Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Commentary

Gut Serotonin as a General Membrane Permeability Regulator

Author(s): Noémi Császár and Istvan Bókkon*

Volume 20, Issue 2, 2022

Published on: 21 December, 2021

Page: [269 - 271] Pages: 3

DOI: 10.2174/1570159X19666210921100542

[1]
Spencer, N.J.; Hibberd, T.J.; Travis, L.; Wiklendt, L.; Costa, M.; Hu, H.; Brookes, S.J.; Wattchow, D.A.; Dinning, P.G.; Keating, D.J.; Sorensen, J. Identification of a rhythmic firing pattern in the enteric nervous system that generates rhythmic electrical activity in smooth muscle. J. Neurosci., 2018, 38(24), 5507-5522.
[http://dx.doi.org/10.1523/JNEUROSCI.3489-17.2018] [PMID: 29807910]
[2]
Schemann, M.; Frieling, T.; Enck, P. To learn, to remember, to forget-How smart is the gut? Acta Physiol. (Oxf.), 2020, 228(1)e13296
[http://dx.doi.org/10.1111/apha.13296] [PMID: 31063665]
[3]
Ma, Q.; Xing, C.; Long, W.; Wang, H.Y.; Liu, Q.; Wang, R.F. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J. Neuroinflammation, 2019, 16(1), 53.
[http://dx.doi.org/10.1186/s12974-019-1434-3] [PMID: 30823925]
[4]
Roy Sarkar, S.; Banerjee, S. Gut microbiota in neurodegenerative disorders. J. Neuroimmunol., 2019, 328, 98-104.
[http://dx.doi.org/10.1016/j.jneuroim.2019.01.004] [PMID: 30658292]
[5]
Singh, A.; Dawson, T.M.; Kulkarni, S. Neurodegenerative disorders and gut-brain interactions. J. Clin. Invest., 2021, 131(13)e143775
[http://dx.doi.org/10.1172/JCI143775] [PMID: 34196307]
[6]
Fidalgo, S.; Ivanov, D.K.; Wood, S.H. Serotonin: from top to bottom. Biogerontology, 2013, 14(1), 21-45.
[http://dx.doi.org/10.1007/s10522-012-9406-3] [PMID: 23100172]
[7]
Martin, A.M.; Young, R.L.; Leong, L.; Rogers, G.B.; Spencer, N.J.; Jessup, C.F.; Keating, D.J. The diverse metabolic roles of peripheral serotonin. Endocrinology, 2017, 158(5), 1049-1063.
[http://dx.doi.org/10.1210/en.2016-1839] [PMID: 28323941]
[8]
Kanova, M.; Kohout, P. Serotonin-Its synthesis and roles in the healthy and the critically Ill. Int. J. Mol. Sci., 2021, 22(9), 4837.
[http://dx.doi.org/10.3390/ijms22094837] [PMID: 34063611]
[9]
Filip, M.; Bader, M. Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system. Pharmacol. Rep., 2009, 61(5), 761-777.
[http://dx.doi.org/10.1016/S1734-1140(09)70132-X] [PMID: 19903999]
[10]
Berger, M.; Gray, J.A.; Roth, B.L. The expanded biology of serotonin. Annu. Rev. Med., 2009, 60, 355-366.
[http://dx.doi.org/10.1146/annurev.med.60.042307.110802] [PMID: 19630576]
[11]
Terry, N.; Margolis, K.G. Serotonergic mechanisms regulating the GI tract: Experimental evidence and therapeutic relevance. Handb. Exp. Pharmacol., 2017, 239, 319-342.
[http://dx.doi.org/10.1007/164_2016_103] [PMID: 28035530]
[12]
Mawe, G.M.; Hoffman, J.M. Serotonin signalling in the gut--functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(8), 473-486.
[http://dx.doi.org/10.1038/nrgastro.2013.105] [PMID: 23797870]
[13]
Lund, M.L.; Egerod, K.L.; Engelstoft, M.S.; Dmytriyeva, O.; Theodorsson, E.; Patel, B.A.; Schwartz, T.W. Enterochromaffin 5-HT cells - A major target for GLP-1 and gut microbial metabolites. Mol. Metab., 2018, 11, 70-83.
[http://dx.doi.org/10.1016/j.molmet.2018.03.004] [PMID: 29576437]
[14]
Wilkins, L.J.; Monga, M.; Miller, A.W. Defining dysbiosis for a cluster of chronic diseases. Sci. Rep., 2019, 9(1), 12918.
[http://dx.doi.org/10.1038/s41598-019-49452-y] [PMID: 31501492]
[15]
Rogers, G.B.; Keating, D.J.; Young, R.L.; Wong, M.L.; Licinio, J.; Wesselingh, S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatry, 2016, 21(6), 738-748.
[http://dx.doi.org/10.1038/mp.2016.50] [PMID: 27090305]
[16]
Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 2015, 161(2), 264-276.
[http://dx.doi.org/10.1016/j.cell.2015.02.047] [PMID: 25860609]
[17]
Padmakumar, M.; Van Raes, E.; Van Geet, C.; Freson, K. Blood platelet research in autism spectrum disorders: In search of biomarkers. Res. Pract. Thromb. Haemost., 2019, 3(4), 566-577.
[http://dx.doi.org/10.1002/rth2.12239] [PMID: 31624776]
[18]
Murugesan, A.; Rani, M.R.S.; Hampson, J.; Zonjy, B.; Lacuey, N.; Faingold, C.L.; Friedman, D.; Devinsky, O.; Sainju, R.K.; Schuele, S.; Diehl, B.; Nei, M.; Harper, R.M.; Bateman, L.M.; Richerson, G.; Lhatoo, S.D. Serum serotonin levels in patients with epileptic seizures. Epilepsia, 2018, 59(6), e91-e97.
[http://dx.doi.org/10.1111/epi.14198] [PMID: 29771456]
[19]
Ernberg, M.; Voog, U.; Alstergren, P.; Lundeberg, T.; Kopp, S. Plasma and serum serotonin levels and their relationship to orofacial pain and anxiety in fibromyalgia. J. Orofac. Pain, 2000, 14(1), 37-46.
[PMID: 11203736]
[20]
Tong, Q.; Zhang, L.; Yuan, Y.; Jiang, S.; Zhang, R.; Xu, Q.; Ding, J.; Li, D.; Zhou, X.; Zhang, K. Reduced plasma serotonin and 5-hydroxyindoleacetic acid levels in Parkinson’s disease are associated with nonmotor symptoms. Parkinsonism Relat. Disord., 2015, 21(8), 882-887.
[http://dx.doi.org/10.1016/j.parkreldis.2015.05.016] [PMID: 26028271]
[21]
Peitl, V.; Getaldić-Švarc, B.; Karlović, D. Platelet serotonin concentration is associated with illness duration in schizophrenia and chronological age in depression. Psychiatry Investig., 2020, 17(6), 579-586.
[http://dx.doi.org/10.30773/pi.2020.0033] [PMID: 32492767]
[22]
Spivak, B.; Vered, Y.; Graff, E.; Blum, I.; Mester, R.; Weizman, A. Low platelet-poor plasma concentrations of serotonin in patients with combat-related posttraumatic stress disorder. Biol. Psychiatry, 1999, 45(7), 840-845.
[http://dx.doi.org/10.1016/S0006-3223(98)00231-5] [PMID: 10202571]
[23]
Karl, J.P.; Hatch, A.M.; Arcidiacono, S.M.; Pearce, S.C.; Pantoja-Feliciano, I.G.; Doherty, L.A.; Soares, J.W. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol., 2018, 9, 2013.
[http://dx.doi.org/10.3389/fmicb.2018.02013] [PMID: 30258412]
[24]
Chen, Y.; Zhong, H.; Zhao, Y.; Luo, X.; Gao, W. Role of platelet biomarkers in inflammatory response. Biomark. Res., 2020, 8, 28.
[http://dx.doi.org/10.1186/s40364-020-00207-2] [PMID: 32774856]
[25]
Cognasse, F.; Laradi, S.; Berthelot, P.; Bourlet, T.; Marotte, H.; Mismetti, P.; Garraud, O.; Hamzeh-Cognasse, H. Platelet inflammatory response to stress. Front. Immunol., 2019, 10, 1478.
[http://dx.doi.org/10.3389/fimmu.2019.01478] [PMID: 31316518]
[26]
Speth, C.; Löffler, J.; Krappmann, S.; Lass-Flörl, C.; Rambach, G. Platelets as immune cells in infectious diseases. Future Microbiol., 2013, 8(11), 1431-1451.
[http://dx.doi.org/10.2217/fmb.13.104] [PMID: 24199802]
[27]
Izzi, B.; Tirozzi, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Hoylaerts, M.F.; Iacoviello, L.; Gialluisi, A. Beyond haemostasis and thrombosis: platelets in depression and its co-morbidities. Int. J. Mol. Sci., 2020, 21(22), 8817.
[http://dx.doi.org/10.3390/ijms21228817] [PMID: 33233416]
[28]
Canobbio, I. Blood platelets: Circulating mirrors of neurons? Res. Pract. Thromb. Haemost., 2019, 3(4), 564-565.
[http://dx.doi.org/10.1002/rth2.12254] [PMID: 31624775]
[29]
Ponomarev, E.D. Fresh evidence for platelets as neuronal and innate immune cells: Their role in the activation, differentiation, and deactivation of Th1, Th17, and Tregs during tissue inflammation. Front. Immunol., 2018, 9, 406.
[http://dx.doi.org/10.3389/fimmu.2018.00406] [PMID: 29599771]
[30]
Pavlovic, V.; Ciric, M.; Jovanovic, V.; Trandafilovic, M.; Stojanovic, P. Platelet-rich fibrin: Basics of biological actions and protocol modifications. Open Med. (Wars.), 2021, 16(1), 446-454.
[http://dx.doi.org/10.1515/med-2021-0259] [PMID: 33778163]
[31]
Dukhinova, M.; Kuznetsova, I.; Kopeikina, E.; Veniaminova, E.; Yung, A.W.Y.; Veremeyko, T.; Levchuk, K.; Barteneva, N.S.; Wing-Ho, K.K.; Yung, W.H.; Liu, J.Y.H.; Rudd, J.; Yau, S.S.Y.; Anthony, D.C.; Strekalova, T.; Ponomarev, E.D. Platelets mediate protective neuroinflammation and promote neuronal plasticity at the site of neuronal injury. Brain Behav. Immun., 2018, 74, 7-27.
[http://dx.doi.org/10.1016/j.bbi.2018.09.009] [PMID: 30217533]
[32]
Szőke, H.; Kovács, Z.; Bókkon, I.; Vagedes, J.; Szabó, A.E.; Hegyi, G.; Sterner, M.G.; Kiss, Á.; Kapócs, G. Gut dysbiosis and serotonin: intestinal 5-HT as a ubiquitous membrane permeability regulator in host tissues, organs, and the brain. Rev. Neurosci., 2020, 31(4), 415-425.
[http://dx.doi.org/10.1515/revneuro-2019-0095] [PMID: 32007948]
[33]
Sharma, H.S.; Olsson, Y.; Dey, P.K. Changes in blood-brain barrier and cerebral blood flow following elevation of circulating serotonin level in anesthetized rats. Brain Res., 1990, 517(1-2), 215-223.
[http://dx.doi.org/10.1016/0006-8993(90)91029-G] [PMID: 2375992]
[34]
Sharma, H.S.; Westman, J.; Navarro, J.C.; Dey, P.K.; Nyberg, F. Probable involvement of serotonin in the increased permeability of the blood-brain barrier by forced swimming. An experimental study using Evans blue and 131I-sodium tracers in the rat. Behav. Brain Res., 1995, 72(1-2), 189-196.
[http://dx.doi.org/10.1016/0166-4328(96)00170-2] [PMID: 8788871]
[35]
Martin, A.M.; Yabut, J.M.; Choo, J.M.; Page, A.J.; Sun, E.W.; Jessup, C.F.; Wesselingh, S.L.; Khan, W.I.; Rogers, G.B.; Steinberg, G.R.; Keating, D.J. The gut microbiome regulates host glucose homeostasis via peripheral serotonin. Proc. Natl. Acad. Sci. USA, 2019, 116(40), 19802-19804.
[http://dx.doi.org/10.1073/pnas.1909311116] [PMID: 31527237]
[36]
Azouzi, S.; Santuz, H.; Morandat, S.; Pereira, C.; Côté, F.; Hermine, O.; El Kirat, K.; Colin, Y.; Le Van Kim, C.; Etchebest, C.; Amireault, P. Antioxidant and membrane binding properties of serotonin protect lipids from oxidation. Biophys. J., 2017, 112(9), 1863-1873.
[http://dx.doi.org/10.1016/j.bpj.2017.03.037] [PMID: 28494957]
[37]
Amireault, P.; Bayard, E.; Launay, J.M.; Sibon, D.; Le Van Kim, C.; Colin, Y.; Dy, M.; Hermine, O.; Côté, F. Serotonin is a key factor for mouse red blood cell survival. PLoS One, 2013, 8(12)e83010
[http://dx.doi.org/10.1371/journal.pone.0083010] [PMID: 24358245]
[38]
Yu, Y.; Li, M.; Yu, Y. Tracking Single Molecules in Biomembranes: Is Seeing Always Believing? ACS Nano, 2019, 13(10), 10860-10868.
[http://dx.doi.org/10.1021/acsnano.9b07445] [PMID: 31589406]
[39]
Grecco, H.E.; Schmick, M.; Bastiaens, P.I. Signaling from the living plasma membrane. Cell, 2011, 144(6), 897-909.
[http://dx.doi.org/10.1016/j.cell.2011.01.029] [PMID: 21414482]
[40]
Young, L.W.; Darios, E.S.; Watts, S.W. An immunohistochemical analysis of SERT in the blood-brain barrier of the male rat brain. Histochem. Cell Biol., 2015, 144(4), 321-329.
[http://dx.doi.org/10.1007/s00418-015-1343-1] [PMID: 26223876]
[41]
Fuxe, K.; Borroto-Escuela, D.O. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication. Neural Regen. Res., 2016, 11(8), 1220-1223.
[http://dx.doi.org/10.4103/1673-5374.189168] [PMID: 27651759]

© 2025 Bentham Science Publishers | Privacy Policy