Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

A Systematic Review on Synthetic and Antimicrobial Bioactivity of the Multifaceted Hydrazide Derivatives

Author(s): Afrin Ansari, Savita Tauro and Sahaya Asirvatham*

Volume 19, Issue 4, 2022

Published on: 20 September, 2021

Page: [522 - 543] Pages: 22

DOI: 10.2174/1570193X18666210920141351

Price: $65

Abstract

To overcome the upsurge of antimicrobial resistance that has emerged in recent years, there is a need for the development of newer hits having satisfying anti-infective activity. Hydrazides incorporated with an azomethine hydrogen account for a cardinal class of molecules for the development of newer derivatives. Hydrazide derivatives have gained considerable interest of medicinal chemists owing to their diverse bioactivity. In the present review, we have attempted to compile the recent trends in the synthesis of hydrazides and their substituted derivatives. The structural features that lead to the desired antimicrobial activity are highlighted, which will lead the way for synthetic and medicinal chemists to focus on newer designs in this arena.

Keywords: Antimicrobial, hydrazide, hydrazone, anticonvulsant, minimum inhibitory concentration, diverse bioactivity.

« Previous
Graphical Abstract

[1]
Pishchany, G.; Kolter, R. On the possible ecological roles of antimicrobials. Mol. Microbiol., 2020, 113(3), 580-587.
[http://dx.doi.org/10.1111/mmi.14471] [PMID: 31975454]
[2]
Cheng, G.; Dai, M.; Ahmed, S.; Hao, H.; Wang, X.; Yuan, Z. Antimicrobial drugs in fighting against antimicrobial resistance. Front. Microbiol., 2016, 7, 470.
[http://dx.doi.org/10.3389/fmicb.2016.00470] [PMID: 27092125]
[3]
Lewis, K. The science of antibiotic discovery. Cell, 2020, 181(1), 29-45.
[http://dx.doi.org/10.1016/j.cell.2020.02.056] [PMID: 32197064]
[4]
Aminov, R. History of antimicrobial drug discovery: Major classes and health impact. Biochem. Pharmacol., 2017, 133, 4-19.
[http://dx.doi.org/10.1016/j.bcp.2016.10.001] [PMID: 27720719]
[5]
Powers, J.H. Antimicrobial drug development--the past, the present, and the future. Clin. Microbiol. Infect., 2004, 10(Suppl. 4), 23-31.
[http://dx.doi.org/10.1111/j.1465-0691.2004.1007.x] [PMID: 15522037]
[6]
Singh, P.; Varshnaya, R.K.; Dey, R.; Banerjee, P. Donor–acceptor cyclopropanes as an expedient building block towards the construction of nitrogen-containing molecules: An update. Adv. Synth. Catal., 2020, 362(7), 1447-1484.
[http://dx.doi.org/10.1002/adsc.201901332]
[7]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[8]
Ziarani, G.M.; Vavsari, V.F. The role of hydrazide compounds in asymmetric synthesis. Tetrahedron Asymmetry, 2017, 2(28), 203-214.
[http://dx.doi.org/10.1016/j.tetasy.2016.12.001]
[9]
Erşatır, M. Synthesis and investigation of anti-inflammatory and anticonvulsant activities of novel coumarin-diacylated hydrazide derivatives. Arab. J. Chem., 2020, 13.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.034]
[10]
Munir, A.; Khushal, A.; Saeed, K.; Sadiq, A.; Ullah, R.; Ali, G.; Ashraf, Z.; Ullah Mughal, E.; Saeed Jan, M.; Rashid, U.; Hussain, I.; Mumtaz, A. Synthesis, in-vitro, in-vivo anti-inflammatory activities and molecular docking studies of acyl and salicylic acid hydrazide derivatives. Bioorg. Chem., 2020, 104104168
[http://dx.doi.org/10.1016/j.bioorg.2020.104168] [PMID: 32947133]
[11]
Nassiri Koopaei, M.; Assarzadeh, M.J.; Almasirad, A.; Ghasemi-Niri, S.F.; Amini, M.; Kebriaeezadeh, A.; Nassiri Koopaei, N.; Ghadimi, M.; Tabei, A. Synthesis and analgesic activity of novel hydrazide and hydrazine derivatives. Iran. J. Pharm. Res., 2013, 12(4), 721-727.
[PMID: 24523751]
[12]
Narang, R.; Narasimhan, B.; Sharma, S.; Sriram, D.; Perumal, Y.; Clercq, E.; Pannecouque, C.; Balzarini, J. Synthesis, antimycobacterial, antiviral, antimicrobial activities, and QSAR studies of nicotinic acid benzylidene hydrazide derivatives. Med. Chem. Res., 2012, 21, 1-20.
[http://dx.doi.org/10.1007/s00044-011-9664-7]
[13]
Kumar, S.; Narang, R.; Nayak, S.; Singh, S.; Narasimhan, B. Synthesis, antimicrobial evaluation and QSAR studies of N′- benzylidene/(1-phenylethylidene) undec-10-en hydrazides. J. Appl. Pharm. Sci., 2016, 6, 104-116.
[http://dx.doi.org/10.7324/JAPS.2016.60415]
[14]
Narang, R.; Narasimhan, B.; Sharma, S. (Naphthalen-1-yloxy)-acetic acid benzylidene/(1-phenyl-ethylidene)-hydrazide derivatives: Synthesis, antimicrobial evaluation, and QSAR Studies. Med. Chem. Res., 2012, 21(9), 2526-2547.
[http://dx.doi.org/10.1007/s00044-011-9776-0]
[15]
Narang, R.; Sharma, S.; Narasimhan, B. Evaluation of anti-inflammatory activity of acid hydrazide derivatives. Hygeia. J. D. Med, 2012, 4(2), 15-20.
[16]
Faye, F.; Guèye, A.; Camara, P.S.; Gaye, A.A.; Tamboura, F.B.; Gruber, N.; Gaye, M. Synthesis of Schiff bases compounds from oxamic hydrazide: Spectroscopic characterization, x–ray diffraction structure and antioxidant activity study. Am. J. Appl. Chem., 2021, 9(1), 6.
[http://dx.doi.org/10.11648/j.ajac.20210901.12]
[17]
Tumosienė, I.; Kantminienė, K.; Klevinskas, A.; Petrikaitė, V.; Jonuškienė, I.; Mickevičius, V. Antioxidant and anticancer activity of novel derivatives of 3-[(4-methoxyphenyl) amino] propane hydrazide. Molecules, 2020, 25(13), 2980.
[http://dx.doi.org/10.3390/molecules25132980] [PMID: 32610506]
[18]
Sztanke, M.; Sztanke, K. Biologically important hydrazide-containing fused azaisocytosines as antioxidant agents. Redox Rep. Commun. Free Radic. Res., 2017, 22(6), 572-581.
[http://dx.doi.org/10.1080/13510002.2017.1364330] [PMID: 28812524]
[19]
Amos, R.I.J.; Gourlay, B.S.; Yates, B.F.; Schiesser, C.H.; Lewis, T.W.; Smith, J.A. Mechanistic investigation of the oxidation of hydrazides: implications for the activation of the TB drug isoniazid. Org. Biomol. Chem., 2013, 11(1), 170-176.
[http://dx.doi.org/10.1039/C2OB26419F] [PMID: 23165368]
[20]
Jabeen, M.; Ahmad, S.; Shahid, K.; Sadiq, A.; Rashid, U. Ursolic acid hydrazide based organometallic complexes: Synthesis, characterization, antibacterial, antioxidant, and docking studies. Front Chem., 2018, 6, 55.
[http://dx.doi.org/10.3389/fchem.2018.00055] [PMID: 29594100]
[21]
Abdel-Monem, Y.K.; Abou El-Enein, S.A.; El-Sheikh-Amer, M.M. Design of new metal complexes of 2-(3-amino-4,6-dimethyl-1H-pyrazolo[3,4-b] pyridin-1-yl) aceto-hydrazide: Synthesis, characterization, modelling and antioxidant activity. J. Mol. Struct., 2017, 1127, 386-396.
[http://dx.doi.org/10.1016/j.molstruc.2016.07.110]
[22]
Martiyan, A.I. Synthesis of γ-hydroxy acid hydrazides of a new structure and study of their antioxidant properties. Chem. Biol., 2020, 54(3), 188-195.
[http://dx.doi.org/10.46991/PYSU:B/2020.54.3.188]
[23]
Khan, I.; Kanugala, S.; Shareef, M.A.; Ganapathi, T.; Shaik, A.B.; Shekar, K.C.; Kamal, A.; Kumar, C.G. Synthesis of new bis-pyrazole linked hydrazides and their in vitro evaluation as antimicrobial and anti-biofilm agents: A mechanistic role on ergosterol biosynthesis inhibition in Candida albicans. Chem. Biol. Drug Des., 2019, 94(1), 1339-1351.
[http://dx.doi.org/10.1111/cbdd.13509] [PMID: 30803151]
[24]
Senwar, R.C.; Rathore, K.K.; Mehta, A. Synthesis and antimicrobial evaluation of azetidinone derivatives of pyridine containing hydrazides. Asian J. Res. Chem, 2017, 10(2), 135-141.
[http://dx.doi.org/10.5958/0974-4150.2017.00022.0]
[25]
Paruch, K.; Popiołek, Ł.; Biernasiuk, A.; Berecka-Rycerz, A.; Malm, A.; Gumieniczek, A.; Wujec, M. Novel derivatives of 4-methyl-1,2,3-thiadiazole-5-carboxylic acid hydrazide: Synthesis, lipophilicity, and in vitro antimicrobial activity screening. Appl. Sci. (Basel), 2021, 11(3), 1180.
[http://dx.doi.org/10.3390/app11031180]
[26]
Kassan, N.E.; Saadeh, H.A.; Talib, W.H.; Mahasneh, A.M.; Kaur, H.; Goyal, K.; Sehgal, R.; Mubarak, M.S. Synthesis and biological activity of novel Schiff bases derived from metronidazole. Med. Chem. Res., 2014, 23(11), 4872-4882.
[http://dx.doi.org/10.1007/s00044-014-1055-4]
[27]
Abd El-Aleam, R.H.; George, R.F.; Hassan, G.S.; Abdel-Rahman, H.M. Synthesis of 1,2,4-triazolo[1,5-a]pyrimidine derivatives: Antimicrobial activity, DNA Gyrase inhibition and molecular docking. Bioorg. Chem., 2020, 94103411
[http://dx.doi.org/10.1016/j.bioorg.2019.103411] [PMID: 31711767]
[28]
Stringer, T.; Seldon, R.; Liu, N.; Warner, D.F.; Tam, C.; Cheng, L.W.; Land, K.M.; Smith, P.J.; Chibale, K.; Smith, G.S. Antimicrobial activity of organometallic isonicotinyl and pyrazinyl ferrocenyl-derived complexes. Dalton Trans., 2017, 46(30), 9875-9885.
[http://dx.doi.org/10.1039/C7DT01952A] [PMID: 28713884]
[29]
Mohamed, N.A.; Abd El-Ghany, N.A. Synthesis, characterization, and antimicrobial activity of chitosan hydrazide derivative. Int. J. Polym. Mater. Polym. Biomater., 2017, 66(8), 410-415.
[http://dx.doi.org/10.1080/00914037.2016.1233419]
[30]
Manyeruke, M.H.; Tshiwawa, T.; Hoppe, H.C.; Isaacs, M.; Seldon, R.; Warner, D.F.; Krause, R.W.M.; Kaye, P.T. Synthesis and biological evaluation of bis-N2,N2′-(4-hydroxycoumarin-3-yl)ethylidene]-2,3-dihydroxysuccinodihydrazides. Bioorg. Med. Chem. Lett., 2020, 30(5)126911
[http://dx.doi.org/10.1016/j.bmcl.2019.126911] [PMID: 31952962]
[31]
Parra, N.; Jaume, M.; Boscán, K.; Hernández, A.; Mijares, A.; González, M.; Alvarado, Y.; Restrepo, J. Ex vivo trypanocidal activity of 1-(2-hydroxybenzylidene)thiosemicarbazide against Trypanosoma equiperdum. Vet. Parasitol., 2017, 245, 163-167.
[http://dx.doi.org/10.1016/j.vetpar.2017.06.012] [PMID: 28935118]
[32]
García, E.; Ochoa, R.; Vásquez, I.; Conesa-Milián, L.; Carda, M.; Yepes, A.; Vélez, I.D.; Robledo, S.M.; Cardona-G, W. Furan chalcone–biphenyl hybrids: Synthesis, in silico studies, antitrypanosomal and cytotoxic activities. Med. Chem. Res., 2019, 28(4), 608-622.
[http://dx.doi.org/10.1007/s00044-019-02323-7]
[33]
Sheha, T.A. Synthesis, anticonvulsant activity and cytotoxicity of novel valproic acid derivatives. IOSR J. Appl. Chem., 2017, 10(4), 37-45.
[http://dx.doi.org/10.9790/5736-1004013745]
[34]
Nesterkina, M.; Barbalat, D.; Konovalova, I.; Shishkina, S.; Atakay, M.; Salih, B.; Kravchenko, I. Novel (‒)-carvone derivatives as potential anticonvulsant and analgesic agents. Nat. Prod. Res., 2020, 1-10.
[http://dx.doi.org/10.1080/14786419.2020.1756804] [PMID: 32336164]
[35]
Sarafroz, M.; Alameer, E.H.; Alturaiki, K.A.; Alkhalifah, A.L.; Amir, M.; Ahmad, N. Studies on new schiff bases of benzoxazole: Synthesis, anticonvulsant and neurotoxicity evaluation. Orient. J. Chem., 2020, 36(4), 665-671.
[http://dx.doi.org/10.13005/ojc/360410]
[36]
Singh, P.; Singh, R.K. Synthesis of hydrazone derivatives and in-silico docking studies against JNK protein to assess anticonvulsant activity of synthesized derivatives. J. Pharm. Sci., 2020, 12, 10.
[37]
Rudavath, D. Synthesis and antitumor evaluation of novel 5-bromo indole-aryl keto hydrazide-hydrazone analogues. Asian J. Chem., 2018, 30(6), 1201-1204.
[http://dx.doi.org/10.14233/ajchem.2018.21114]
[38]
Dehghani, S.; Kooshafar, Z.; Almasirad, A.; Tahmasvand, R.; Moayer, F.; Muhammadnejad, A.; Shafiee, S.; Salimi, M. A novel hydrazide compound exerts anti-metastatic effect against breast cancer. Biol. Res., 2019, 52(1), 40.
[http://dx.doi.org/10.1186/s40659-019-0247-2] [PMID: 31387647]
[39]
Liu, J.; Liu, Y.; Zhang, J.; Liu, D.; Bao, Y.; Chen, T.; Tang, T.; Lin, J.; Luo, Y.; Jin, Y.; Zhang, J. Indole hydrazide compound ZJQ-24 inhibits angiogenesis and induces apoptosis cell death through abrogation of AKT/mTOR pathway in hepatocellular carcinoma. Cell Death Dis., 2020, 11(10), 926.
[http://dx.doi.org/10.1038/s41419-020-03108-2] [PMID: 33116125]
[40]
Eissa Mohammed, Y.H.; Thirusangu, P. Zabiulla; v, V.; B T, P.; Khanum, S.A. The anti-invasive role of novel synthesized pyridazine hydrazide appended phenoxy acetic acid against neoplastic development targeting matrix metallo proteases. Biomed. Pharmacother., 2017, 95, 375-386.
[http://dx.doi.org/10.1016/j.biopha.2017.08.105] [PMID: 28858736]
[41]
Li, X-Y.; Liang, J-W.; Mohamed, O. K.; Zhang, T.J.; Lu, G.Q.; Meng, F.H. Design, synthesis and biological evaluation of N-phenyl-(2,4-dihydroxypyrimidine-5-sulfonamido)benzoyl hydrazide derivatives as thymidylate synthase (TS) inhibitors and as potential antitumor drugs. Eur. J. Med. Chem., 2018, 154, 267-279.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.020] [PMID: 29807332]
[42]
Słomiak, K.; Łazarenkow, A.; Chęcińska, L.; Kusz, J.; Ochocki, J.; Nawrot-Modranka, J. Synthesis, spectroscopic analysis and assessment of the biological activity of new hydrazine and hydrazide derivatives of 3-formylchromone. Molecules, 2018, 23(8), 2067.
[http://dx.doi.org/10.3390/molecules23082067] [PMID: 30126150]
[43]
Nohara, A.; Umetani, T.; Sanno, Y. Studies on antianaphylactic agents—III. Tetrahedron, 1974, 30(19), 3563-3568.
[http://dx.doi.org/10.1016/S0040-4020(01)97035-8]
[44]
Ozdemir, A.; Turan-Zitouni, G.; Kaplancikli, Z.A.; Tunali, Y. Synthesis and biological activities of new hydrazide derivatives. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 825-831.
[http://dx.doi.org/10.1080/14756360802399712] [PMID: 18825530]
[45]
Abignente, E.; Arena, F.; De Caprariis, P.; Nuzzetti, R.; Marmo, E.; Lampa, E.; Rosatti, E.; Ottavo, R. Research on heterocyclic compounds. X.-Imidazo[1,2-a]pyrazine derivatives: Synthesis and antiinflammatory activity. Farmaco, Sci., 1981, 36(1), 61-80.
[http://dx.doi.org/10.1002/chin.198121256] [PMID: 6970683]
[46]
Rimoli, M.; Avallone, L.; de Caprariis, P.; Luraschi, E.; Abignente, E.; Filippelli, W.; Berrino, L.; Rossi, F. Research on heterocyclic compounds. XXXVII. Synthesis and antiinflammatory activity of methyl-substituted imidazo[1,2-a] pyrazine derivatives. Eur. J. Med. Chem., 1997, 32(3), 195-203.
[http://dx.doi.org/10.1016/S0223-5234(97)83971-2]
[47]
Yale, H.L.; Losee, K.; Martins, J.; Holsing, M.; Perry, F.M.; Bernstein, J. Chemotherapy of experimental tuberculosis. viii. the synthesis of acid hydrazides, their derivatives and related compounds 1,2. J. Am. Chem. Soc., 1953, 75(8), 1933-1942.
[http://dx.doi.org/10.1021/ja01104a046]
[48]
Sankar, C.; Pandiarajan, K. Synthesis and anti-tubercular and antimicrobial activities of some 2r,4c-diaryl-3-azabicyclo[3.3.1]nonan-9-one N-isonicotinoylhydrazone derivatives. Eur. J. Med. Chem., 2010, 45(11), 5480-5485.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.024] [PMID: 20822833]
[49]
Collins, L.; Franzblau, S.G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother., 1997, 41(5), 1004-1009.
[http://dx.doi.org/10.1128/AAC.41.5.1004] [PMID: 9145860]
[50]
Backes, G.L.; Neumann, D.M.; Jursic, B.S. Synthesis and antifungal activity of substituted salicylaldehyde hydrazones, hydrazides and sulfohydrazides. Bioorg. Med. Chem., 2014, 22(17), 4629-4636.
[http://dx.doi.org/10.1016/j.bmc.2014.07.022] [PMID: 25127462]
[51]
Pal, R.; Sarkar, T.; Khasnobis, S. Amberlyst-15 in organic synthesis. Ark. Arch. Org. Chem., 2012, 2012, 570-609.
[52]
Friedman, L.; Litle, R.L.; Reichle, W.R. p-Toluenesulfonylhydrazide. Org. Synth., 2003, 40, 93-93.
[http://dx.doi.org/10.1002/0471264180.os040.35]
[53]
M27-A2 Reference method for broth dilution antifungal susceptibility testing of yeasts, 2nd ed; Approved Standard, 2002, p. 51.
[54]
Suzana. Synthesis, molecular docking and antimicrobial of N′-benzylidene-4-hydroxybenzohydrazide and N′-(4-methoxybenzylidene)-4-hydroxybenzohydrazide. Res. J. Pharm. Biol. Chem. Sci., 2017, 8(2), 1354-1361.
[55]
Habibi, D.; Marvi, O. Montmorillonite KSF and montmorillonite K-10 clays as efficient catalysts for the solventless synthesis of bismaleimides and bisphthalimides using microwave irradiation. ARKIVOC, 2006. 2006
[http://dx.doi.org/10.3998/ark.5550190.0007.d02]
[56]
Kostecka, M. Synthesis of a new group of aliphatic hydrazide derivatives and the correlations between their molecular structure and biological activity. Molecules, 2012, 17(3), 3560-3573.
[http://dx.doi.org/10.3390/molecules17033560] [PMID: 22441334]
[57]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[58]
Judge, V.; Narasimhan, B.; Ahuja, M.; Sriram, D.; Yogeeswari, P.; Clercq, E.; Pannecouque, C.; Balzarini, J. Isonicotinic acid hydrazide derivatives: Synthesis, antimicrobial activity, and QSAR studies. Med. Chem. Res., 2011.
[http://dx.doi.org/10.1007/s00044-011-9662-9]
[59]
Kumar, D.; Judge, V.; Narang, R.; Sangwan, S.; De Clercq, E.; Balzarini, J.; Narasimhan, B. Benzylidene/2-chlorobenzylidene hydrazides: Synthesis, antimicrobial activity, QSAR studies and antiviral evaluation. Eur. J. Med. Chem., 2010, 45(7), 2806-2816.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.002] [PMID: 20347509]
[60]
Kumar, P.; Narasimhan, B.; Yogeeswari, P.; Sriram, D. Synthesis and antitubercular activities of substituted benzoic acid N′-(substituted benzylidene/furan-2-ylmethylene)-N-(pyridine-3-carbonyl)-hydrazides. Eur. J. Med. Chem., 2010, 45(12), 6085-6089.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.030] [PMID: 20828886]
[61]
Judge, V.; Narang, R.; Sharma, D.; Narasimhan, B.; Kumar, P. Hansch analysis for the prediction of antimycobacterial activity of ofloxacin derivatives. Med. Chem. Res., 2010, 20, 826-837.
[http://dx.doi.org/10.1007/s00044-010-9400-8]
[62]
Woods, G.L.; Brown-Elliott, B.A.; Conville, P.S.; Desmond, E.P.; Hall, G.S.; Lin, G.; Pfyffer, G.E.; Ridderhof, J.C.; Siddiqi, S.H.; Wallace, R.J., Jr; Warren, N.G.; Witebsky, F.G. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes.Clinical and Laboratory Standards Institute, 2011.
[63]
Popiołek, Ł. Synthesis of new N-substituted nalidixic acid hydrazide derivatives. Am. Chem. Sci. J., 2016, 12, 1-4.
[http://dx.doi.org/10.9734/ACSJ/2016/23144]
[64]
Grover, G.; Kini, S.G. Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents. Eur. J. Med. Chem., 2006, 41(2), 256-262.
[http://dx.doi.org/10.1016/j.ejmech.2005.09.002] [PMID: 16260068]
[65]
Popiołek, Ł.; Gawrońska-Grzywacz, M. The impact of modifying the chemical structure of nalidixic acid on the antimicrobial activity of its derivatives: A review. Int. Res. J. Pure Appl. Chem., 2015, 191-202.
[http://dx.doi.org/10.9734/IRJPAC/2015/17634]
[66]
Saczewski, J.; Paluchowska, A.; Klenc, J.; Raux, E.; Barnes, S.; Sullivan, S.; Duszynska, B.; Bojarski, A.J.; Strekowski, L. Synthesis of 4-substituted 2-(4-methylpiperazino) pyrimidines and quinazoline analogs as serotonin 5-HT2A receptor ligands. J. Heterocycl. Chem., 2009, 46(6), 1259-1265.
[http://dx.doi.org/10.1002/jhet.236]
[67]
Popiołek, Ł.; Biernasiuk, A.; Malm, A. Synthesis and in vitro antimicrobial activity of nalidixic acid hydrazones. J. Heterocycl. Chem., 2015, 53.
[http://dx.doi.org/10.1002/jhet.2468]
[68]
Aggarwal, N.; Kumar, R.; Srivastva, C.; Dureja, P.; Khurana, J.M. Synthesis of nalidixic acid based hydrazones as novel pesticides. J. Agric. Food Chem., 2010, 58(5), 3056-3061.
[http://dx.doi.org/10.1021/jf904144e] [PMID: 20131903]
[69]
Natarajan, R.; Subramani, A. Karthick; Kesavan, S.K.; Selvaraj, D. Synthesis, characterization and anti-microbial activity of some novelSubstituted n-[2-oxo-1-(aryl/heteroaryl-1-ylmethyl)indolin-3-ylidene]nicotinohydrazide derivatives. Int. J. Pharm. Pharm. Sci., 2013, 5(4), 725-727.
[70]
Cacic, M.; Trkovnik, M.; Cacic, F.; Has-Schon, E. Synthesis and antimicrobial activity of some derivatives of (7-hydroxy-2-oxo-2H-chromen-4-yl)-acetic acid hydrazide. Molecules, 2006, 11(2), 134-147.
[http://dx.doi.org/10.3390/11010134] [PMID: 17962784]
[71]
Zhang, X.; Breslav, M.; Grimm, J.; Guan, K.; Huang, A.; Liu, F.; Maryanoff, C.A.; Palmer, D.; Patel, M.; Qian, Y.; Shaw, C.; Sorgi, K.; Stefanick, S.; Xu, D. A new procedure for preparation of carboxylic acid hydrazides. J. Org. Chem., 2002, 67(26), 9471-9474.
[http://dx.doi.org/10.1021/jo026288n] [PMID: 12492358]
[72]
Mallandur, B.K.; Rangaiah, G.; Harohally, N.V. Synthesis and antimicrobial activity of Schiff bases derived from 2-chloro quinoline-3-carbaldehyde and its derivatives incorporating 7-methyl-2-propyl-3H-benzoimidazole-5-carboxylic acid hydrazide. Synth. Commun., 2017, 47(11), 1065-1070.
[http://dx.doi.org/10.1080/00397911.2017.1309668]
[73]
Joshi, S.D.; Vagdevi, H.M.; Vaidya, V.P.; Gadaginamath, G.S. Synthesis of new 4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems: A novel class of potential antibacterial and antitubercular agents. Eur. J. Med. Chem., 2008, 43(9), 1989-1996.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.016] [PMID: 18207286]
[74]
Suling, W.J.; Seitz, L.E.; Pathak, V.; Westbrook, L.; Barrow, E.W.; Zywno-Van-Ginkel, S.; Reynolds, R.C.; Piper, J.R.; Barrow, W.W. Antimycobacterial activities of 2,4-diamino-5-deazapteridine derivatives and effects on mycobacterial dihydrofolate reductase. Antimicrob. Agents Chemother., 2000, 44(10), 2784-2793.
[http://dx.doi.org/10.1128/AAC.44.10.2784-2793.2000] [PMID: 10991861]
[75]
Yajko, D.M.; Madej, J.J.; Lancaster, M.V.; Sanders, C.A.; Cawthon, V.L.; Gee, B.; Babst, A.; Hadley, W.K. Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis. J. Clin. Microbiol., 1995, 33(9), 2324-2327.
[http://dx.doi.org/10.1128/jcm.33.9.2324-2327.1995] [PMID: 7494021]
[76]
Suling, W.J.; Reynolds, R.C.; Barrow, E.W.; Wilson, L.N.; Piper, J.R.; Barrow, W.W. Susceptibilities of Mycobacterium tuberculosis and Mycobacterium avium complex to lipophilic deazapteridine derivatives, inhibitors of dihydrofolate reductase. J. Antimicrob. Chemother., 1998, 42(6), 811-815.
[http://dx.doi.org/10.1093/jac/42.6.811] [PMID: 10052907]
[77]
Somashekhar, M. AR, M.; Sonnad, B. Synthesis and antimicrobial activity of 4-(morpholin- 4-yl) benzohydrazide derivatives. World J. Pharm. Pharm. Res., 2013.
[78]
Raparti, V.; Chitre, T.; Bothara, K.; Kumar, V.; Dangre, S.; Khachane, C.; Gore, S.; Deshmane, B. Novel 4-(morpholin-4-yl)-N′-(arylidene)benzohydrazides: Synthesis, antimycobacterial activity and QSAR investigations. Eur. J. Med. Chem., 2009, 44(10), 3954-3960.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.023] [PMID: 19464085]
[79]
Singh, D.; Bansal, G. Synthesis of morpholine containing sulfonamides: introduction of morpholine moiety on amine functional group. E-J. Chem., 2004, 1(3), 164-169.
[http://dx.doi.org/10.1155/2004/728245]
[80]
Priya, G.R. Panneerselvam; Karikalan, Synthesis, characterization and antibacterial, antifungal activities of Schiff bases of 4 - (2- aminophenyl) morpholines. Int. J. Pharma Bio Sci., 2011, 2(1)
[81]
Bhavanarushi, S.; Luo, Z.; Bharath, G.; Rani, J.; Khan, I.; Xu, Y.; Liu, B.; Xie, J.F. (1H ‐pyrazol‐4‐yl) methylene‐hydrazide derivatives: Synthesis and antimicrobial activity. J. Heterocycl. Chem., 2020, 57(2), 751-760.
[http://dx.doi.org/10.1002/jhet.3816]
[82]
Patel, M.A.; Bhila, V.G.; Patel, N.H.; Patel, A.K.; Brahmbhatt, D.I. Synthesis, characterization and biological evaluation of some pyridine and quinoline fused chromenone derivatives. Med. Chem. Res., 2012, 21(12), 4381-4388.
[http://dx.doi.org/10.1007/s00044-012-9978-0]
[83]
Keche, A.P.; Hatnapure, G.D.; Tale, R.H.; Rodge, A.H.; Birajdar, S.S.; Kamble, V.M. Synthesis, anti-inflammatory and antimicrobial evaluation of novel N1-(quinolin-4yl) ethane-1,2-diamine phenyl urea derivatives. Med. Chem. Res., 2013, 22(3), 1480-1487.
[http://dx.doi.org/10.1007/s00044-012-0144-5]
[84]
Kardile, D.P.; Holam, M.R.; Patel, A.S.; Ramani, S.B. Synthesis and biological evaluation of (7-hydroxy-2-oxo-2H-chromen-4-yl) acetic acid hydrazide derivatives used as a potent biological agent. Rasayan J. Chem., 2011, 4, 66-72.
[85]
Indian Pharmacopoeia;; Controller of Publications: Delhi, India,, 1996, Vol. II, .
[86]
Masunari, A.; Tavares, L.C. A new class of nifuroxazide analogues: Synthesis of 5-nitrothiophene derivatives with antimicrobial activity against multidrug-resistant Staphylococcus aureus. Bioorg. Med. Chem., 2007, 15(12), 4229-4236.
[http://dx.doi.org/10.1016/j.bmc.2007.03.068] [PMID: 17419064]
[87]
Tavares, L.C.; Penna, T.C.; Amaral, A.T. Synthesis and biological activity of nifuroxazide and analogs. Boll. Chim. Farm., 1997, 136(3), 244-249.
[PMID: 9164164]
[88]
Oliveira, G.A.; Dell’Aquila, A.M.; Masiero, R.L.; Levy, C.E.; Gomes, M.S.; Cui, L.; Hiramatsu, K.; Mamizuka, E.M. Isolation in Brazil of nosocomial Staphylococcus aureus with reduced susceptibility to vancomycin. Infect. Control Hosp. Epidemiol., 2001, 22(7), 443-448.
[http://dx.doi.org/10.1086/501932] [PMID: 11583214]
[89]
Wayne, P.A. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: M07-A10; Approved Standard, 10. ed.; Clinical and Laboratory Standards Institute, Ed.; Documents / Clinical and Laboratory Standards Institute; Committee for Clinical Laboratory Standards, 2015.
[90]
Demirbas, N.; Karaoglu, S.A.; Demirbas, A.; Sancak, K. Synthesis and antimicrobial activities of some new 1-(5-phenylamino-[1,3,4]thiadiazol-2-yl)methyl-5-oxo-[1,2,4]triazole and 1-(4-phenyl-5-thioxo-[1,2,4]triazol-3-yl)methyl-5-oxo- [1,2,4]triazole derivatives. Eur. J. Med. Chem., 2004, 39(9), 793-804.
[http://dx.doi.org/10.1016/j.ejmech.2004.06.007] [PMID: 15337292]
[91]
Kahveci, B. Synthesis of 4-amino-4,5-dihydro-1H-1,2,4-triazole-5-ones and their isatin-3-imine derivatives. Molecules, 2005, 10(2), 376-382.
[http://dx.doi.org/10.3390/10020376] [PMID: 18007308]
[92]
Malbec, F.; Milcent, R.; Vicart, P.; Bure, A.M. Synthesis of new derivatives of 4-amino-2,4-dihydro-1,2,4-triazol-3-one as potential antibacterial agents. J. Heterocycl. Chem., 1984, 21(6), 1769-1774.
[http://dx.doi.org/10.1002/jhet.5570210641]
[93]
Ahmad, I.; Mehmood, Z.; Mohammad, F. Screening of some Indian medicinal plants for their antimicrobial properties. J. Ethnopharmacol., 1998, 62(2), 183-193.
[http://dx.doi.org/10.1016/S0378-8741(98)00055-5] [PMID: 9741890]
[94]
Holder, I.A.; Boyce, S.T. Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns, 1994, 20(5), 426-429.
[http://dx.doi.org/10.1016/0305-4179(94)90035-3] [PMID: 7999271]
[95]
Bonde, C.G.; Gaikwad, N.J. Synthesis and preliminary evaluation of some pyrazine containing thiazolines and thiazolidinones as antimicrobial agents. Bioorg. Med. Chem., 2004, 12(9), 2151-2161.
[http://dx.doi.org/10.1016/j.bmc.2004.02.024] [PMID: 15080915]
[96]
Ulusoy, N.; Gürsoy, A.; Otük, G. Synthesis and antimicrobial activity of some 1,2,4-triazole-3-mercaptoacetic acid derivatives. Farm. Soc. Chim. Ital. 1989, 2001, 56(12), 947-952.
[http://dx.doi.org/10.1016/S0014-827X(01)01128-4]
[97]
Dwivedi, D.K.; Sahu, A.; Dighade, S.J.; Agrawal, R.K. Design, synthesis, and antimicrobial evaluation of some nifuroxazide analogs against nosocomial infection. J. Heterocycl. Chem., 2020, 57(4), 1666-1671.
[http://dx.doi.org/10.1002/jhet.3891]
[98]
Elsayed, Z.M.; Eldehna, W.M.; Abdel-Aziz, M.M.; El Hassab, M.A.; Elkaeed, E.B.; Al-Warhi, T.; Abdel-Aziz, H.A.; Abou-Seri, S.M.; Mohammed, E.R. Development of novel isatin-nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing-bacteria. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 384-393.
[http://dx.doi.org/10.1080/14756366.2020.1868450] [PMID: 33406941]
[99]
Indian Pharmacopoeia;; Controller of Publications: Noida, Delhi, 2010, Vol. II, .
[100]
Anderson, G.L. Regioselective synthesis of pyrido[2,3-d] pyrimidines. J. Heterocycl. Chem., 1985, 22(5), 1469-1470.
[http://dx.doi.org/10.1002/jhet.5570220569]
[101]
Janssen, A.M.; Scheffer, J.J.; Baerheim Svendsen, A. Antimicrobial activity of essential oils: A 1976-1986 literature review. Aspects of the test methods. Planta Med., 1987, 53(5), 395-398.
[http://dx.doi.org/10.1055/s-2006-962755] [PMID: 3324126]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy