumanne, A.; Chen, X. The lysine-specific demethylase 1 is required for cell proliferation in both p53-dependent and -independent manners. J. Biol. Chem., 2007, 282(21), 15471-15475.
[http://dx.doi.org/10.1074/jbc.M701023200] [PMID: 17409384]
[110]
Maiques-Diaz, A.; Somervaille, T.C. LSD1: biologic roles and therapeutic targeting. Epigenomics, 2016, 8(8), 1103-1116.
[http://dx.doi.org/10.2217/epi-2016-0009] [PMID: 27479862]
[111]
Ismail, T.; Lee, H-K.; Kim, C.; Kwon, T.; Park, T.J.; Lee, H-S. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics Chromatin, 2018, 11(1), 33.
[http://dx.doi.org/10.1186/s13072-018-0203-3] [PMID: 29921310]
[112]
Zitouni, S.; Nabais, C.; Jana, S.C.; Guerrero, A.; Bettencourt-Dias, M. Polo-like kinases: structural variations lead to multiple functions. Nat. Rev. Mol. Cell Biol., 2014, 15(7), 433-452.
[http://dx.doi.org/10.1038/nrm3819] [PMID: 24954208]
[113]
Strebhardt, K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat. Rev. Drug Discov., 2010, 9(8), 643-660.
[http://dx.doi.org/10.1038/nrd3184] [PMID: 20671765]
[114]
de Cárcer, G.; Manning, G.; Malumbres, M. From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle, 2011, 10(14), 2255-2262.
[http://dx.doi.org/10.4161/cc.10.14.16494] [PMID: 21654194]
[115]
Cheng, L.; Wang, C.; Jing, J. Polo-like kinase 1 as a potential therapeutic target for osteosarcoma. Curr. Pharm. Des., 2015, 21(10), 1347-1350.
[http://dx.doi.org/10.2174/1381612820999141029162811] [PMID: 25345614]
[116]
Craig, S.N.; Wyatt, M.D.; McInnes, C. Current assessment of polo-like kinases as anti-tumor drug targets. Expert Opin. Drug Discov., 2014, 9(7), 773-789.
[http://dx.doi.org/10.1517/17460441.2014.918100] [PMID: 24819909]
[117]
Takai, N.; Hamanaka, R.; Yoshimatsu, J.; Miyakawa, I. Polo-like kinases (Plks) and cancer. Oncogene, 2005, 24(2), 287-291.
[http://dx.doi.org/10.1038/sj.onc.1208272] [PMID: 15640844]
[118]
Long, T.; Cailliau, K.; Beckmann, S.; Browaeys, E.; Trolet, J.; Grevelding, C.G.; Dissous, C. Schistosoma mansoni Polo-like kinase 1: A mitotic kinase with key functions in parasite reproduction. Int. J. Parasitol., 2010, 40(9), 1075-1086.
[http://dx.doi.org/10.1016/j.ijpara.2010.03.002] [PMID: 20350550]
[119]
Ahmad, F.; Murata, T.; Shimizu, K.; Degerman, E.; Maurice, D.; Manganiello, V. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets. Oral Dis., 2015, 21(1), e25-e50.
[http://dx.doi.org/10.1111/odi.12275] [PMID: 25056711]
[120]
Kumar, N.; Goldminz, A.M.; Kim, N.; Gottlieb, A.B. Phosphodiesterase 4-targeted treatments for autoimmune diseases. BMC Med., 2013, 11, 96.
[http://dx.doi.org/10.1186/1741-7015-11-96] [PMID: 23557064]
[121]
Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015, 386(9995), 743-800.
[http://dx.doi.org/10.1016/S0140-6736(15)60692-4] [PMID: 26063472]
[122]
Fan Chung, K. Phosphodiesterase inhibitors in airways disease. Eur. J. Pharmacol., 2006, 533(1-3), 110-117.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.059] [PMID: 16458289]
[123]
Supuran, C.T.; Capasso, C. An overview of the bacterial carbonic anhydrases. Metabolites, 2017, 7(4), 56.
[http://dx.doi.org/10.3390/metabo7040056] [PMID: 29137134]
[124]
Lomelino, C.L.; Andring, J.T.; McKenna, R. Crystallography and its impact on carbonic anhydrase research. Int. J. Med. Chem., 2018, 2018, 9419521.
[http://dx.doi.org/10.1155/2018/9419521] [PMID: 30302289]
[125]
Crabtree, J.E.; Wilson, R.A. Schistosoma mansoni: a scanning electron microscope study of the developing schistosomulum. Parasitology, 1980, 81(Pt 3), 553-564.
[http://dx.doi.org/10.1017/S003118200006193X] [PMID: 7232034]
[126]
Bueding, E.; Liu, C.L.; Rogers, S.H. Inhibition by metrifonate and dichlorvos of cholinesterases in schistosomes. Br. J. Pharmacol., 1972, 46(3), 480-487.
[http://dx.doi.org/10.1111/j.1476-5381.1972.tb08145.x] [PMID: 4656609]
[127]
Szallasi, A.; Blumberg, P.M. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol. Rev., 1999, 51(2), 159-212.
[PMID: 10353985]
[128]
Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653), 816-824.
[http://dx.doi.org/10.1038/39807] [PMID: 9349813]
[129]
O’Neill, J.; Brock, C.; Olesen, A.E.; Andresen, T.; Nilsson, M.; Dickenson, A.H. Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol. Rev., 2012, 64(4), 939-971.
[http://dx.doi.org/10.1124/pr.112.006163] [PMID: 23023032]
[130]
Wolstenholme, A. J.; Williamson, S. M.; Reaves, B. J. TRP Channels in Parasites, 2011, 359-371.
[http://dx.doi.org/10.1007/978-94-007-0265-3_20]
[131]
Prole, D.L.; Taylor, C.W. Identification of intracellular and plasma membrane calcium channel homologues in pathogenic parasites. PLoS One, 2011, 6(10), e26218.
[http://dx.doi.org/10.1371/journal.pone.0026218] [PMID: 22022573]
[132]
Bais, S.; Berry, C.T.; Liu, X.; Ruthel, G.; Freedman, B.D.; Greenberg, R.M. Atypical pharmacology of schistosome TRPA1-like ion channels. PLoS Negl. Trop. Dis., 2018, 12(5), e0006495.
[http://dx.doi.org/10.1371/journal.pntd.0006495] [PMID: 29746471]
[133]
Rando, D.G.G.; da Costa, M.O.L.; Pavani, T.F.A.; Oliveira, T.; Dos Santos, P.F.; Amorim, C.R.; Pinto, P.L.S.; de Brito, M.G.; Silva, M.P.N.; Roquini, D.B.; de Moraes, J. Vanillin-related n-acylhydrazones: synthesis, antischistosomal properties and target fishing studies. Curr. Top. Med. Chem., 2019, 19(14), 1241-1251.
[http://dx.doi.org/10.2174/1568026619666190620163237] [PMID: 31223088]
[134]
Vanderstraete, M.; Gouignard, N.; Cailliau, K.; Morel, M.; Lancelot, J.; Bodart, J-F.; Dissous, C. Dual targeting of insulin and venus kinase receptors of Schistosoma mansoni for novel anti-schistosome therapy. PLoS Negl. Trop. Dis., 2013, 7(5), e2226.
[http://dx.doi.org/10.1371/journal.pntd.0002226] [PMID: 23696913]
[135]
Manneck, T.; Keiser, J.; Müller, J. Mefloquine interferes with glycolysis in schistosomula of Schistosoma mansoni via inhibition of enolase. Parasitology, 2012, 139(4), 497-505.
[http://dx.doi.org/10.1017/S0031182011002204] [PMID: 22309769]
[136]
Jacques, S.A.; Kuhn, I.; Koniev, O.; Schuber, F.; Lund, F.E.; Wagner, A.; Muller-Steffner, H.; Kellenberger, E. Discovery of potent inhibitors of Schistosoma mansoni NAD+ catabolizing enzyme. J. Med. Chem., 2015, 58(8), 3582-3592.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00203] [PMID: 25803425]
[137]
Liu, Y-X.; Wu, W.; Liang, Y-J.; Jie, Z-L.; Wang, H.; Wang, W.; Huang, Y-X. New uses for old drugs: the tale of artemisinin derivatives in the elimination of Schistosomiasis japonica in China. Molecules, 2014, 19(9), 15058-15074.
[http://dx.doi.org/10.3390/molecules190915058] [PMID: 25244286]
[138]
Utzinger, J.; Xiao, S-H.; Tanner, M.; Keiser, J. Artemisinins for schistosomiasis and beyond. Curr. Opin. Investig. Drugs, 2007, 8(2), 105-116.
[PMID: 17328226]
[139]
Pérez del Villar, L.; Burguillo, F.J.; López-Abán, J.; Muro, A. Systematic review and meta-analysis of artemisinin based therapies for the treatment and prevention of schistosomiasis. PLoS One, 2012, 7(9), e45867.
[http://dx.doi.org/10.1371/journal.pone.0045867] [PMID: 23029285]
[140]
Liu, R.; Dong, H-F.; Guo, Y.; Zhao, Q-P.; Jiang, M-S. Efficacy of praziquantel and artemisinin derivatives for the treatment and prevention of human schistosomiasis: a systematic review and meta-analysis. Parasit. Vectors, 2011, 4(1), 201.
[http://dx.doi.org/10.1186/1756-3305-4-201] [PMID: 22004571]
[141]
Krishna, S.; Bustamante, L.; Haynes, R.K.; Staines, H.M. Artemisinins: their growing importance in medicine. Trends Pharmacol. Sci., 2008, 29(10), 520-527.
[http://dx.doi.org/10.1016/j.tips.2008.07.004] [PMID: 18752857]
[142]
Golenser, J.; Waknine, J.H.; Krugliak, M.; Hunt, N.H.; Grau, G.E. Current perspectives on the mechanism of action of artemisinins. Int. J. Parasitol., 2006, 36(14), 1427-1441.
[http://dx.doi.org/10.1016/j.ijpara.2006.07.011] [PMID: 17005183]
[143]
Oliveira, M.F.; d’Avila, J.C.; Torres, C.R.; Oliveira, P.L.; Tempone, A.J.; Rumjanek, F.D.; Braga, C.M.; Silva, J.R.; Dansa-Petretski, M.; Oliveira, M.A.; de Souza, W.; Ferreira, S.T. Haemozoin in Schistosoma mansoni. Mol. Biochem. Parasitol., 2000, 111(1), 217-221.
[http://dx.doi.org/10.1016/S0166-6851(00)00299-1] [PMID: 11087932]
[144]
Kloetzel, K.; Lewert, R.M. Pigment formation in Schistosoma mansoni infections in the white mouse. Am. J. Trop. Med. Hyg., 1966, 15(1), 28-31.
[http://dx.doi.org/10.4269/ajtmh.1966.15.28] [PMID: 5901627]
[145]
Homewood, C.A.; Jewsbury, J.M.; Chance, M.L. The pigment formed during haemoglobin digestion by malarial and schistosomal parasites. Comp. Biochem. Physiol. B, 1972, 43(3), 517-523.
[http://dx.doi.org/10.1016/0305-0491(72)90135-6] [PMID: 4566026]
[146]
Lawrence, J.D. The ingestion of red blood cells by Schistosoma mansoni. J. Parasitol., 1973, 59(1), 60-63.
[http://dx.doi.org/10.2307/3278572] [PMID: 4687511]
[147]
El Ridi, R.; Aboueldahab, M.; Tallima, H.; Salah, M.; Mahana, N.; Fawzi, S.; Mohamed, S.H.; Fahmy, O.M. In vitro and in vivo activities of arachidonic acid against Schistosoma mansoni and Schistosoma haematobium. Antimicrob. Agents Chemother., 2010, 54(8), 3383-3389.
[http://dx.doi.org/10.1128/AAC.00173-10] [PMID: 20479203]
[148]
Barakat, R.; Abou El-Ela, N.E.; Sharaf, S.; El Sagheer, O.; Selim, S.; Tallima, H.; Bruins, M.J.; Hadley, K.B.; El Ridi, R. Efficacy and safety of arachidonic acid for treatment of school-age children in Schistosoma mansoni high-endemicity regions. Am. J. Trop. Med. Hyg., 2015, 92(4), 797-804.
[http://dx.doi.org/10.4269/ajtmh.14-0675] [PMID: 25624403]
[149]
Tallima, H.; Al-Halbosiy, M.F.; El Ridi, R. Enzymatic activity and immunolocalization of Schistosoma mansoni and Schistosoma haematobium neutral sphingomyelinase. Mol. Biochem. Parasitol., 2011, 178(1-2), 23-28.
[http://dx.doi.org/10.1016/j.molbiopara.2011.04.003] [PMID: 21524668]
[150]
El Ridi, R.; Tallima, H.; Salah, M.; Aboueldahab, M.; Fahmy, O.M.; Al-Halbosiy, M.F.; Mahmoud, S.S. Efficacy and mechanism of action of arachidonic acid in the treatment of hamsters infected with Schistosoma mansoni or Schistosoma haematobium. Int. J. Antimicrob. Agents, 2012, 39(3), 232-239.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.08.019] [PMID: 22240411]
[151]
Barda, B.; Coulibaly, J.T.; Puchkov, M.; Huwyler, J.; Hattendorf, J.; Keiser, J. Efficacy and safety of moxidectin, synriam, synriam-praziquantel versus praziquantel against Schistosoma haematobium and S. mansoni infections: A randomized, exploratory phase 2 trial. PLoS Negl. Trop. Dis., 2016, 10(9), e0005008.
[http://dx.doi.org/10.1371/journal.pntd.0005008] [PMID: 27636542]
[152]
Mossallam, S.F.; Amer, E.I.; El-Faham, M.H. Efficacy of Synriam™, a new antimalarial combination of OZ277 and piperaquine, against different developmental stages of Schistosoma mansoni. Acta Trop., 2015, 143, 36-46.
[http://dx.doi.org/10.1016/j.actatropica.2014.12.005] [PMID: 25530543]
[153]
Genchi, C.; Poglayen, G.; Kramer, L.H.; Venco, L.; Agostini, A. Efficacy of moxidectin for the prevention of adult heartworm (Dirofilaria immitis) infection in dogs. Parassitologia, 2001, 43(3), 139-141.
[PMID: 11921542]
[154]
Attah, S.K. Effect of a single dose of 8 mg moxidectin or 150 µg/kg ivermectin on intestinal helminths in participants of a clinical trial conducted in Northeast DRC Liberia and Ghana, Available from: https://www.researchgate.net/publication/270214613 _Effect_of_a_single_dose_of_8_mg_moxidectin_or_150_gkg_ive rmectin_on_intestinal_helminths_in_participants_of_a_clinical_trial_c onducted_in_Northeast_DRC_Liberia_and_Ghana[Accessed: May 29, 2021]
[155]
Cully, D.F.; Vassilatis, D.K.; Liu, K.K.; Paress, P.S.; Van der Ploeg, L.H.T.; Schaeffer, J.M.; Arena, J.P. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature, 1994, 371(6499), 707-711.
[http://dx.doi.org/10.1038/371707a0] [PMID: 7935817]
[156]
Sangster, N.C.; Gill, J. Pharmacology of anthelmintic resistance. Parasitol. Today, 1999, 15(4), 141-146.
[http://dx.doi.org/10.1016/S0169-4758(99)01413-1] [PMID: 10322335]
[157]
Paiement, J-P.; Leger, C.; Ribeiro, P.; Prichard, R.K. Haemonchus contortus: effects of glutamate, ivermectin, and moxidectin on inulin uptake activity in unselected and ivermectin-selected adults. Exp. Parasitol., 1999, 92(3), 193-198.
[http://dx.doi.org/10.1006/expr.1999.4413] [PMID: 10403760]
[158]
Egan, T.J.; Ross, D.C.; Adams, P.A. Quinoline anti-malarial drugs inhibit spontaneous formation of β-haematin (malaria pigment). FEBS Lett., 1994, 352(1), 54-57.
[http://dx.doi.org/10.1016/0014-5793(94)00921-X] [PMID: 7925942]
[159]
Egan, T.J. Physico-chemical aspects of hemozoin (malaria pigment) structure and formation. J. Inorg. Biochem., 2002, 91(1), 19-26.
[http://dx.doi.org/10.1016/S0162-0134(02)00372-0] [PMID: 12121758]
[160]
Egan, T.J. Interactions of quinoline antimalarials with hematin in solution. J. Inorg. Biochem., 2006, 100(5-6), 916-926.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.11.005] [PMID: 16384600]
[161]
Chan, J.D.; Zarowiecki, M.; Marchant, J.S. Ca²⁺ channels and praziquantel: a view from the free world. Parasitol. Int., 2013, 62(6), 619-628.
[http://dx.doi.org/10.1016/j.parint.2012.12.001] [PMID: 23246536]
[162]
Xiao, S.; Binggui, S.; Chollet, J.; Tanner, M. Tegumental changes in 21-day-old Schistosoma mansoni harboured in mice treated with artemether. Acta Trop., 2000, 75(3), 341-348.
[http://dx.doi.org/10.1016/S0001-706X(00)00067-X] [PMID: 10838218]
[163]
Cupit, P.M.; Cunningham, C. What is the mechanism of action of praziquantel and how might resistance strike? Future Med. Chem., 2015, 7(6), 701-705.
[http://dx.doi.org/10.4155/fmc.15.11] [PMID: 25996063]
[164]
Bais, S.; Greenberg, R.M. TRP channels as potential targets for antischistosomals. Int. J. Parasitol. Drugs Drug Resist., 2018, 8(3), 511-517.
[http://dx.doi.org/10.1016/j.ijpddr.2018.08.003] [PMID: 30224169]
[165]
Pica-Mattoccia, L.; Orsini, T.; Basso, A.; Festucci, A.; Liberti, P.; Guidi, A.; Marcatto-Maggi, A-L.; Nobre-Santana, S.; Troiani, A-R.; Cioli, D.; Valle, C. Schistosoma mansoni: lack of correlation between praziquantel-induced intra-worm calcium influx and parasite death. Exp. Parasitol., 2008, 119(3), 332-335.
[http://dx.doi.org/10.1016/j.exppara.2008.03.012] [PMID: 18456260]
[166]
Nogi, T.; Zhang, D.; Chan, J.D.; Marchant, J.S. A novel biological activity of praziquantel requiring voltage-operated Ca2+ channel β subunits: subversion of flatworm regenerative polarity. PLoS Negl. Trop. Dis., 2009, 3(6), e464.
[http://dx.doi.org/10.1371/journal.pntd.0000464] [PMID: 19554083]
[167]
Sturrock, R.F.; Otieno, M.; James, E.R.; Webbe, G. A note on the efficacy of a new class of compounds, 9-acridanone-hydrazones, against Schistosoma mansoni in a primate-the baboon. Trans. R. Soc. Trop. Med. Hyg., 1985, 79(1), 129-131.
[http://dx.doi.org/10.1016/0035-9203(85)90256-1] [PMID: 3992631]
[168]
Sulaiman, S.M.; Ali, H.M.; Homeida, M.M.; Bennett, J.L. Efficacy of a new Hoffmann-La Roche compound (Ro 15-5458) against Schistosoma mansoni (Gezira strain, Sudan) in vervet monkeys (Cercopithecus aethiops). Trop. Med. Parasitol., 1989, 40(3), 335-336.
[PMID: 2515579]
[169]
Metwally, A.; Abdel Hadi, A.; Mikhail, E.G.; Aboú Shadi, O.; Sabry, H.; el-Nahal, H. Study of the efficacy of the new antischistosomal drug 10-[2-(diethylamino)ethyl]-9-acridanone-(thiazolidin-2-ylidene) hydrazone against an Egyptian strain of S. mansoni in mice. Arzneimittelforschung, 1997, 47(8), 975-979.
[PMID: 9296287]
[170]
Eshete, F.; Bennett, J.L. The schistosomicidal compound Ro 15-5458 causes a reduction in the RNA content of Schistosoma mansoni. Mol. Biochem. Parasitol., 1991, 45(1), 1-8.
[http://dx.doi.org/10.1016/0166-6851(91)90021-W] [PMID: 2052031]
[171]
Eshete, F.; Bennett, J.L. Schistosoma mansoni: biochemical characteristics of the antischistosomal effects of Ro 15-5458. Exp. Parasitol., 1990, 71(1), 69-80.
[http://dx.doi.org/10.1016/0014-4894(90)90009-2] [PMID: 2113009]
[172]
World health organization. schistosomiasis: Epidemiology Available from: https://www.who.int/schistosomiasis/epidemiology/table/en/(accessed May 31, 2021)
[173]
Mnkugwe, R.H.; Minzi, O.; Kinung’hi, S.; Kamuhabwa, A.; Aklillu, E. Efficacy and safety of praziquantel and dihydroartemisinin piperaquine combination for treatment and control of intestinal schistosomiasis: A randomized, non-inferiority clinical trial. PLoS Negl. Trop. Dis., 2020, 14(9), e0008619.
[http://dx.doi.org/10.1371/journal.pntd.0008619] [PMID: 32966290]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy