Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Advances in Theranostic Applications of Nanomaterials in Cancer

Author(s): Faraha Ahmed, Mohammad Ahmed Khan*, Nafis Haider, Mohammad Zaki Ahmad and Javed Ahmad*

Volume 28, Issue 2, 2022

Published on: 30 November, 2021

Page: [133 - 150] Pages: 18

DOI: 10.2174/1381612827666210916140627

Price: $65

Abstract

Early detection and accurate monitoring are two critical factors affecting the outcome of anticancer therapy. However, both these factors are affected by the limitations of conventional approaches of diagnosis and treatment. Nanomedicine has progressively offered a scientific solution in improved delivery and better diagnosis of various cancers, thus providing a targeted treatment approach. With the advances in the field, simultaneous delivery and diagnosis are becoming a reality. The present manuscript discusses various drug delivery challenges, provides the scope for theranostic nanomaterials in the diagnosis and treatment of cancer. The clinical and translational potential of theranostic nanomedicine and the future directions for further research are also presented in the manuscript.

Keywords: Nanomedicine, theranostics, cancer, chemotherapy, drug delivery, nanomaterials in cancer.

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Ahmad MZ, Akhter S, Jain GK, et al. Metallic nanoparticles: technology overview & drug delivery applications in oncology. Exp Op Drug Del 2010; 7(8): 927-42.
[http://dx.doi.org/10.1517/17425247.2010.498473] [PMID: 20645671]
[3]
Ahmad MZ, Akhter S, Rahman Z, et al. Nanometric gold in cancer nanotechnology: current status and future prospect. J Pharm Pharmacol 2013; 65(5): 634-51.
[http://dx.doi.org/10.1111/jphp.12017] [PMID: 23600380]
[4]
Ahmad MZ, Rizwanullah M, Ahmad J, et al. Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy. Int J Poly Mat Poly Biomat 2021; 1-22.
[5]
Global cancer observatory. 2020. Available from: https://gco.iarc.fr/
[6]
GLOBOCAN 2020: New Global Cancer Data 2020. https://www.uicc.org/news/globocan-2020-new-global-cancer-data
[7]
Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer. Drug Discov Today 2012; 17(17-18): 928-34.
[http://dx.doi.org/10.1016/j.drudis.2012.03.010] [PMID: 22484464]
[8]
Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 2017; 6(1): 44.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[9]
Zhang Z, Wang J, Chen C. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv Mater 2013; 25(28): 3869-80.
[http://dx.doi.org/10.1002/adma.201301890] [PMID: 24048973]
[10]
Ahmad MZ, Akhter S, Mallik N, Anwar M, Tabassum W, Ahmad FJ. Application of decoy oligonucleotides as novel therapeutic strategy: a contemporary overview. Curr Drug Discov Technol 2013; 10(1): 71-84.
[PMID: 22780867]
[11]
Rahman M, Ahmad MZ, Kazmi I, et al. Emergence of nanomedicine as cancer targeted magic bullets: recent development and need to address the toxicity apprehension. Curr Drug Discov Technol 2012; 9(4): 319-29.
[http://dx.doi.org/10.2174/157016312803305898] [PMID: 22725687]
[12]
Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ. Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Deliv 2012; 9(10): 1225-43.
[http://dx.doi.org/10.1517/17425247.2012.716824] [PMID: 22897613]
[13]
Ahmad MZ, Ahmad J, Haque A, Alasmary MY, Abdel-Wahab BA, Akhter S. Emerging advances in synthetic cancer nano- vaccines: opportunities and challenges. Exp Rev Vacc 2020; 19(11): 1053-71.
[http://dx.doi.org/10.1080/14760584.2020.1858058] [PMID: 33315512]
[14]
Peng XX, Tiwari AK, Wu HC, Chen ZS. Overexpression of P-glycoprotein induces acquired resistance to imatinib in chronic myelogenous leukemia cells. Chin J Cancer 2012; 31(2): 110-8.
[http://dx.doi.org/10.5732/cjc.011.10327] [PMID: 22098951]
[15]
Sánchez-López E, Guerra M, Dias-Ferreira J, et al. Current applications of nanoemulsions in cancer therapeutics. Nanomaterials (Basel) 2019; 9(6): 821.
[http://dx.doi.org/10.3390/nano9060821] [PMID: 31159219]
[16]
Saleem J, Wang L, Chen C. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv Healthc Mater 2018; 7(20): e1800525.
[http://dx.doi.org/10.1002/adhm.201800525] [PMID: 30073803]
[17]
Wang M, Zhao J, Zhang L, et al. Role of tumor microenvironment in tumorigenesis. J Can 2017; 8(5): 761-73.
[http://dx.doi.org/10.7150/jca.17648] [PMID: 28382138]
[18]
Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon nanotubes in biomedicine. Top Curr Chem (Cham) 2020; 378(1): 15.
[http://dx.doi.org/10.1007/s41061-019-0278-8] [PMID: 31938922]
[19]
Rizwanullah M, Ahmad J, Amin S. Nanostructured lipid carriers: A novel platform for chemotherapeutics. Curr Drug Deliv 2016; 13(1): 4-26.
[http://dx.doi.org/10.2174/1567201812666150817124133] [PMID: 26279117]
[20]
Tan YY, Yap PK, Xin Lim GL, et al. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem Biol Interact 2020; 329: 109221.
[http://dx.doi.org/10.1016/j.cbi.2020.109221] [PMID: 32768398]
[21]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[22]
Poon W, Zhang X, Nadeau J. Nanoparticle drug formulations for cancer diagnosis and treatment. Crit Rev Oncog 2014; 19(3-4): 223-45.
[http://dx.doi.org/10.1615/CritRevOncog.2014011563] [PMID: 25271432]
[23]
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[24]
Assaraf YG, Brozovic A, Gonçalves AC, et al. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 2019; 46: 100645.
[http://dx.doi.org/10.1016/j.drup.2019.100645] [PMID: 31585396]
[25]
Cui Q, Wang JQ, Assaraf YG, et al. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41: 1-25.
[http://dx.doi.org/10.1016/j.drup.2018.11.001] [PMID: 30471641]
[26]
Li YJ, Lei YH, Yao N, et al. Autophagy and multidrug resistance in cancer. Chin J Cancer 2017; 36(1): 52.
[http://dx.doi.org/10.1186/s40880-017-0219-2] [PMID: 28646911]
[27]
Chun SY, Kwon YS, Nam KS, Kim S. Lapatinib enhances the cytotoxic effects of doxorubicin in MCF-7 tumorspheres by inhibiting the drug efflux function of ABC transporters. Biomed Pharmacother 2015; 72: 37-43.
[http://dx.doi.org/10.1016/j.biopha.2015.03.009] [PMID: 26054673]
[28]
Filomeni G, Turella P, Dupuis ML, et al. 6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, a specific glutathione S-transferase inhibitor, overcomes the multidrug resistance (MDR)-associated protein 1-mediated MDR in small cell lung cancer. Mol Cancer Ther 2008; 7(2): 371-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0487] [PMID: 18281520]
[29]
Bedi A, Barber JP, Bedi GC, et al. BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 1995; 86(3): 1148-58.
[http://dx.doi.org/10.1182/blood.V86.3.1148.1148] [PMID: 7620167]
[30]
Wilson CS, Medeiros LJ, Lai R, et al. DNA topoisomerase IIalpha in multiple myeloma: a marker of cell proliferation and not drug resistance. Mod Pathol 2001; 14(9): 886-91.
[http://dx.doi.org/10.1038/modpathol.3880407] [PMID: 11557785]
[31]
Li H, Yang BB. Friend or foe: the role of microRNA in chemotherapy resistance. Acta Pharmacol Sin 2013; 34(7): 870-9.
[http://dx.doi.org/10.1038/aps.2013.35] [PMID: 23624759]
[32]
Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development. Nat Rev Drug Discov 2010; 9(3): 215-36.
[http://dx.doi.org/10.1038/nrd3028] [PMID: 20190787]
[33]
Milane L, Duan Z, Amiji M. Role of hypoxia and glycolysis in the development of multi-drug resistance in human tumor cells and the establishment of an orthotopic multi-drug resistant tumor model in nude mice using hypoxic pre-conditioning. Cancer Cell Int 2011; 11: 3.
[http://dx.doi.org/10.1186/1475-2867-11-3] [PMID: 21320311]
[34]
Camidge DR, Pao W, Sequist LV. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol 2014; 11(8): 473-81.
[http://dx.doi.org/10.1038/nrclinonc.2014.104] [PMID: 24981256]
[35]
Zhang GN, Ashby CR Jr, Zhang YK, Chen ZS, Guo H. The reversal of antineoplastic drug resistance in cancer cells by β-elemene. Chin J Cancer 2015; 34(11): 488-95.
[http://dx.doi.org/10.1186/s40880-015-0048-0] [PMID: 26370907]
[36]
Kumar P, Zhang DM, Degenhardt K, Chen ZS. Autophagy and transporter-based multi-drug resistance. Cells 2012; 1(3): 558-75.
[http://dx.doi.org/10.3390/cells1030558] [PMID: 24710490]
[37]
Kathawala RJ, Wang YJ, Ashby CR Jr, Chen ZS. Recent advances regarding the role of ABC subfamily C member 10 (ABCC10) in the efflux of antitumor drugs. Chin J Cancer 2014; 33(5): 223-30.
[http://dx.doi.org/10.5732/cjc.013.10122] [PMID: 24103790]
[38]
Anreddy N, Gupta P, Kathawala RJ, Patel A, Wurpel JN, Chen ZS. Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules 2014; 19(9): 13848-77.
[http://dx.doi.org/10.3390/molecules190913848] [PMID: 25191874]
[39]
Morrow CS, Peklak-Scott C, Bishwokarma B, Kute TE, Smitherman PK, Townsend AJ. Multidrug resistance protein 1 (MRP1, ABCC1) mediates resistance to mitoxantrone via glutathione-dependent drug efflux. Mol Pharmacol 2006; 69(4): 1499-505.
[http://dx.doi.org/10.1124/mol.105.017988] [PMID: 16434618]
[40]
König SK, Herzog M, Theile D, Zembruski N, Haefeli WE, Weiss J. Impact of drug transporters on cellular resistance towards saquinavir and darunavir. J Antimicrob Chemother 2010; 65(11): 2319-28.
[http://dx.doi.org/10.1093/jac/dkq324] [PMID: 20817741]
[41]
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018; 18(7): 452-64.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[42]
Wu Q, Yang Z, Nie Y, Shi Y, Fan D. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett 2014; 347(2): 159-66.
[http://dx.doi.org/10.1016/j.canlet.2014.03.013] [PMID: 24657660]
[43]
Gala UH, Miller DA, Williams RO III. Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim Biophys Acta Rev Cancer 2020; 1873(1): 188319.
[http://dx.doi.org/10.1016/j.bbcan.2019.188319] [PMID: 31678141]
[44]
Agdeppa ED, Spilker ME. A review of imaging agent development. AAPS J 2009; 11(2): 286-99.
[http://dx.doi.org/10.1208/s12248-009-9104-5] [PMID: 19415506]
[45]
Shewach DS, Kuchta RD. Introduction to cancer chemotherapeutics. Chem Rev 2009; 109(7): 2859-61.
[http://dx.doi.org/10.1021/cr900208x] [PMID: 19583428]
[46]
Chen ZG. Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med 2010; 16(12): 594-602.
[http://dx.doi.org/10.1016/j.molmed.2010.08.001] [PMID: 20846905]
[47]
Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-mediated combination therapy: Two-in-one approach for cancer. Int J Mol Sci 2018; 19(10): 3264.
[http://dx.doi.org/10.3390/ijms19103264] [PMID: 30347840]
[48]
Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7(9): 771-82.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[49]
Maranhão RC, Vital CG, Tavoni TM, Graziani SR. Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents. Expert Opin Drug Deliv 2017; 14(10): 1217-26.
[http://dx.doi.org/10.1080/17425247.2017.1276560] [PMID: 28042707]
[50]
Rühle A, Huber PE, Saffrich R, Lopez Perez R, Nicolay NH. The current understanding of mesenchymal stem cells as potential attenuators of chemotherapy-induced toxicity. Int J Cancer 2018; 143(11): 2628-39.
[http://dx.doi.org/10.1002/ijc.31619] [PMID: 29931767]
[51]
Kuderer NM, Dale DC, Crawford J, Cosler LE, Lyman GH. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 2006; 106(10): 2258-66.
[http://dx.doi.org/10.1002/cncr.21847] [PMID: 16575919]
[52]
Mangioni C, Bolis G, Pecorelli S, et al. Randomized trial in advanced ovarian cancer comparing cisplatin and carboplatin. J Natl Cancer Inst 1989; 81(19): 1464-71.
[http://dx.doi.org/10.1093/jnci/81.19.1464] [PMID: 2674459]
[53]
Brock N, Hohorst HJ. Metabolism of cyclophosphamide. Cancer 1967; 20(5): 900-4.
[http://dx.doi.org/10.1002/1097-0142(1967)20:5<900::AID-CNCR2820200552>3.0.CO;2-Y] [PMID: 6024299]
[54]
Volkova M, Russell R III. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev 2011; 7(4): 214-20.
[http://dx.doi.org/10.2174/157340311799960645] [PMID: 22758622]
[55]
Volpe DA, Warren MK. Myeloid clonogenic assays for comparison of the in vitro toxicity of alkylating agents. Toxicol In Vitro 2003; 17(3): 271-7.
[http://dx.doi.org/10.1016/S0887-2333(03)00012-2] [PMID: 12781205]
[56]
Selker RG, Jacobs SA, Moore PB, et al. 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU)-induced pulmonary fibrosis. Neurosurgery 1980; 7(6): 560-5.
[http://dx.doi.org/10.1227/00006123-198012000-00003] [PMID: 7207751]
[57]
Mitchell EP. Gastrointestinal toxicity of chemotherapeutic agents. Semin Oncol 2006; 33(1): 106-20.
[http://dx.doi.org/10.1053/j.seminoncol.2005.12.001] [PMID: 16473649]
[58]
Kunkler AL, Binkley EM, Mantopoulos D, et al. Known and novel ocular toxicities of biologics, targeted agents, and traditional chemotherapeutics. Graefes Arch Clin Exp Ophthalmol 2019; 257(8): 1771-81.
[http://dx.doi.org/10.1007/s00417-019-04337-8] [PMID: 31098752]
[59]
Saraswat N, Sood A, Verma R, Kumar D, Kumar S. Nail changes induced by chemotherapeutic agents. Int J Dermatol 2020; 65(3): 193-8.
[PMID: 32565559]
[60]
Miltenburg NC, Boogerd W. Chemotherapy-induced neuropathy: A comprehensive survey. Cancer Treat Rev 2014; 40(7): 872-82.
[http://dx.doi.org/10.1016/j.ctrv.2014.04.004] [PMID: 24830939]
[61]
Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond) 2019; 14(1): 93-126.
[http://dx.doi.org/10.2217/nnm-2018-0120] [PMID: 30451076]
[62]
Park JH, Lee S, Kim JH, et al. Polymeric nanomedicine for cancer therapy. Prog Polym Sci 2008; 33: 113-37.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.09.003]
[63]
Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliv Rev 2017; 108: 25-38.
[http://dx.doi.org/10.1016/j.addr.2016.04.025] [PMID: 27137110]
[64]
Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005; 19(3): 311-30.
[http://dx.doi.org/10.1096/fj.04-2747rev] [PMID: 15746175]
[65]
Zhu J, Xu M, Gao M, et al. Graphene oxide induced perturbation to plasma membrane and cytoskeletal meshwork sensitize cancer cells to chemotherapeutic agents. ACS Nano 2017; 11(3): 2637-51.
[http://dx.doi.org/10.1021/acsnano.6b07311] [PMID: 28208020]
[66]
Kemp JA, Shim MS, Heo CY, Kwon YJ. “Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev 2016; 98: 3-18.
[http://dx.doi.org/10.1016/j.addr.2015.10.019] [PMID: 26546465]
[67]
Gharagozloo M, Majewski S, Foldvari M. Therapeutic applications of nanomedicine in autoimmune diseases: from immunosuppression to tolerance induction. Nanomedicine 2015; 11(4): 1003-18.
[http://dx.doi.org/10.1016/j.nano.2014.12.003] [PMID: 25596076]
[68]
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92.
[PMID: 2946403]
[69]
Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 1995; 55(17): 3752-6.
[PMID: 7641188]
[70]
Panzarini E, Dini L. Nanomaterial-induced autophagy: a new reversal MDR tool in cancer therapy? Mol Pharm 2014; 11(8): 2527-38.
[http://dx.doi.org/10.1021/mp500066v] [PMID: 24921216]
[71]
Kreuter J. Nanoparticles and microparticles for drug and vaccine delivery. J Anat 1996; 189(Pt 3): 503-5.
[PMID: 8982823]
[72]
Breimer DD. Future challenges for drug delivery research. Adv Drug Deliv Rev 1998; 33(3): 265-8.
[http://dx.doi.org/10.1016/S0169-409X(98)00034-9] [PMID: 10837666]
[73]
Brandl M. Liposomes as drug carriers: a technological approach. Biotechnol Annu Rev (Amst) 2001; 7: 59-85.
[http://dx.doi.org/10.1016/S1387-2656(01)07033-8] [PMID: 11686049]
[74]
Estella-Hermoso de Mendoza A, Campanero MA, Mollinedo F, Blanco-Prieto MJ. Lipid nanomedicines for anticancer drug therapy. J Biomed Nanotechnol 2009; 5(4): 323-43.
[http://dx.doi.org/10.1166/jbn.2009.1042] [PMID: 20055079]
[75]
Matsumura Y, Hamaguchi T, Ura T, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 2004; 91(10): 1775-81.
[http://dx.doi.org/10.1038/sj.bjc.6602204] [PMID: 15477860]
[76]
Lee JH, Jung SW, Kim IS, Jeong YI, Kim YH, Kim SH. Polymeric nanoparticle composed of fatty acids and poly(ethylene glycol) as a drug carrier. Int J Pharm 2003; 251(1-2): 23-32.
[http://dx.doi.org/10.1016/S0378-5173(02)00582-3] [PMID: 12527172]
[77]
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008; 60(15): 1650-62.
[http://dx.doi.org/10.1016/j.addr.2008.09.001] [PMID: 18848591]
[78]
Xu ZP, Zeng QH, Lu GQ, et al. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 2006; 61: 1027-40.
[http://dx.doi.org/10.1016/j.ces.2005.06.019]
[79]
Dakhil S, Ensminger W, Cho K, Niederhuber J, Doan K, Wheeler R. Improved regional selectivity of hepatic arterial BCNU with degradable microspheres. Cancer 1982; 50(4): 631-5.
[http://dx.doi.org/10.1002/1097-0142(19820815)50:4<631::AID-CNCR2820500403>3.0.CO;2-M] [PMID: 7046907]
[80]
Nelken N, Schneider PA. Advances in stent technology and drug-eluting stents. Surg Clin North Am 2004; 84(5): 1203-1236, v.
[http://dx.doi.org/10.1016/j.suc.2004.05.003] [PMID: 15364552]
[81]
Fernandez-Fernandez A, Manchanda R, McGoron AJ. Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol 2011; 165(7-8): 1628-51.
[http://dx.doi.org/10.1007/s12010-011-9383-z] [PMID: 21947761]
[82]
Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol 2009; 6(1): 43-51.
[http://dx.doi.org/10.2174/157016309787581066] [PMID: 19275541]
[83]
Zangabad PS, Mirkiani S, Shahsavari S, et al. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol Rev 2018; 7(1): 95-122.
[http://dx.doi.org/10.1515/ntrev-2017-0154] [PMID: 29404233]
[84]
Tang WL, Tang WH, Li SD. Cancer theranostic applications of lipid-based nanoparticles. Drug Discov Today 2018; 23(5): 1159-66.
[http://dx.doi.org/10.1016/j.drudis.2018.04.007] [PMID: 29660478]
[85]
Bayda S, Hadla M, Palazzolo S, et al. Inorganic nanoparticles for cancer therapy: A transition from lab to clinic. Curr Med Chem 2018; 25(34): 4269-303.
[http://dx.doi.org/10.2174/0929867325666171229141156] [PMID: 29284391]
[86]
Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003; 2(5): 347-60.
[http://dx.doi.org/10.1038/nrd1088] [PMID: 12750738]
[87]
Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: a translational perspective. Nanomedicine 2018; 14(7): 2023-50.
[http://dx.doi.org/10.1016/j.nano.2018.05.021] [PMID: 29944981]
[88]
El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release 2004; 94(1): 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.013] [PMID: 14684267]
[89]
Bromberg L. Polymeric micelles in oral chemotherapy. J Control Release 2008; 128(2): 99-112.
[http://dx.doi.org/10.1016/j.jconrel.2008.01.018] [PMID: 18325619]
[90]
Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 2001; 73(2-3): 137-72.
[http://dx.doi.org/10.1016/S0168-3659(01)00299-1] [PMID: 11516494]
[91]
Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci 2003; 92(7): 1343-55.
[http://dx.doi.org/10.1002/jps.10397] [PMID: 12820139]
[92]
Merdan T, Kopecek J, Kissel T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 2002; 54(5): 715-58.
[http://dx.doi.org/10.1016/S0169-409X(02)00046-7] [PMID: 12204600]
[93]
Glover DJ, Lipps HJ, Jans DA. Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 2005; 6(4): 299-310.
[http://dx.doi.org/10.1038/nrg1577] [PMID: 15761468]
[94]
Brown MD, Schätzlein AG, Uchegbu IF. Gene delivery with synthetic (non viral) carriers. Int J Pharm 2001; 229(1-2): 1-21.
[http://dx.doi.org/10.1016/S0378-5173(01)00861-4] [PMID: 11604253]
[95]
Lechardeur D, Verkman AS, Lukacs GL. Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev 2005; 57(5): 755-67.
[http://dx.doi.org/10.1016/j.addr.2004.12.008] [PMID: 15757759]
[96]
Kircheis R, Schüller S, Brunner S, et al. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med 1999; 1(2): 111-20.
[http://dx.doi.org/10.1002/(SICI)1521-2254(199903/04)1:2<111::AID-JGM22>3.0.CO;2-Y] [PMID: 10738575]
[97]
Kichler A. Gene transfer with modified polyethylenimines. J Gene Med 2004; 6(Suppl. 1): S3-S10.
[http://dx.doi.org/10.1002/jgm.507] [PMID: 14978746]
[98]
Blessing T, Kursa M, Holzhauser R, Kircheis R, Wagner E. Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjug Chem 2001; 12(4): 529-37.
[http://dx.doi.org/10.1021/bc0001488] [PMID: 11459457]
[99]
Wolfert MA, Schacht EH, Toncheva V, Ulbrich K, Nazarova O, Seymour LW. Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block co-polymers. Hum Gene Ther 1996; 7(17): 2123-33.
[http://dx.doi.org/10.1089/hum.1996.7.17-2123] [PMID: 8934226]
[100]
Choi YH, Liu F, Kim JS, Choi YK, Park JS, Kim SW. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier. J Control Release 1998; 54(1): 39-48.
[http://dx.doi.org/10.1016/S0168-3659(97)00174-0] [PMID: 9741902]
[101]
Hashida M, Takemura S, Nishikawa M, Takakura Y. Targeted delivery of plasmid DNA complexed with galactosylated poly(L-lysine). J Control Release 1998; 53(1-3): 301-10.
[http://dx.doi.org/10.1016/S0168-3659(97)00263-0] [PMID: 9741938]
[102]
Shimizu N, Chen J, Gamou S, Takayanagi A. Immunogene approach toward cancer therapy using erythrocyte growth factor receptor-mediated gene delivery. Cancer Gene Ther 1996; 3(2): 113-20.
[PMID: 8729910]
[103]
Mislick KA, Baldeschwieler JD, Kayyem JF, Meade TJ. Transfection of folate-polylysine DNA complexes: evidence for lysosomal delivery. Bioconjug Chem 1995; 6(5): 512-5.
[http://dx.doi.org/10.1021/bc00035a002] [PMID: 8974447]
[104]
Kim JS, Maruyama A, Akaike T, Kim SW. Terplex DNA delivery system as a gene carrier. Pharm Res 1998; 15(1): 116-21.
[http://dx.doi.org/10.1023/A:1011917224044] [PMID: 9487557]
[105]
Benns JM, Choi JS, Mahato RI, Park JS, Kim SW. pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconjug Chem 2000; 11(5): 637-45.
[http://dx.doi.org/10.1021/bc0000177] [PMID: 10995206]
[106]
Strand SP, Danielsen S, Christensen BE, Vårum KM. Influence of chitosan structure on the formation and stability of DNA-chitosan polyelectrolyte complexes. Biomacromolecules 2005; 6(6): 3357-66.
[http://dx.doi.org/10.1021/bm0503726] [PMID: 16283766]
[107]
Köping-Höggård M, Tubulekas I, Guan H, et al. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 2001; 8(14): 1108-21.
[http://dx.doi.org/10.1038/sj.gt.3301492] [PMID: 11526458]
[108]
Huang M, Fong CW, Khor E, Lim LY. Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J Control Release 2005; 106(3): 391-406.
[http://dx.doi.org/10.1016/j.jconrel.2005.05.004] [PMID: 15967533]
[109]
Lavertu M, Méthot S, Tran-Khanh N, Buschmann MD. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 2006; 27(27): 4815-24.
[http://dx.doi.org/10.1016/j.biomaterials.2006.04.029] [PMID: 16725196]
[110]
Kean T, Roth S, Thanou M. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release 2005; 103(3): 643-53.
[http://dx.doi.org/10.1016/j.jconrel.2005.01.001] [PMID: 15820411]
[111]
Yoo HS, Lee JE, Chung H, Kwon IC, Jeong SY. Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J Control Release 2005; 103(1): 235-43.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.033] [PMID: 15710514]
[112]
Gao S, Chen J, Dong L, Ding Z, Yang YH, Zhang J. Targeting delivery of oligonucleotide and plasmid DNA to hepatocyte via galactosylated chitosan vector. Eur J Pharm Biopharm 2005; 60(3): 327-34.
[http://dx.doi.org/10.1016/j.ejpb.2005.02.011] [PMID: 15894474]
[113]
Mansouri S, Cuie Y, Winnik F, et al. Characterization of folate- chitosan-DNA nanoparticles for gene therapy. Biomaterials 2006; 27(9): 2060-5.
[http://dx.doi.org/10.1016/j.biomaterials.2005.09.020] [PMID: 16202449]
[114]
Pun SH, Bellocq NC, Liu A, et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem 2004; 15(4): 831-40.
[http://dx.doi.org/10.1021/bc049891g] [PMID: 15264871]
[115]
Tekade RK, Dutta T, Gajbhiye V, Jain NK. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. J Microencapsul 2009; 26(4): 287-96.
[http://dx.doi.org/10.1080/02652040802312572] [PMID: 18791906]
[116]
Luong D, Kesharwani P, Deshmukh R, et al. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater 2016; 43: 14-29.
[http://dx.doi.org/10.1016/j.actbio.2016.07.015] [PMID: 27422195]
[117]
Kalomiraki M, Thermos K, Chaniotakis NA. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomedicine 2015; 11: 1-12.
[PMID: 26730187]
[118]
Cheng Y, Xu Z, Ma M, Xu T. Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci 2008; 97(1): 123-43.
[http://dx.doi.org/10.1002/jps.21079] [PMID: 17721949]
[119]
Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 2014; 6(3): 139-50.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[120]
Wong PT, Tang S, Mukherjee J, et al. Light-controlled active release of photocaged ciprofloxacin for lipopolysaccharide-targeted drug delivery using dendrimer conjugates. Chem Commun (Camb) 2016; 52(68): 10357-60.
[http://dx.doi.org/10.1039/C6CC05179K] [PMID: 27476878]
[121]
Zhou Z, Ma X, Murphy CJ, et al. Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy. Ang Chem Int Ed 2014; 53: 10949-55.
[122]
Hussain S. Nanomedicine for Treatment of Lung Cancer. Adv Exp Med Biol 2016; 890: 137-47.
[http://dx.doi.org/10.1007/978-3-319-24932-2_8] [PMID: 26703803]
[123]
Paleos CM, Tsiourvas D, Sideratou Z. Triphenylphosphonium decorated liposomes and dendritic polymers: Prospective second generation drug delivery systems for targeting mitochondria. Mol Pharm 2016; 13(7): 2233-41.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00237] [PMID: 27280339]
[124]
Edgar JYC, Wang H. Introduction for design of nanoparticle based drug delivery systems. Curr Pharm Des 2017; 23(14): 2108-12.
[http://dx.doi.org/10.2174/1381612822666161025154003] [PMID: 27784242]
[125]
Mason TG, Wilking JN, Meleson K, et al. Nanoemulsions: Formation, structure, and physical properties. Phys Condens Mat 2006; 18: R635-66.
[http://dx.doi.org/10.1088/0953-8984/18/41/R01]
[126]
Ganta S, Talekar M, Singh A, Coleman TP, Amiji MM. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy. AAPS PharmSciTech 2014; 15(3): 694-708.
[http://dx.doi.org/10.1208/s12249-014-0088-9] [PMID: 24510526]
[127]
Gi HJ, Chen SN, Hwang JS, et al. Studies of formation and interface of oil-water microemulsion. Zhongguo Wuli Xuekan 1992; 30: 665-78.
[128]
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000; 65(1-2): 271-84.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[129]
Kumar GP, Divya A. Nanoemulsion based targeting in cancer therapeutics. Med Chem 2015; 5: 272-84.
[130]
Kim JE, Park YJ. Improved antitumor efficacy of hyaluronic acid-complexed paclitaxel nanoemulsions in treating non-small cell lung cancer. Biomol Ther (Seoul) 2017; 25(4): 411-6.
[http://dx.doi.org/10.4062/biomolther.2016.261] [PMID: 28208014]
[131]
Pucci C, Martinelli C, Ciofani G. What does the future hold for chemotherapy with the use of lipid-based nanocarriers? Future Oncol 2020; 16(5): 81-4.
[http://dx.doi.org/10.2217/fon-2019-0767] [PMID: 31872773]
[132]
Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 2009; 26(6): 523-80.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[133]
Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the effciency of anticancer drugs. Nanomaterials (Basel) 2019; 9(3): 474.
[http://dx.doi.org/10.3390/nano9030474] [PMID: 30909401]
[134]
Ashtari A, Niazvand F, Khorsandi L. Chemotherapy drugs based on solid lipid nanoparticles for breast cancer treatment. Medicina (Kaunas) 2020; 56(12): 694.
[http://dx.doi.org/10.3390/medicina56120694] [PMID: 33322127]
[135]
Zhuang YG, Xu B, Huang F, Wu JJ, Chen S. Solid lipid nanoparticles of anticancer drugs against MCF-7 cell line and a murine breast cancer model. Pharmazie 2012; 67(11): 925-9.
[PMID: 23210242]
[136]
Garg NK, Singh B, Jain A, et al. Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Colloids Surf B Biointerfaces 2016; 146: 114-26.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.051] [PMID: 27268228]
[137]
Oliveira MS, Aryasomayajula B, Pattni B, Mussi SV, Ferreira LAM, Torchilin VP. Solid lipid nanoparticles co-loaded with doxorubicin and α-tocopherol succinate are effective against drug-resistant cancer cells in monolayer and 3-D spheroid cancer cell models. Int J Pharm 2016; 512(1): 292-300.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.049] [PMID: 27568499]
[138]
Guney Eskiler G, Cecener G, Dikmen G, Egeli U, Tunca B. Solid lipid nanoparticles: Reversal of tamoxifen resistance in breast cancer. Eur J Pharm Sci 2018; 120: 73-88.
[http://dx.doi.org/10.1016/j.ejps.2018.04.040] [PMID: 29719240]
[139]
Selvamuthukumar S, Velmurugan R. Nanostructured lipid carriers: a potential drug carrier for cancer chemotherapy. Lipids Health Dis 2012; 11: 159.
[http://dx.doi.org/10.1186/1476-511X-11-159] [PMID: 23167765]
[140]
Zhang L, Li Y, Yu JC. Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem B Mater Biol Med 2014; 2(5): 452-70.
[http://dx.doi.org/10.1039/C3TB21196G] [PMID: 32261526]
[141]
Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2014; 2: 48.
[http://dx.doi.org/10.3389/fchem.2014.00048] [PMID: 25077142]
[142]
Abbasi E, Kafshdooz T, Bakhtiary M, et al. Biomedical and biological applications of quantum dots. Artif Cells Nanomed Biotechnol 2016; 44(3): 885-91.
[PMID: 25615877]
[143]
Shabestari Khiabani S, Farshbaf M, Akbarzadeh A, Davaran S. Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artif Cells Nanomed Biotechnol 2017; 45(1): 6-17.
[http://dx.doi.org/10.3109/21691401.2016.1167704] [PMID: 27050642]
[144]
Giljohann DA, Seferos DS, Daniel WL, et al. Gold nanoparticles for biology and medicine. Ang Chem Int Ed 2010; 49: 3280-94.
[http://dx.doi.org/10.1002/anie.200904359]
[145]
Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 2018; 19(7): 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[146]
Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008; 41(12): 1578-86.
[http://dx.doi.org/10.1021/ar7002804] [PMID: 18447366]
[147]
Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C 2016; 120: 4691-716.
[http://dx.doi.org/10.1021/acs.jpcc.5b11232]
[148]
Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R. Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells Nanomed Biotechnol 2018; 46(sup1): 1210-20.
[http://dx.doi.org/10.1080/21691401.2018.1449118] [PMID: 29533101]
[149]
Wang R, Yang H, Fu R, et al. Biomimetic upconversion nanoparticles and gold nanoparticles for novel simultaneous dual-modal imaging-guided photothermal therapy of cancer. Cancers (Basel) 2020; 12(11): 3136.
[http://dx.doi.org/10.3390/cancers12113136] [PMID: 33120892]
[150]
Klasen HJ. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 2000; 26(2): 117-30.
[http://dx.doi.org/10.1016/S0305-4179(99)00108-4] [PMID: 10716354]
[151]
Li Y, Chang Y, Lian X, et al. Silver nanoparticles for enhanced cancer theranostics: In Vitro and in vivo perspectives. J Biomed Nanotechnol 2018; 14(9): 1515-42.
[http://dx.doi.org/10.1166/jbn.2018.2614] [PMID: 29958548]
[152]
Morais M, Teixeira AL, Dias F, Machado V, Medeiros R, Prior JAV. Cytotoxic effect of silver nanoparticles synthesized by green methods in cancer. J Med Chem 2020; 63(23): 14308-35.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01055] [PMID: 33231444]
[153]
Zhao D, Sun X, Tong J, et al. A novel multifunctional nanocomposite C225-conjugated Fe3O4/Ag enhances the sensitivity of nasopharyngeal carcinoma cells to radiotherapy. Acta Biochim Biophys Sin (Shanghai) 2012; 44(8): 678-84.
[http://dx.doi.org/10.1093/abbs/gms051] [PMID: 22710262]
[154]
Wu P, Gao Y, Lu Y, Zhang H, Cai C. High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer-silver-gold shell-core nanostructures. Analyst (Lond) 2013; 138(21): 6501-10.
[http://dx.doi.org/10.1039/c3an01375h] [PMID: 24040647]
[155]
Guo D, Zhu L, Huang Z, et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 2013; 34(32): 7884-94.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.015] [PMID: 23876760]
[156]
Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res Int 2013; 2013: 535796.
[http://dx.doi.org/10.1155/2013/535796] [PMID: 23936814]
[157]
Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 2019; 16(1): 69-78.
[http://dx.doi.org/10.1080/17425247.2019.1554647] [PMID: 30496697]
[158]
Chertok B, Moffat BA, David AE, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008; 29(4): 487-96.
[http://dx.doi.org/10.1016/j.biomaterials.2007.08.050] [PMID: 17964647]
[159]
Kooi ME, Cappendijk VC, Cleutjens KBJM, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003; 107(19): 2453-8.
[http://dx.doi.org/10.1161/01.CIR.0000068315.98705.CC] [PMID: 12719280]
[160]
Arruebo M, Fernandez-Pacheco R, Ibarra MR, et al. Magnetic nanoparticles for drug delivery. Nano Today 2007; 2: 22-32.
[http://dx.doi.org/10.1016/S1748-0132(07)70084-1]
[161]
Arbab AS, Bashaw LA, Miller BR, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 2003; 229(3): 838-46.
[http://dx.doi.org/10.1148/radiol.2293021215] [PMID: 14657318]
[162]
Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008; 60(11): 1252-65.
[http://dx.doi.org/10.1016/j.addr.2008.03.018] [PMID: 18558452]
[163]
Diederich CJ. Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. Int J Hyperthermia 2005; 21(8): 745-53.
[http://dx.doi.org/10.1080/02656730500271692] [PMID: 16338857]
[164]
Juzenas P, Chen W, Sun YP, et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 2008; 60(15): 1600-14.
[http://dx.doi.org/10.1016/j.addr.2008.08.004] [PMID: 18840487]
[165]
Chen KH, Wu S, Cheng CM. Electrical properties of the thin films using a low temperature supercritical carbon dioxide fluid process. Int J Chem Eng Appl 2015; 6: 455-9.
[http://dx.doi.org/10.7763/IJCEA.2015.V6.529]
[166]
Yu W, Yu N, Wang Z, et al. Chitosan-mediated green synthesis and folic-acid modification of CuS quantum dots for photoacoustic imaging guided photothermal therapy of tumor. J Colloid Interface Sci 2019; 555: 480-8.
[http://dx.doi.org/10.1016/j.jcis.2019.08.001] [PMID: 31401480]
[167]
Guo W, Qiu Z, Guo C, et al. Multifunctional theranostic agent of Cu2(OH)PO4 quantum dots for photoacoustic image-guided photothermal/photodynamic combination cancer therapy. ACS Appl Mater Interfaces 2017; 9(11): 9348-58.
[http://dx.doi.org/10.1021/acsami.6b15703] [PMID: 28248076]
[168]
Hosnedlova B, Kepinska M, Skalickova S, et al. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine 2018; 13: 2107-28.
[http://dx.doi.org/10.2147/IJN.S157541] [PMID: 29692609]
[169]
Karaman DS, Sarparanta MP, Rosenholm JM, Airaksinen AJ. Multimodality imaging of silica and silicon materials in vivo. Adv Mater 2018; 30(24): e1703651.
[http://dx.doi.org/10.1002/adma.201703651] [PMID: 29388264]
[170]
Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005; 9(6): 674-9.
[http://dx.doi.org/10.1016/j.cbpa.2005.10.005] [PMID: 16233988]
[171]
Wang CH, Chiou SH, Chou CP, Chen YC, Huang YJ, Peng CA. Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomedicine 2011; 7(1): 69-79.
[http://dx.doi.org/10.1016/j.nano.2010.06.010] [PMID: 20620237]
[172]
Yang T, Wu Z, Wang P, et al. A large-inner-diameter multi-walled carbon nanotube-based dual-drug delivery system with pH-sensitive release properties. J Mater Sci Mater Med 2017; 28(7): 110.
[http://dx.doi.org/10.1007/s10856-017-5920-9] [PMID: 28589526]
[173]
Spinato C, Perez Ruiz de Garibay A, Kierkowicz M, et al. Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy. Nanoscale 2016; 8(25): 12626-38.
[http://dx.doi.org/10.1039/C5NR07923C] [PMID: 26733445]
[174]
Wang JT-W, Klippstein R, Martincic M, et al. Neutron activated 153Sm sealed in carbon nanocapsules for in-vivo imaging and cancer radiotherapy. ACS Nano 2020; 14(1): 129-41.
[http://dx.doi.org/10.1021/acsnano.9b04898] [PMID: 31742990]
[175]
Wang JT-W, Spinato C, Klippstein R, et al. Neutron irradiated antibody-functionalized carbon nanocapsules for target cancer radiotherapy. Carbon 2020; 162: 410-22.
[http://dx.doi.org/10.1016/j.carbon.2020.02.060]
[176]
Zhang B, Wang Y, Zhai G. Biomedical applications of the graphene-based materials. Mater Sci Eng C 2016; 61: 953-64.
[http://dx.doi.org/10.1016/j.msec.2015.12.073] [PMID: 26838925]
[177]
Zhu L, Zhou Z, Mao H, Yang L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond) 2017; 12(1): 73-87.
[http://dx.doi.org/10.2217/nnm-2016-0316] [PMID: 27876448]
[178]
Orecchioni M, Bedognetti D, Sgarrella F, Marincola FM, Bianco A, Delogu LG. Impact of carbon nanotubes and graphene on immune cells. J Transl Med 2014; 12: 138.
[http://dx.doi.org/10.1186/1479-5876-12-138] [PMID: 24885781]
[179]
Fiorillo M, Verre AF, Iliut M, et al. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget 2015; 6(6): 3553-62.
[http://dx.doi.org/10.18632/oncotarget.3348] [PMID: 25708684]
[180]
Wei Z, Yin X, Cai Y, et al. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. Int J Nanomedicine 2018; 13: 1505-24.
[http://dx.doi.org/10.2147/IJN.S156984] [PMID: 29559779]
[181]
de Melo-Diogo D, Lima-Sousa R, Alves CG, Correia IJ. Graphene family nanomaterials for application in cancer combination photothermal therapy. Biomater Sci 2019; 7(9): 3534-51.
[http://dx.doi.org/10.1039/C9BM00577C] [PMID: 31250854]
[182]
Mitchell MJ, Jain RK, Langer R. Engineering and physical sciences in oncology: challenges and opportunities. Nat Rev Cancer 2017; 17(11): 659-75.
[http://dx.doi.org/10.1038/nrc.2017.83] [PMID: 29026204]
[183]
Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol Rep 2017; 38(2): 611-24.
[http://dx.doi.org/10.3892/or.2017.5718] [PMID: 28627697]
[184]
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019; 18(3): 175-96.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[185]
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 2019; 6(1): 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[186]
Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr Drug Metab 2019; 20(6): 416-29.
[http://dx.doi.org/10.2174/1389200219666180918111528] [PMID: 30227814]
[187]
Li Y, Ayala-Orozco C, Rauta PR, Krishnan S. The application of nanotechnology in enhancing immunotherapy for cancer treatment: current effects and perspective. Nanoscale 2019; 11(37): 17157-78.
[http://dx.doi.org/10.1039/C9NR05371A] [PMID: 31531445]
[188]
Devalapally H, Shenoy D, Little S, Langer R, Amiji M. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother Pharmacol 2007; 59(4): 477-84.
[http://dx.doi.org/10.1007/s00280-006-0287-5] [PMID: 16862429]
[189]
Liong M, Lu J, Kovochich M, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008; 2(5): 889-96.
[http://dx.doi.org/10.1021/nn800072t] [PMID: 19206485]
[190]
Hadjipanayis CG, Machaidze R, Kaluzova M, et al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 2010; 70(15): 6303-12.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1022] [PMID: 20647323]
[191]
von Maltzahn G, Park JH, Agrawal A, et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 2009; 69(9): 3892-900.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4242] [PMID: 19366797]
[192]
Matea CT, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 2017; 12: 5421-31.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[193]
Phillips E, Penate-Medina O, Zanzonico PB, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 2014; 6: 260ra149.: 260ra149.
[http://dx.doi.org/10.1126/scitranslmed.3009524]
[194]
Davis ME, Zuckerman JE, Choi CHJ, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010; 464(7291): 1067-70.
[http://dx.doi.org/10.1038/nature08956] [PMID: 20305636]
[195]
Libutti SK, Paciotti GF, Byrnes AA, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 2010; 16(24): 6139-49.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0978] [PMID: 20876255]
[196]
Ling D, Park W, Park SJ, et al. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc 2014; 136(15): 5647-55.
[http://dx.doi.org/10.1021/ja4108287] [PMID: 24689550]
[197]
Liu X, Chen B, Li X, et al. Self-assembly of BODIPY based pH-sensitive near-infrared polymeric micelles for drug controlled delivery and fluorescence imaging applications. Nanoscale 2015; 7(39): 16399-416.
[http://dx.doi.org/10.1039/C5NR04655F] [PMID: 26394168]
[198]
Lee JY, Choi DY, Cho MY, et al. Targeted theranostic nanoparticles: receptor-mediated entry into cells, pH-induced signal generation and cytosolic delivery. Small 2014; 10(5): 901-6.
[http://dx.doi.org/10.1002/smll.201302136] [PMID: 24106164]
[199]
Lee CC, Gillies ER, Fox ME, et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA 2006; 103(45): 16649-54.
[http://dx.doi.org/10.1073/pnas.0607705103] [PMID: 17075050]
[200]
Kester M, Heakal Y, Fox T, et al. Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett 2008; 8(12): 4116-21.
[http://dx.doi.org/10.1021/nl802098g] [PMID: 19367878]
[201]
Ansari C, Tikhomirov GA, Hong SH, et al. Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small 2014; 10(3): 566-575, 417.
[http://dx.doi.org/10.1002/smll.201301456] [PMID: 24038954]
[202]
Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 2010; 10(9): 3318-23.
[http://dx.doi.org/10.1021/nl100996u] [PMID: 20684528]
[203]
Kang B, Zheng MB, Song P, et al. Subcellular-scale drug transport via ultrasound-degradable mesoporous nanosilicon to bypass cancer drug resistance. Small 2017; 13(20): 1604228.
[http://dx.doi.org/10.1002/smll.201604228] [PMID: 28370987]
[204]
You DG, Deepagan VG, Um W, et al. ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci Rep 2016; 6: 23200.
[http://dx.doi.org/10.1038/srep23200] [PMID: 26996446]
[205]
Lee S, Koo H, Na JH, et al. Chemical tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry. ACS Nano 2014; 8(3): 2048-63.
[http://dx.doi.org/10.1021/nn406584y] [PMID: 24499346]
[206]
Kim JK, Choi KJ, Lee M, Jo MH, Kim S. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 2012; 33(1): 207-17.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.023] [PMID: 21944470]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy