Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Efficient Synthesis of Novel N-[4-Methyl-3-(4-(5-phenyl-1,3,4-oxadiazol-2- yl)phenyl)thiazol-2(3H)-ylidene]benzamide Hybrid Ring System as Potential Antibacterial Agents

Author(s): Hummera Rafique*, Aamer Saeed, Muhammad Naseem, Tauqeer Riaz, Fouzia Perveen, Amara Mumtaz, Aneela Maalik and Muhammad Sharif

Volume 18, Issue 2, 2022

Published on: 23 September, 2021

Page: [199 - 208] Pages: 10

DOI: 10.2174/1573406417666210923103209

Price: $65

Abstract

Background: Heterocyclic compounds display versatile biological applications, so the aim of this paper was to prepare biologically important heterocycles with enhanced bacterial resistance and to evaluate for their various structural features that are responsible for their biological properties.

Objective: The objective was to synthesize bacterial resistance compounds with enhanced antibacterial properties.

Methods: Ester moiety containing thiazole ring was converted into its hydrazide derivatives. These heterocyclic derivatives were cyclized into another ring oxadiazole; hence a hybrid ring system of two biologically active rings was prepared.

Results: All the synthesized compounds were characterized by spectroscopic techniques and were screened for their antibacterial potential; they possess significant antibacterial activities.

Conclusion: New hybrid heterocyclic ring systems were synthesized by cyclization of hydrazide derivatives by adopting two step strategy in good yields. All the synthesized compounds were evaluated for their antioxidant activities; they showed moderate to significant activities. QSAR and Molecular docking studies were performed to determine the mode of interaction. Experimental and computational data is in accordance with the determined antibacterial activities.

Keywords: Ethyl-4-aminobenzoate, thioureas, thiazolines, oxadiazoles, antibacterial activities, molecular docking, QSAR studies.

Graphical Abstract

[1]
Karami, P.; Bazmamoun, H.; Sedighi, I.; Mozaffari Nejad, A.S.; Aslani, M.M.; Alikhani, M.Y. Antibacterial resistance patterns of extended spectrum β-lactamase -producing enteropathogenic Escherichia coli strains isolated from children. Arab J. Gastroenterol., 2017, 18(4), 206-209.
[http://dx.doi.org/10.1016/j.ajg.2017.11.004] [PMID: 29233495]
[2]
Jutkina, J.; Marathe, N.P.; Flach, C.F.; Larsson, D.G.J. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci. Total Environ., 2018, 616-617, 172-178.
[http://dx.doi.org/10.1016/j.scitotenv.2017.10.312] [PMID: 29112840]
[3]
Ursula, T. Global antibacterial resistance: The never-ending story. J.Global Antimicrob. Resis, 2013, 1(2), 63-69.
[4]
Aamer, S.; Rafique, H. Synthesis of new N-[3-(Benzo[d]thiazol-2-yl)-4-methylthiazol-2(3H)-ylidene] substituted benzamides. Turk. J. Chem, 2013, 37, 909-916.
[http://dx.doi.org/10.3906/kim-1212-26]
[5]
Saeed, A.; Khan, M.S.; Rafique, H.; Shahid, M.; Iqbal, J. Design, synthesis, molecular docking studies and in vitro screening of ethyl 4-(3-benzoylthioureido) benzoates as urease inhibitors. Bioorg. Chem., 2014, 52, 1-7.
[http://dx.doi.org/10.1016/j.bioorg.2013.10.001] [PMID: 24269986]
[6]
De, S.S.; Khambete, M.P.; Degani, M.S. Oxadiazole scaffolds in anti-tuberculosis drug discovery. Bioorg. Med. Chem. Lett., 2019, 29(16), 1999-2007.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.054] [PMID: 31296357]
[7]
Mumtaz, A.; Shoaib, M.; Zaib, S.; Shah, M.S.; Bhatti, H.A.; Saeed, A.; Hussain, I.; Iqbal, J. Synthesis, molecular modelling and biological evaluation of tetrasubstituted thiazoles towards cholinesterase enzymes and cytotoxicity studies. Bioorg. Chem., 2018, 78, 141-148.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.024] [PMID: 29567428]
[8]
Rajwant, K.; Parminder, K. Synthesis and pharmacological activities of 1,3,4-oxadiazole derivatives: A review. Eur. J. Biomed. Pharma. Sci.,, 2018, 5(6)
[9]
Hokfelt, B.; Jonssen, A. Hypoglycemic activity in relation to chemical structure of oral antidiabetic substances. J. Med. Chem., 1962, 5, 247-257.
[http://dx.doi.org/10.1021/jm01237a004] [PMID: 14051902]
[10]
Walsh, M.J.; Buysse, A.M.; Kubota, A.; Niyaz, N.M.; Zhang, Y.; Hunter, R.; Trullinger, T.K. Preparation of pyridinylpyrazole derivatives for use as pesticides. US 20150111732, A1,. 2015.
[11]
Chikhalia, K.H.; Vashi, D.B.; Patel, M.J. Synthesis of a novel class of some 1,3,4-oxadiazole derivatives as antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 617-622.
[http://dx.doi.org/10.1080/14756360802318936] [PMID: 18642158]
[12]
Wen-Gui, D.; Xing-Ren, L.; Qi-Jin, M.; Jian-Xin, H.; Bo Cen, L.; Xue-Tang, X.; Fu-Hou, L. Synthesis and herbicidal activity of 5-dehydroabietyl-1,3,4-oxadiazole derivatives. Wood Res. Technol., 2011, 65(2), 191-197.
[13]
Khan, K.M.; Zia, U.; M. Rani, M.; Perveen, S.; Haider, S.M.; Choudhary, M.I.; Atta, ur- Rahman; Voelter, W. Microwave-assisted synthesis of 2,5-disubstituted-1,3,4-oxadiazoles. Lett. Org. Chem., 2004, 1, 50-52.
[http://dx.doi.org/10.2174/1570178043488608]
[14]
Polkam, N.; Kummari, B.; Rayam, P.; Umarani Brahma, U.; Modi Naidu, V.G.; Sridhar Balasubramanian, S.; Anireddy, J.S. Synthesis of 2,5-disubstituted-1,3,4-oxadiazole derivatives and their evaluation as anticancer and antimycobacterial agents. ChemistrySelect, 2017, 2, 5492-5496.
[http://dx.doi.org/10.1002/slct.201701101]
[15]
Zabiullaa; Nagesh, M.J.; Khadria; Begum, A.B.; Sunila, M.K.; Khanum, S.A. Synthesis, docking and biological evaluation of thiadiazole and oxadiazole derivatives as antimicrobial and antioxidant agents. Results Chem., 2020, 2100045
[16]
Singh, H.; Yadav, L.D.S. Synthesis of some 5-aryl-2-heteroaryl/heteroarylamino-l,3,4-oxadiazoles as potential fungicides. Agric. Biol. Chem., 1976, 40, 759-764.
[http://dx.doi.org/10.1080/00021369.1976.10862105]
[17]
Misato, T.; Ko, K.; Honma, Y.; Konno, K.; Taniyama, E. JP 77-25028 (A01N 9/12). Chem. Abstr., 1977, 87147054
[18]
Omar, F.; Mahfouz, N.; Rahman, M. Design, synthesis and antiinflammatory activity of some 1,3,4-oxadiazole derivatives. Eur. J Med. Chem., 1996, 31(10), 819-825.
[http://dx.doi.org/10.1016/0223-5234(96)83976-6] [PMID: 22026938]
[19]
O’Neal, J.B.; Rosen, H.; Russell, P.B.; Adams, A.C.; Blumenthal, A. Potential hypoglycemic agents: 1,3,4-oxadiazoles and related compounds. J. Med. Chem., 1962, 5(3), 617-626.
[http://dx.doi.org/10.1021/jm01238a019]
[20]
Mohammed Iqbal, A.K.; Khan, A.Y.; Kalashetti, M.B.; Belavagi, N.S.; Gong, Y.D.; Khazi, I.A. Synthesis, hypoglycemic and hypolipidemic activities of novel thiazolidinedione derivatives containing thiazole/triazole/oxadiazole ring. Eur. J. Med. Chem., 2012, 53, 308-315.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.015] [PMID: 22575535]
[21]
Li, Z.; Zhan, P.; Liu, X. 1,3,4-oxadiazole: A privileged structure in antiviral agents. Mini Rev. Med. Chem., 2011, 11(13), 1130-1142.
[22]
Yale, H.L.; Losee, K. 2-amino-5-substituted 1,3,4-oxadiazoles and 5-imino-2-substituted delta-2-1,3,4-oxadiazolines. A group of novel muscle relaxants. J. Med. Chem., 1966, 9(4), 478-483.
[http://dx.doi.org/10.1021/jm00322a007] [PMID: 5968010]
[23]
Espinosa, A.; Frontera, A.; García, R.; Miguel, A.; Tárraga, A. Electrophilic behavior of 3-methyl-2-methylthio-1,3,4-thiadiazolium salts: A multimodal theoretical approach. ARKIVOC, 2005, 9, 415-437.
[http://dx.doi.org/10.3998/ark.5550190.0006.935]
[24]
Dong, C.; Huang, F.; Deng, H.; Schaffrath, C.; Spencer, J.B; O’hagan, D.; Naismith, J.H. Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature, 2004, 427(6974), 561-565.
[25]
Perveen, F.; Arshad, N.; Qureshi, R.; Nowsherwan, J.; Sultan, A.; Nosheen, B.; Rafique, H. Electrochemical, spectroscopic and theoretical monitoring of anthracyclines’ interactions with DNA and ascorbic acid by adopting two routes: Cancer cell line studies. PLoS One, 2018, 13(10)e0205764
[http://dx.doi.org/10.1371/journal.pone.0205764] [PMID: 30372448]
[26]
Facile synthesis and antibacterial investigation of new ethyl 4-[2-benzamido-4-methylthiazol-3(2h)-yl)] benzoates. acta. poloniea pharm-. Drug Res. (Stuttg.), 2017, 74(4), 1119-1124.
[27]
Aamer, S.; Amara, M. Novel isochroman-triazoles and thiadiazole hybrids: Design, synthesis and antimicrobial activity. J. Saudi Chem. Soc., 2017, 21, 186-192.
[http://dx.doi.org/10.1016/j.jscs.2015.04.004]
[28]
Xue, C.X.; Cui, S.Y.; Liu, M.C.; Hu, Z.D.; Fan, B.T. 3D QSAR studies on antimalarial alkoxylated and hydroxylated chalcones by CoMFA and CoMSIA. Eur. J. Med. Chem., 2004, 39(9), 745-753.
[http://dx.doi.org/10.1016/j.ejmech.2004.05.009] [PMID: 15337287]
[29]
Honorio, K.M.; Da Silva, A.B.F. An AM1 study on the electron‐donating and electron‐accepting character of biomolecules. Int. J. Quantum Chem., 2003, 95, 126-132.
[http://dx.doi.org/10.1002/qua.10661]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy