Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

7,8-Dihydroxyflavone and Neuropsychiatric Disorders: A Translational Perspective from the Mechanism to Drug Development

Author(s): Shaojie Yang and Guoqi Zhu*

Volume 20, Issue 8, 2022

Published on: 30 March, 2022

Page: [1479 - 1497] Pages: 19

DOI: 10.2174/1570159X19666210915122820

Price: $65

Abstract

7,8-Dihydroxyflavone (7,8-DHF) is a kind of natural flavonoid with the potential to cross the blood-brain barrier. 7,8-DHF effectively mimics the effect of brain-derived neurotrophic factor (BDNF) in the brain to selectively activate tyrosine kinase receptor B (TrkB) and downstream signaling pathways, thus playing a neuroprotective role. The preclinical effects of 7,8-DHF have been widely investigated in neuropsychiatric disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), depression, and memory impairment. Besides the effect on TrkB, 7,8-DHF could also function through fighting against oxidative stress, cooperating with estrogen receptors, or regulating intestinal flora. This review focuses on the recent experimental studies on depression, neurodegenerative diseases, and learning and memory functions. Additionally, the structural modification and preparation of 7,8-DHF were also concluded and proposed, hoping to provide a reference for the follow-up research and clinical drug development of 7,8-DHF in the field of neuropsychiatric disorders.

Keywords: 7, 8-DHF, drug development, learning and memory, neuropsychiatric disorders, neuroprotective effect, TrkB agonist.

Graphical Abstract

[1]
Xiao, J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr., 2017, 57(9), 1874-1905.
[http://dx.doi.org/10.1080/10408398.2015.1032400] [PMID: 26176651]
[2]
Yi, Y.S. Regulatory roles of flavonoids on inflammasome activation during inflammatory responses. Mol. Nutr. Food Res., 2018, 62(13), e1800147.
[http://dx.doi.org/10.1002/mnfr.201800147] [PMID: 29774640]
[3]
Masad, R.J.; Haneefa, S.M.; Mohamed, Y.A.; Al-Sbiei, A.; Bashir, G.; Fernandez-Cabezudo, M.J.; Al-Ramadi, B.K. The Immunomodulato-ry effects of honey and associated flavonoids in cancer. Nutrients, 2021, 13(4), 1269.
[http://dx.doi.org/10.3390/nu13041269] [PMID: 33924384]
[4]
Kang, J.S.; Choi, I.W.; Han, M.H.; Kim, G.Y.; Hong, S.H.; Park, C.; Hwang, H.J.; Kim, C.M.; Kim, B.W.; Choi, Y.H. The cytoprotective effects of 7,8-dihydroxyflavone against oxidative stress are mediated by the upregulation of Nrf2-dependent HO-1 expression through the activation of the PI3K/Akt and ERK pathways in C2C12 myoblasts. Int. J. Mol. Med., 2015, 36(2), 501-510.
[http://dx.doi.org/10.3892/ijmm.2015.2256] [PMID: 26096841]
[5]
Rui, W.; Li, S.; Xiao, H.; Xiao, M.; Shi, J. Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP induced mice model of Parkinson’s disease. Int. J. Neuropsychopharmacol., 2020, 23(11), 762-773.
[http://dx.doi.org/10.1093/ijnp/pyaa060] [PMID: 32761175]
[6]
Zhang, Z.; Song, Z.; Shen, F.; Xie, P.; Wang, J.; Zhu, A.S.; Zhu, G. Ginsenoside Rg1 prevents PTSD-like behaviors in mice through pro-moting synaptic proteins, reducing Kir4.1 and TNF-α in the hippocampus. Mol. Neurobiol., 2021, 58(4), 1550-1563.
[http://dx.doi.org/10.1007/s12035-020-02213-9] [PMID: 33215390]
[7]
Song, Z.; Shen, F.; Zhang, Z.; Wu, S.; Zhu, G. Calpain inhibition ameliorates depression-like behaviors by reducing inflammation and promoting synaptic protein expression in the hippocampus. Neuropharmacology, 2020, 174, 108175.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108175] [PMID: 32492450]
[8]
Shen, F.; Song, Z.; Xie, P.; Li, L.; Wang, B.; Peng, D.; Zhu, G. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage. J. Ethnopharmacol., 2021, 275, 114164.
[http://dx.doi.org/10.1016/j.jep.2021.114164] [PMID: 33932516]
[9]
Che, D.N.; Cho, B.O.; Kim, J.S.; Shin, J.Y.; Kang, H.J.; Jang, S.I. Luteolin and apigenin attenuate LPS-induced astrocyte activation and cytokine production by targeting MAPK, STAT3, and NF-κB signaling pathways. Inflammation, 2020, 43(5), 1716-1728.
[http://dx.doi.org/10.1007/s10753-020-01245-6] [PMID: 32462548]
[10]
Wang, W.W.; Han, R.; He, H.J.; Li, J.; Chen, S.Y.; Gu, Y.; Xie, C. Administration of quercetin improves mitochondria quality control and protects the neurons in 6-OHDA-lesioned Parkinson’s disease models. Aging (Albany NY), 2021, 13(8), 11738-11751.
[http://dx.doi.org/10.18632/aging.202868] [PMID: 33878030]
[11]
Costa, I.M.; Lima, F.O.V.; Fernandes, L.C.B.; Norrara, B.; Neta, F.I.; Alves, R.D.; Cavalcanti, J.R.L.P.; Lucena, E.E.S.; Cavalcante, J.S.; Rego, A.C.M.; Filho, I.A.; Queiroz, D.B.; Freire, M.A.M.; Guzen, F.P.; Astragaloside, I.V. Astragaloside IV supplementation promotes a neuroprotective effect in experimental models of neurological disorders: A systematic review. Curr. Neuropharmacol., 2019, 17(7), 648-665.
[http://dx.doi.org/10.2174/1570159X16666180911123341] [PMID: 30207235]
[12]
Wang, D.; Zhuang, Y.; Tian, Y.; Thomas, G.N.; Ying, M.; Tomlinson, B. Study of the effects of total flavonoids of Astragalus on athero-sclerosis formation and potential mechanisms. Oxid. Med. Cell. Longev., 2012, 2012, 282383.
[http://dx.doi.org/10.1155/2012/282383] [PMID: 22496932]
[13]
Bratkov, V.M.; Shkondrov, A.M.; Zdraveva, P.K.; Krasteva, I.N. Flavonoids from the genus Astragalus: Phytochemistry and biological activity. Pharmacogn. Rev., 2016, 10(19), 11-32.
[http://dx.doi.org/10.4103/0973-7847.176550] [PMID: 27041870]
[14]
Spencer, J.P. Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proc. Nutr. Soc., 2008, 67(2), 238-252.
[http://dx.doi.org/10.1017/S0029665108007088] [PMID: 18412998]
[15]
Martín, M.A.; Goya, L.; de Pascual-Teresa, S. Effect of cocoa and cocoa products on cognitive performance in young adults. Nutrients, 2020, 12(12), 3691.
[http://dx.doi.org/10.3390/nu12123691] [PMID: 33265948]
[16]
Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Ovais, M.; Ullah, I.; Ahmed, J.; Shahid, M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front. Aging Neurosci., 2019, 11, 155.
[http://dx.doi.org/10.3389/fnagi.2019.00155] [PMID: 31293414]
[17]
Du, X.; Hill, R.A. 7,8-Dihydroxyflavone as a pro-neurotrophic treatment for neurodevelopmental disorders. Neurochem. Int., 2015, 89, 170-180.
[http://dx.doi.org/10.1016/j.neuint.2015.07.021] [PMID: 26220903]
[18]
Luo, J.; Zhou, W.; Cao, S.; Jin, M.; Zhang, C.; Jin, X.; Cui, J.; Li, G. A new biflavonoid from the whole herb of Lepisorus ussuriensis. Nat. Prod. Res., 2016, 30(13), 1470-1476.
[http://dx.doi.org/10.1080/14786419.2015.1110702] [PMID: 26569039]
[19]
Jang, S.W.; Liu, X.; Yepes, M.; Shepherd, K.R.; Miller, G.W.; Liu, Y.; Wilson, W.D.; Xiao, G.; Blanchi, B.; Sun, Y.E.; Ye, K. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2687-2692.
[http://dx.doi.org/10.1073/pnas.0913572107] [PMID: 20133810]
[20]
Jaehne, E.J.; Chong, E.M.S.; Sbisa, A.; Gillespie, B.; Hill, R.; Gogos, A.; van den Buuse, M. TrkB agonist 7,8-dihydroxyflavone reverses an induced prepulse inhibition deficit selectively in maternal immune activation offspring: implications for schizophrenia. Behav. Pharmacol., 2021, 32(5), 404-412.
[http://dx.doi.org/10.1097/FBP.0000000000000632] [PMID: 33883449]
[21]
Wang, N.; Liu, X.; Li, X.T.; Li, X.X.; Ma, W.; Xu, Y.M.; Liu, Y.; Gao, Q.; Yang, T.; Wang, H.; Peng, Y.; Zhu, X.F.; Guan, Y.Z. 7,8-Dihydroxyflavone alleviates anxiety-like behavior induced by chronic alcohol exposure in mice involving tropomyosin-related kinase B in the amygdala. Mol. Neurobiol., 2021, 58(1), 92-105.
[http://dx.doi.org/10.1007/s12035-020-02111-0] [PMID: 32895785]
[22]
Ma, L.; Qu, Z.; Xu, L.; Han, L.; Han, Q.; He, J.; Luan, X.; Wang, B.; Sun, Y.; He, B. 7,8-Dihydroxyflavone enhanced colonic cholinergic contraction and relieved loperamide-induced constipation in rats. Dig. Dis. Sci., 2021, 66(12), 4251-4262.
[http://dx.doi.org/10.1007/s10620-020-06817-y] [PMID: 33528684]
[23]
Wood, J.; Tse, M.C.L.; Yang, X.; Brobst, D.; Liu, Z.; Pang, B.P.S.; Chan, W.S.; Zaw, A.M.; Chow, B.K.C.; Ye, K.; Lee, C.W.; Chan, C.B. BDNF mimetic alleviates body weight gain in obese mice by enhancing mitochondrial biogenesis in skeletal muscle. Metabolism, 2018, 87, 113-122.
[http://dx.doi.org/10.1016/j.metabol.2018.06.007] [PMID: 29935237]
[24]
Wang, Z.; Wang, S.P.; Shao, Q.; Li, P.F.; Sun, Y.; Luo, L.Z.; Yan, X.Q.; Fan, Z.Y.; Hu, J.; Zhao, J.; Hang, P.Z.; Du, Z.M. Brain-derived neurotrophic factor mimetic, 7,8-dihydroxyflavone, protects against myocardial ischemia by rebalancing optic atrophy 1 processing. Free Radic. Biol. Med., 2019, 145, 187-197.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.09.033] [PMID: 31574344]
[25]
Jiang, M.; Peng, Q.; Liu, X.; Jin, J.; Hou, Z.; Zhang, J.; Mori, S.; Ross, C.A.; Ye, K.; Duan, W. Small-molecule TrkB receptor agonists im-prove motor function and extend survival in a mouse model of Huntington’s disease. Hum. Mol. Genet., 2013, 22(12), 2462-2470.
[http://dx.doi.org/10.1093/hmg/ddt098] [PMID: 23446639]
[26]
García-Díaz Barriga, G.; Giralt, A.; Anglada-Huguet, M.; Gaja-Capdevila, N.; Orlandi, J.G.; Soriano, J.; Canals, J.M.; Alberch, J. 7,8-dihydroxyflavone ameliorates cognitive and motor deficits in a Huntington’s disease mouse model through specific activation of the PLCγ1 pathway. Hum. Mol. Genet., 2017, 26(16), 3144-3160.
[http://dx.doi.org/10.1093/hmg/ddx198] [PMID: 28541476]
[27]
Stagni, F.; Uguagliati, B.; Emili, M.; Giacomini, A.; Bartesaghi, R.; Guidi, S. The flavonoid 7,8-DHF fosters prenatal brain proliferation potency in a mouse model of Down syndrome. Sci. Rep., 2021, 11(1), 6300.
[http://dx.doi.org/10.1038/s41598-021-85284-5] [PMID: 33737521]
[28]
Parrini, M.; Ghezzi, D.; Deidda, G.; Medrihan, L.; Castroflorio, E.; Alberti, M.; Baldelli, P.; Cancedda, L.; Contestabile, A. Aerobic exer-cise and a BDNF-mimetic therapy rescue learning and memory in a mouse model of Down syndrome. Sci. Rep., 2017, 7(1), 16825.
[http://dx.doi.org/10.1038/s41598-017-17201-8] [PMID: 29203796]
[29]
Stagni, F.; Giacomini, A.; Guidi, S.; Emili, M.; Uguagliati, B.; Salvalai, M.E.; Bortolotto, V.; Grilli, M.; Rimondini, R.; Bartesaghi, R. A flavonoid agonist of the TrkB receptor for BDNF improves hippocampal neurogenesis and hippocampus-dependent memory in the Ts65Dn mouse model of DS. Exp Neurol, 2017, 298(Pt A), 79-96.
[http://dx.doi.org/10.1016/j.expneurol.2017.08.018]
[30]
Emili, M.; Guidi, S.; Uguagliati, B.; Giacomini, A.; Bartesaghi, R.; Stagni, F. Treatment with the flavonoid 7,8-Dihydroxyflavone: A prom-ising strategy for a constellation of body and brain disorders. Crit. Rev. Food Sci. Nutr., 2020, 1-38.
[http://dx.doi.org/10.1080/10408398.2020.1810625] [PMID: 32914634]
[31]
Barde, Y.A.; Edgar, D.; Thoenen, H. Purification of a new neurotrophic factor from mammalian brain. EMBO J., 1982, 1(5), 549-553.
[http://dx.doi.org/10.1002/j.1460-2075.1982.tb01207.x] [PMID: 7188352]
[32]
Rocco, M.L.; Soligo, M.; Manni, L.; Aloe, L. Nerve growth factor: early studies and recent clinical trials. Curr. Neuropharmacol., 2018, 16(10), 1455-1465.
[http://dx.doi.org/10.2174/1570159X16666180412092859] [PMID: 29651949]
[33]
Pruunsild, P.; Kazantseva, A.; Aid, T.; Palm, K.; Timmusk, T. Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics, 2007, 90(3), 397-406.
[http://dx.doi.org/10.1016/j.ygeno.2007.05.004] [PMID: 17629449]
[34]
Lessmann, V.; Brigadski, T. Mechanisms, locations, and kinetics of synaptic BDNF secretion: An update. Neurosci. Res., 2009, 65(1), 11-22.
[http://dx.doi.org/10.1016/j.neures.2009.06.004] [PMID: 19523993]
[35]
Numakawa, T.; Odaka, H. Brain-derived neurotrophic factor signaling in the pathophysiology of Alzheimer’s disease: Beneficial effects of flavonoids for neuroprotection. Int. J. Mol. Sci., 2021, 22(11), 5719.
[http://dx.doi.org/10.3390/ijms22115719] [PMID: 34071978]
[36]
Hempstead, B.L. Deciphering proneurotrophin actions. Handb. Exp. Pharmacol., 2014, 220, 17-32.
[http://dx.doi.org/10.1007/978-3-642-45106-5_2] [PMID: 24668468]
[37]
Song, M.; Martinowich, K.; Lee, F.S. BDNF at the synapse: why location matters. Mol. Psychiatry, 2017, 22(10), 1370-1375.
[http://dx.doi.org/10.1038/mp.2017.144] [PMID: 28937692]
[38]
Stoilov, P.; Castren, E.; Stamm, S. Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochem. Biophys. Res. Commun., 2002, 290(3), 1054-1065.
[http://dx.doi.org/10.1006/bbrc.2001.6301] [PMID: 11798182]
[39]
Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2006, 361(1473), 1545-1564.
[http://dx.doi.org/10.1098/rstb.2006.1894] [PMID: 16939974]
[40]
Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol., 2018, 15(12), 731-747.
[http://dx.doi.org/10.1038/s41571-018-0113-0] [PMID: 30333516]
[41]
Middlemas, D.S.; Lindberg, R.A.; Hunter, T. trkB, a neural receptor protein-tyrosine kinase: evidence for a full-length and two truncated receptors. Mol. Cell. Biol., 1991, 11(1), 143-153.
[http://dx.doi.org/10.1128/MCB.11.1.143] [PMID: 1846020]
[42]
Squinto, S.P.; Stitt, T.N.; Aldrich, T.H.; Davis, S.; Bianco, S.M.; Radziejewski, C.; Glass, D.J.; Masiakowski, P.; Furth, M.E.; Valenzuela, D.M. trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell, 1991, 65(5), 885-893.
[http://dx.doi.org/10.1016/0092-8674(91)90395-F] [PMID: 1710174]
[43]
Harward, S.C.; Hedrick, N.G.; Hall, C.E.; Parra-Bueno, P.; Milner, T.A.; Pan, E.; Laviv, T.; Hempstead, B.L.; Yasuda, R.; McNamara, J.O. Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature, 2016, 538(7623), 99-103.
[http://dx.doi.org/10.1038/nature19766] [PMID: 27680698]
[44]
Huang, E.J.; Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci., 2001, 24, 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[45]
Minichiello, L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci., 2009, 10(12), 850-860.
[http://dx.doi.org/10.1038/nrn2738] [PMID: 19927149]
[46]
Numakawa, T.; Suzuki, S.; Kumamaru, E.; Adachi, N.; Richards, M.; Kunugi, H. BDNF function and intracellular signaling in neurons. Histol. Histopathol., 2010, 25(2), 237-258.
[http://dx.doi.org/10.14670/hh-25.237] [PMID: 20017110]
[47]
Birnbaum, R.; Weinberger, D.R. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat. Rev. Neurosci., 2017, 18(12), 727-740.
[http://dx.doi.org/10.1038/nrn.2017.125] [PMID: 29070826]
[48]
Wolinsky, D.; Drake, K.; Bostwick, J. Diagnosis and management of neuropsychiatric symptoms in Alzheimer’s disease. Curr. Psychiatry Rep., 2018, 20(12), 117.
[http://dx.doi.org/10.1007/s11920-018-0978-8] [PMID: 30367272]
[49]
Nagy, A.; Schrag, A. Neuropsychiatric aspects of Parkinson’s disease. J. Neural Transm. (Vienna), 2019, 126(7), 889-896.
[http://dx.doi.org/10.1007/s00702-019-02019-7] [PMID: 31144104]
[50]
Cummings, J.; Ritter, A.; Rothenberg, K. Advances in management of neuropsychiatric syndromes in neurodegenerative diseases. Curr. Psychiatry Rep., 2019, 21(8), 79.
[http://dx.doi.org/10.1007/s11920-019-1058-4] [PMID: 31392434]
[51]
Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry, 2021, 8(5), 416-427.
[http://dx.doi.org/10.1016/S2215-0366(21)00084-5] [PMID: 33836148]
[52]
Park, H.; Poo, M.M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci., 2013, 14(1), 7-23.
[http://dx.doi.org/10.1038/nrn3379] [PMID: 23254191]
[53]
Autry, A.E.; Monteggia, L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev., 2012, 64(2), 238-258.
[http://dx.doi.org/10.1124/pr.111.005108] [PMID: 22407616]
[54]
Mariga, A.; Mitre, M.; Chao, M.V. Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease. Neurobiol. Dis, 2017, 97(Pt B), 73-79.
[http://dx.doi.org/10.1016/j.nbd.2016.03.009]
[55]
Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional relationship of depression and inflammation: double trouble. Neuron, 2020, 107(2), 234-256.
[http://dx.doi.org/10.1016/j.neuron.2020.06.002] [PMID: 32553197]
[56]
Malhi, G.S.; Mann, J.J. Depression. Lancet, 2018, 392(10161), 2299-2312.
[http://dx.doi.org/10.1016/S0140-6736(18)31948-2] [PMID: 30396512]
[57]
Park, L.T.; Zarate, C.A., Jr Depression in the Primary Care Setting. N. Engl. J. Med., 2019, 380(6), 559-568.
[http://dx.doi.org/10.1056/NEJMcp1712493] [PMID: 30726688]
[58]
Duman, R.S.; Heninger, G.R.; Nestler, E.J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry, 1997, 54(7), 597-606.
[http://dx.doi.org/10.1001/archpsyc.1997.01830190015002] [PMID: 9236543]
[59]
Lee, B.H.; Park, Y.M.; Hwang, J.A.; Kim, Y.K. Variable alterations in plasma erythropoietin and brain-derived neurotrophic factor levels in patients with major depressive disorder with and without a history of suicide attempt. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 110, 110324.
[http://dx.doi.org/10.1016/j.pnpbp.2021.110324] [PMID: 33857523]
[60]
Martinotti, G.; Pettorruso, M.; De Berardis, D.; Varasano, P.A.; Lucidi Pressanti, G.; De Remigis, V.; Valchera, A.; Ricci, V.; Di Nicola, M.; Janiri, L.; Biggio, G.; Di Giannantonio, M. Agomelatine increases BDNF serum levels in depressed patients in correlation with the im-provement of depressive symptoms. Int. J. Neuropsychopharmacol., 2016, 19(5), pyw003.
[http://dx.doi.org/10.1093/ijnp/pyw003] [PMID: 26775293]
[61]
Yang, B.; Ren, Q.; Zhang, J.C.; Chen, Q.X.; Hashimoto, K. Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain-liver axis. Transl. Psychiatry, 2017, 7(5), e1128.
[http://dx.doi.org/10.1038/tp.2017.95] [PMID: 28509900]
[62]
Chen, T.; Zheng, M.; Li, Y.; Liu, S.; He, L. The role of CCR5 in the protective effect of Esculin on lipopolysaccharide-induced depressive symptom in mice. J. Affect. Disord., 2020, 277, 755-764.
[http://dx.doi.org/10.1016/j.jad.2020.08.065] [PMID: 33065814]
[63]
Chen, H.L.; Lan, Y.W.; Tu, M.Y.; Tung, Y.T.; Chan, M.N.; Wu, H.S.; Yen, C.C.; Chen, C.M. Kefir peptides exhibit antidepressant-like activity in mice through the BDNF/TrkB pathway. J. Dairy Sci., 2021, 104(6), 6415-6430.
[http://dx.doi.org/10.3168/jds.2020-19222] [PMID: 33741171]
[64]
Wu, L.; Zhang, T.; Chen, K.; Lu, C.; Liu, X.F.; Zhou, J.L.; Huang, Y.K.; Yan, H.; Chen, Y.; Zhang, C.J.; Li, J.F.; Shi, S.Q.; Ren, P.; Huang, X. Rapid antidepressant-like effect of Fructus Aurantii depends on cAMP-response element binding protein/Brain-derived neurotrophic facto by mediating synaptic transmission. Phytother. Res., 2021, 35(1), 404-414.
[http://dx.doi.org/10.1002/ptr.6812] [PMID: 33044778]
[65]
Hao, Y.; Ge, H.; Sun, M.; Gao, Y. Selecting an appropriate animal model of depression. Int. J. Mol. Sci., 2019, 20(19), 4827.
[http://dx.doi.org/10.3390/ijms20194827] [PMID: 31569393]
[66]
Casarotto, P.C.; Girych, M.; Fred, S.M.; Kovaleva, V.; Moliner, R.; Enkavi, G.; Biojone, C.; Cannarozzo, C.; Sahu, M.P.; Kaurinkoski, K.; Brunello, C.A.; Steinzeig, A.; Winkel, F.; Patil, S.; Vestring, S.; Serchov, T.; Diniz, C.R.A.F.; Laukkanen, L.; Cardon, I.; Antila, H.; Rog, T.; Piepponen, T.P.; Bramham, C.R.; Normann, C.; Lauri, S.E.; Saarma, M.; Vattulainen, I.; Castrén, E. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell, 2021, 184(5), 1299-1313.e19.
[http://dx.doi.org/10.1016/j.cell.2021.01.034] [PMID: 33606976]
[67]
Shirayama, Y.; Chen, A.C.; Nakagawa, S.; Russell, D.S.; Duman, R.S. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci., 2002, 22(8), 3251-3261.
[http://dx.doi.org/10.1523/JNEUROSCI.22-08-03251.2002] [PMID: 11943826]
[68]
Marshall, J.; Zhou, X.Z.; Chen, G.; Yang, S.Q.; Li, Y.; Wang, Y.; Zhang, Z.Q.; Jiang, Q.; Birnbaumer, L.; Cao, C. Antidepression action of BDNF requires and is mimicked by Gαi1/3 expression in the hippocampus. Proc. Natl. Acad. Sci. USA, 2018, 115(15), E3549-E3558.
[http://dx.doi.org/10.1073/pnas.1722493115] [PMID: 29507199]
[69]
Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2018, 10(4), a033118.
[http://dx.doi.org/10.1101/cshperspect.a033118] [PMID: 28716886]
[70]
Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement., 2016, 12(4), 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[71]
Hu, M.T.M. From dreams to parkinsonism: tracking the journey. Brain, 2019, 142(7), 1850-1852.
[http://dx.doi.org/10.1093/brain/awz155] [PMID: 31505543]
[72]
Hane, F.T.; Lee, B.Y.; Leonenko, Z. Recent progress in Alzheimer’s disease research, Part 1: Pathology. J. Alzheimers Dis., 2017, 57(1), 1-28.
[http://dx.doi.org/10.3233/JAD-160882] [PMID: 28222507]
[73]
Mucke, L. Neuroscience: Alzheimer’s disease. Nature, 2009, 461(7266), 895-897.
[http://dx.doi.org/10.1038/461895a] [PMID: 19829367]
[74]
Barbereau, C.; Yehya, A.; Silhol, M.; Cubedo, N.; Verdier, J.M.; Maurice, T.; Rossel, M. Neuroprotective brain-derived neurotrophic fac-tor signaling in the TAU-P301L tauopathy zebrafish model. Pharmacol. Res., 2020, 158, 104865.
[http://dx.doi.org/10.1016/j.phrs.2020.104865] [PMID: 32417505]
[75]
Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet, 2021, 397(10291), 2284-2303.
[http://dx.doi.org/10.1016/S0140-6736(21)00218-X] [PMID: 33848468]
[76]
Ng, T.K.S.; Ho, C.S.H.; Tam, W.W.S.; Kua, E.H.; Ho, R.C. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): A systematic review and meta-analysis. Int. J. Mol. Sci., 2019, 20(2), 257.
[http://dx.doi.org/10.3390/ijms20020257] [PMID: 30634650]
[77]
Wei, H.; Zhu, X.; Li, Y. Application value of serum biomarkers for choosing memantine therapy for moderate AD. J. Neurol., 2018, 265(8), 1844-1849.
[http://dx.doi.org/10.1007/s00415-018-8926-4] [PMID: 29948244]
[78]
Menet, R.; Bourassa, P.; Calon, F.; ElAli, A. Dickkopf-related protein-1 inhibition attenuates amyloid-beta pathology associated to Alz-heimer’s disease. Neurochem. Int., 2020, 141, 104881.
[http://dx.doi.org/10.1016/j.neuint.2020.104881] [PMID: 33068684]
[79]
Jiao, S.S.; Shen, L.L.; Zhu, C.; Bu, X.L.; Liu, Y.H.; Liu, C.H.; Yao, X.Q.; Zhang, L.L.; Zhou, H.D.; Walker, D.G.; Tan, J.; Götz, J.; Zhou, X.F.; Wang, Y.J. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Transl. Psychiatry, 2016, 6(10), e907.
[http://dx.doi.org/10.1038/tp.2016.186] [PMID: 27701410]
[80]
Wang, Y.; Liu, H.; Zhang, B.S.; Soares, J.C.; Zhang, X.Y. Low BDNF is associated with cognitive impairments in patients with Parkinson’s disease. Parkinsonism Relat. Disord., 2016, 29, 66-71.
[http://dx.doi.org/10.1016/j.parkreldis.2016.05.023] [PMID: 27245919]
[81]
Huang, Y.; Huang, C.; Yun, W. Peripheral BDNF/TrkB protein expression is decreased in Parkinson’s disease but not in essential tremor. J. Clin. Neurosci., 2019, 63, 176-181.
[http://dx.doi.org/10.1016/j.jocn.2019.01.017] [PMID: 30723034]
[82]
Hernández-Vara, J.; Sáez-Francàs, N.; Lorenzo-Bosquet, C.; Corominas-Roso, M.; Cuberas-Borròs, G.; Lucas-Del Pozo, S.; Carter, S.; Armengol-Bellapart, M.; Castell-Conesa, J. BDNF levels and nigrostriatal degeneration in “drug naïve” Parkinson’s disease patients. An “in vivo” study using I-123-FP-CIT SPECT. Parkinsonism Relat. Disord., 2020, 78, 31-35.
[http://dx.doi.org/10.1016/j.parkreldis.2020.06.037] [PMID: 32682292]
[83]
Wang, Y.; Liu, H.; Du, X.D.; Zhang, Y.; Yin, G.; Zhang, B.S.; Soares, J.C.; Zhang, X.Y. Association of low serum BDNF with depression in patients with Parkinson’s disease. Parkinsonism Relat. Disord., 2017, 41, 73-78.
[http://dx.doi.org/10.1016/j.parkreldis.2017.05.012] [PMID: 28576603]
[84]
Zhu, G.; Li, J.; He, L.; Wang, X.; Hong, X. MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by me-mantine through the BDNF-TrkB pathway. Br. J. Pharmacol., 2015, 172(9), 2354-2368.
[http://dx.doi.org/10.1111/bph.13061] [PMID: 25560396]
[85]
Xu, S.F.; Zhang, Y.H.; Wang, S.; Pang, Z.Q.; Fan, Y.G.; Li, J.Y.; Wang, Z.Y.; Guo, C. Lactoferrin ameliorates dopaminergic neurodegen-eration and motor deficits in MPTP-treated mice. Redox Biol., 2019, 21, 101090.
[http://dx.doi.org/10.1016/j.redox.2018.101090] [PMID: 30593976]
[86]
Vyas, Y.; Montgomery, J.M.; Cheyne, J.E. Hippocampal deficits in amyloid-β-related rodent models of Alzheimer’s disease. Front. Neurosci., 2020, 14, 266.
[http://dx.doi.org/10.3389/fnins.2020.00266] [PMID: 32317913]
[87]
Notaras, M.; van den Buuse, M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol. Psychiatry, 2020, 25(10), 2251-2274.
[http://dx.doi.org/10.1038/s41380-019-0639-2] [PMID: 31900428]
[88]
Keyan, D.; Bryant, R.A. The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms. Neurosci. Biobehav. Rev., 2019, 107, 438-449.
[http://dx.doi.org/10.1016/j.neubiorev.2019.09.033] [PMID: 31562922]
[89]
Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-Derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci., 2019, 13, 363.
[http://dx.doi.org/10.3389/fncel.2019.00363] [PMID: 31440144]
[90]
Yang, S.J.; Song, Z.J.; Wang, X.C.; Zhang, Z.R.; Wu, S.B.; Zhu, G.Q. Curculigoside facilitates fear extinction and prevents depression-like behaviors in a mouse learned helplessness model through increasing hippocampal BDNF. Acta Pharmacol. Sin., 2019, 40(10), 1269-1278.
[http://dx.doi.org/10.1038/s41401-019-0238-4] [PMID: 31028292]
[91]
Amraie, E.; Pouraboli, I.; Rajaei, Z. Neuroprotective effects of Levisticum officinale on LPS-induced spatial learning and memory impair-ments through neurotrophic, anti-inflammatory, and antioxidant properties. Food Funct., 2020, 11(7), 6608-6621.
[http://dx.doi.org/10.1039/D0FO01030H] [PMID: 32648872]
[92]
López-Benito, S.; Sánchez-Sánchez, J.; Brito, V.; Calvo, L.; Lisa, S.; Torres-Valle, M.; Palko, M.E.; Vicente-García, C.; Fernández-Fernández, S.; Bolaños, J.P.; Ginés, S.; Tessarollo, L.; Arévalo, J.C. Regulation of BDNF release by ARMS/Kidins220 through modulation of synaptotagmin-IV levels. J. Neurosci., 2018, 38(23), 5415-5428.
[http://dx.doi.org/10.1523/JNEUROSCI.1653-17.2018] [PMID: 29769266]
[93]
El Hayek, L.; Khalifeh, M.; Zibara, V.; Abi, A.R.; Emmanuel, N.; Karnib, N.; El-Ghandour, R.; Nasrallah, P.; Bilen, M.; Ibrahim, P.; Younes, J.; Abou Haidar, E.; Barmo, N.; Jabre, V.; Stephan, J.S.; Sleiman, S.F. Lactate Mediates the Effects of Exercise on Learning and Memory through SIRT1-Dependent Activation of Hippocampal Brain-Derived Neurotrophic Factor (BDNF). J. Neurosci., 2019, 39(13), 2369-2382.
[http://dx.doi.org/10.1523/JNEUROSCI.1661-18.2019] [PMID: 30692222]
[94]
Mokhtari-Zaer, A.; Saadat, S.; Marefati, N.; Hosseini, M.; Boskabady, M.H. Treadmill exercise restores memory and hippocampal synap-tic plasticity impairments in ovalbumin-sensitized juvenile rats: Involvement of brain-derived neurotrophic factor (BDNF). Neurochem. Int., 2020, 135, 104691.
[http://dx.doi.org/10.1016/j.neuint.2020.104691] [PMID: 31982414]
[95]
Rana, T.; Behl, T.; Sehgal, A.; Srivastava, P.; Bungau, S. Unfolding the role of BDNF as a biomarker for treatment of depression. J. Mol. Neurosci., 2021, 71(10), 2008-2021.
[http://dx.doi.org/10.1007/s12031-020-01754-x] [PMID: 33230708]
[96]
Mitre, M.; Mariga, A.; Chao, M.V. Neurotrophin signalling: novel insights into mechanisms and pathophysiology. Clin. Sci. (Lond.), 2017, 131(1), 13-23.
[http://dx.doi.org/10.1042/CS20160044] [PMID: 27908981]
[97]
Shirayama, Y.; Yang, C.; Zhang, J.C.; Ren, Q.; Yao, W.; Hashimoto, K. Alterations in brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain regions of a learned helplessness rat model and the antidepressant effects of a TrkB agonist and antago-nist. Eur. Neuropsychopharmacol., 2015, 25(12), 2449-2458.
[http://dx.doi.org/10.1016/j.euroneuro.2015.09.002] [PMID: 26419294]
[98]
Zhang, J.C.; Wu, J.; Fujita, Y.; Yao, W.; Ren, Q.; Yang, C.; Li, S.X.; Shirayama, Y.; Hashimoto, K. Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. Int. J. Neuropsychopharmacol., 2014, 18(4), pyu077.
[http://dx.doi.org/10.1093/ijnp/pyu077] [PMID: 25628381]
[99]
Zhang, M.W.; Zhang, S.F.; Li, Z.H.; Han, F. 7,8-Dihydroxyflavone reverses the depressive symptoms in mouse chronic mild stress. Neurosci. Lett., 2016, 635, 33-38.
[http://dx.doi.org/10.1016/j.neulet.2016.10.035] [PMID: 27773794]
[100]
Yao, W.; Zhang, J.C.; Ishima, T.; Dong, C.; Yang, C.; Ren, Q.; Ma, M.; Han, M.; Wu, J.; Suganuma, H.; Ushida, Y.; Yamamoto, M.; Hash-imoto, K. Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice. Sci. Rep., 2016, 6, 30659.
[http://dx.doi.org/10.1038/srep30659] [PMID: 27470577]
[101]
Amin, N.; Xie, S.; Tan, X.; Chen, Y.; Ren, Q.; Botchway, B.O.A.; Hu, S.; Ma, Y.; Hu, Z.; Fang, M. Optimized integration of fluoxetine and 7, 8-dihydroxyflavone as an efficient therapy for reversing depressive-like behavior in mice during the perimenopausal period. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 101, 109939.
[http://dx.doi.org/10.1016/j.pnpbp.2020.109939] [PMID: 32243998]
[102]
Zhang, J.C.; Yao, W.; Dong, C.; Yang, C.; Ren, Q.; Ma, M.; Han, M.; Hashimoto, K. Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology (Berl.), 2015, 232(23), 4325-4335.
[http://dx.doi.org/10.1007/s00213-015-4062-3] [PMID: 26337614]
[103]
Li, S.; Luo, X.; Hua, D.; Wang, Y.; Zhan, G.; Huang, N.; Jiang, R.; Yang, L.; Zhu, B.; Yuan, X.; Luo, A.; Yang, C. Ketamine alleviates postoperative depression-like symptoms in susceptible mice: The role of BDNF-TrkB signaling. Front. Pharmacol., 2020, 10, 1702.
[http://dx.doi.org/10.3389/fphar.2019.01702] [PMID: 32116688]
[104]
Ren, Q.; Ma, M.; Yang, C.; Zhang, J.C.; Yao, W.; Hashimoto, K. BDNF-TrkB signaling in the nucleus accumbens shell of mice has key role in methamphetamine withdrawal symptoms. Transl. Psychiatry, 2015, 5(10), e666.
[http://dx.doi.org/10.1038/tp.2015.157] [PMID: 26506052]
[105]
Wang, J.Q.; Mao, L. The ERK Pathway: Molecular mechanisms and treatment of depression. Mol. Neurobiol., 2019, 56(9), 6197-6205.
[http://dx.doi.org/10.1007/s12035-019-1524-3] [PMID: 30737641]
[106]
Barker, R.A.; Götz, M.; Parmar, M. New approaches for brain repair-from rescue to reprogramming. Nature, 2018, 557(7705), 329-334.
[http://dx.doi.org/10.1038/s41586-018-0087-1] [PMID: 29769670]
[107]
Chen, C.; Li, X.H.; Zhang, S.; Tu, Y.; Wang, Y.M.; Sun, H.T. 7,8-dihydroxyflavone ameliorates scopolamine-induced Alzheimer-like pathologic dysfunction. Rejuvenation Res., 2014, 17(3), 249-254.
[http://dx.doi.org/10.1089/rej.2013.1519] [PMID: 24325271]
[108]
Gao, L.; Tian, M.; Zhao, H.Y.; Xu, Q.Q.; Huang, Y.M.; Si, Q.C.; Tian, Q.; Wu, Q.M.; Hu, X.M.; Sun, L.B.; McClintock, S.M.; Zeng, Y. TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer’s disease. J. Neurochem., 2016, 136(3), 620-636.
[http://dx.doi.org/10.1111/jnc.13432] [PMID: 26577931]
[109]
Castello, N.A.; Nguyen, M.H.; Tran, J.D.; Cheng, D.; Green, K.N.; LaFerla, F.M. 7,8-Dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss. PLoS One, 2014, 9(3), e91453.
[http://dx.doi.org/10.1371/journal.pone.0091453] [PMID: 24614170]
[110]
Devi, L.; Ohno, M. 7,8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer’s disease. Neuropsychopharmacology, 2012, 37(2), 434-444.
[http://dx.doi.org/10.1038/npp.2011.191] [PMID: 21900882]
[111]
Chen, C.; Ahn, E.H.; Kang, S.S.; Liu, X.; Alam, A.; Ye, K. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer’s disease mouse model. Sci. Adv., 2020, 6(31), eaba0466.
[http://dx.doi.org/10.1126/sciadv.aba0466] [PMID: 32832679]
[112]
He, J.; Xiang, Z.; Zhu, X.; Ai, Z.; Shen, J.; Huang, T.; Liu, L.; Ji, W.; Li, T. Neuroprotective effects of 7,8-dihydroxyflavone on midbrain dopaminergic neurons in MPP+-treated monkeys. Sci. Rep., 2016, 6, 34339.
[http://dx.doi.org/10.1038/srep34339] [PMID: 27731318]
[113]
Massaquoi, M.S.; Liguore, W.A.; Churchill, M.J.; Moore, C.; Melrose, H.L.; Meshul, C.K. Gait deficits and loss of striatal tyrosine hy-droxlase/Trk-B are restored following 7,8-dihydroxyflavone treatment in a progressive MPTP mouse model of Parkinson’s disease. Neuroscience, 2020, 433, 53-71.
[http://dx.doi.org/10.1016/j.neuroscience.2020.02.046] [PMID: 32142862]
[114]
Li, X.H.; Dai, C.F.; Chen, L.; Zhou, W.T.; Han, H.L.; Dong, Z.F. 7,8-dihydroxyflavone ameliorates motor deficits via suppressing α-synuclein expression and oxidative stress in the MPTP-induced mouse model of Parkinson’s disease. CNS Neurosci. Ther., 2016, 22(7), 617-624.
[http://dx.doi.org/10.1111/cns.12555] [PMID: 27079181]
[115]
Sconce, M.D.; Churchill, M.J.; Moore, C.; Meshul, C.K. Intervention with 7,8-dihydroxyflavone blocks further striatal terminal loss and restores motor deficits in a progressive mouse model of Parkinson’s disease. Neuroscience, 2015, 290, 454-471.
[http://dx.doi.org/10.1016/j.neuroscience.2014.12.080] [PMID: 25655214]
[116]
Nie, S.; Ma, K.; Sun, M.; Lee, M.; Tan, Y.; Chen, G.; Zhang, Z.; Zhang, Z.; Cao, X. 7,8-dihydroxyflavone protects nigrostriatal dopamin-ergic neurons from rotenone-induced neurotoxicity in rodents. Parkinsons Dis., 2019, 2019, 9193534.
[http://dx.doi.org/10.1155/2019/9193534] [PMID: 30944722]
[117]
Luo, D.; Shi, Y.; Wang, J.; Lin, Q.; Sun, Y.; Ye, K.; Yan, Q.; Zhang, H. 7,8-dihydroxyflavone protects 6-OHDA and MPTP induced do-paminergic neurons degeneration through activation of TrkB in rodents. Neurosci. Lett., 2016, 620, 43-49.
[http://dx.doi.org/10.1016/j.neulet.2016.03.042] [PMID: 27019033]
[118]
Cho, S.J.; Kang, K.A.; Piao, M.J.; Ryu, Y.S.; Fernando, P.D.S.M.; Zhen, A.X.; Hyun, Y.J.; Ahn, M.J.; Kang, H.K.; Hyun, J.W. 7,8-dihydroxyflavone protects high glucose-damaged neuronal cells against oxidative stress. Biomol. Ther. (Seoul), 2019, 27(1), 85-91.
[http://dx.doi.org/10.4062/biomolther.2018.202] [PMID: 30481956]
[119]
Krishna, G.; Agrawal, R.; Zhuang, Y.; Ying, Z.; Paydar, A.; Harris, N.G.; Royes, L.F.F.; Gomez-Pinilla, F. 7,8-Dihydroxyflavone facilitates the action exercise to restore plasticity and functionality: Implications for early brain trauma recovery. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(6), 1204-1213.
[http://dx.doi.org/10.1016/j.bbadis.2017.03.007] [PMID: 28315455]
[120]
Zhao, S.; Yu, A.; Wang, X.; Gao, X.; Chen, J. Post-injury treatment of 7,8-dihydroxyflavone promotes neurogenesis in the hippocampus of the adult mouse. J. Neurotrauma, 2016, 33(22), 2055-2064.
[http://dx.doi.org/10.1089/neu.2015.4036] [PMID: 26715291]
[121]
Seppa, K.; Jagomäe, T.; Kukker, K.G.; Reimets, R.; Pastak, M.; Vasar, E.; Terasmaa, A.; Plaas, M. Liraglutide, 7,8-DHF and their co-treatment prevents loss of vision and cognitive decline in a Wolfram syndrome rat model. Sci. Rep., 2021, 11(1), 2275.
[http://dx.doi.org/10.1038/s41598-021-81768-6] [PMID: 33500541]
[122]
Bollen, E.; Vanmierlo, T.; Akkerman, S.; Wouters, C.; Steinbusch, H.M.; Prickaerts, J. 7,8-Dihydroxyflavone improves memory consoli-dation processes in rats and mice. Behav. Brain Res., 2013, 257, 8-12.
[http://dx.doi.org/10.1016/j.bbr.2013.09.029] [PMID: 24070857]
[123]
Pandey, S.N.; Kwatra, M.; Dwivedi, D.K.; Choubey, P.; Lahkar, M.; Jangra, A. 7,8-Dihydroxyflavone alleviated the high-fat diet and alco-hol-induced memory impairment: behavioral, biochemical and molecular evidence. Psychopharmacology (Berl.), 2020, 237(6), 1827-1840.
[http://dx.doi.org/10.1007/s00213-020-05502-2] [PMID: 32206827]
[124]
Tan, Y.; Nie, S.; Zhu, W.; Liu, F.; Guo, H.; Chu, J.; Cao, X.B.; Jiang, X.; Zhang, Y.; Li, Y. 7,8-dihydroxyflavone ameliorates cognitive impairment by inhibiting expression of tau pathology in apoe-knockout mice. Front. Aging Neurosci., 2016, 8, 287.
[http://dx.doi.org/10.3389/fnagi.2016.00287] [PMID: 27965573]
[125]
Zeng, Y.; Liu, Y.; Wu, M.; Liu, J.; Hu, Q. Activation of TrkB by 7,8-dihydroxyflavone prevents fear memory defects and facilitates amygdalar synaptic plasticity in aging. J. Alzheimers Dis., 2012, 31(4), 765-778.
[http://dx.doi.org/10.3233/JAD-2012-120886] [PMID: 22710915]
[126]
Yang, P.; Leu, D.; Ye, K.; Srinivasan, C.; Fike, J.R.; Huang, T.T. Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist. Exp. Neurol., 2016, 279, 178-186.
[http://dx.doi.org/10.1016/j.expneurol.2016.02.021] [PMID: 26946222]
[127]
Choi, D.C.; Maguschak, K.A.; Ye, K.; Jang, S.W.; Myers, K.M.; Ressler, K.J. Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2675-2680.
[http://dx.doi.org/10.1073/pnas.0909359107] [PMID: 20133801]
[128]
Zhou, J.; Wang, F.; Zhang, J.; Li, J.; Ma, L.; Dong, T.; Zhuang, Z. The interplay of BDNF-TrkB with NMDA receptor in propofol-induced cognition dysfunction: Mechanism for the effects of propofol on cognitive function. BMC Anesthesiol., 2018, 18(1), 35.
[http://dx.doi.org/10.1186/s12871-018-0491-y] [PMID: 29621970]
[129]
Tian, M.; Zeng, Y.; Hu, Y.; Yuan, X.; Liu, S.; Li, J.; Lu, P.; Sun, Y.; Gao, L.; Fu, D.; Li, Y.; Wang, S.; McClintock, S.M. 7, 8-Dihydroxyflavone induces synapse expression of AMPA GluA1 and ameliorates cognitive and spine abnormalities in a mouse model of fragile X syndrome. Neuropharmacology, 2015, 89, 43-53.
[http://dx.doi.org/10.1016/j.neuropharm.2014.09.006] [PMID: 25229717]
[130]
Seese, R.R.; Le, A.A.; Wang, K.; Cox, C.D.; Lynch, G.; Gall, C.M. A TrkB agonist and ampakine rescue synaptic plasticity and multiple forms of memory in a mouse model of intellectual disability. Neurobiol. Dis., 2020, 134, 104604.
[http://dx.doi.org/10.1016/j.nbd.2019.104604] [PMID: 31494285]
[131]
Wang, X.; Romine, J.L.; Gao, X.; Chen, J. Aging impairs dendrite morphogenesis of newborn neurons and is rescued by 7, 8-dihydroxyflavone. Aging Cell, 2017, 16(2), 304-311.
[http://dx.doi.org/10.1111/acel.12553] [PMID: 28256073]
[132]
Zhu, G.; Yang, S.; Xie, Z.; Wan, X. Synaptic modification by L-theanine, a natural constituent in green tea, rescues the impairment of hip-pocampal long-term potentiation and memory in AD mice. Neuropharmacology, 2018, 138, 331-340.
[http://dx.doi.org/10.1016/j.neuropharm.2018.06.030] [PMID: 29944861]
[133]
Liu, X.; Obianyo, O.; Chan, C.B.; Huang, J.; Xue, S.; Yang, J.J.; Zeng, F.; Goodman, M.; Ye, K. Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in the binding and activation of the TrkB receptor. J. Biol. Chem., 2014, 289(40), 27571-27584.
[http://dx.doi.org/10.1074/jbc.M114.562561] [PMID: 25143381]
[134]
Marongiu, D.; Imbrosci, B.; Mittmann, T. Modulatory effects of the novel TrkB receptor agonist 7,8-dihydroxyflavone on synaptic trans-mission and intrinsic neuronal excitability in mouse visual cortex in vitro. Eur. J. Pharmacol., 2013, 709(1-3), 64-71.
[http://dx.doi.org/10.1016/j.ejphar.2013.03.044] [PMID: 23567067]
[135]
Gudasheva, T.A.; Povarnina, P.; Tarasiuk, A.V.; Seredenin, S.B. The low molecular weight brain-derived neurotrophic factor mimetics with antidepressant-like activity. Curr. Pharm. Des., 2019, 25(6), 729-737.
[http://dx.doi.org/10.2174/1381612825666190329122852] [PMID: 30931847]
[136]
Liu, X.; Chan, C.B.; Jang, S.W.; Pradoldej, S.; Huang, J.; He, K.; Phun, L.H.; France, S.; Xiao, G.; Jia, Y.; Luo, H.R.; Ye, K. A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J. Med. Chem., 2010, 53(23), 8274-8286.
[http://dx.doi.org/10.1021/jm101206p] [PMID: 21073191]
[137]
Di Stefano, A.; Sozio, P.; Cerasa, L.S.; Iannitelli, A. L-Dopa prodrugs: An overview of trends for improving Parkinson’s disease treat-ment. Curr. Pharm. Des., 2011, 17(32), 3482-3493.
[http://dx.doi.org/10.2174/138161211798194495] [PMID: 22074421]
[138]
Liu, X.; Qi, Q.; Xiao, G.; Li, J.; Luo, H.R.; Ye, K. O-methylated metabolite of 7,8-dihydroxyflavone activates TrkB receptor and displays antidepressant activity. Pharmacology, 2013, 91(3-4), 185-200.
[http://dx.doi.org/10.1159/000346920] [PMID: 23445871]
[139]
Sanches, B.M.A.; Ferreira, E.I. Is prodrug design an approach to increase water solubility? Int. J. Pharm., 2019, 568, 118498.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118498] [PMID: 31301465]
[140]
Geng, W.C.; Sessler, J.L.; Guo, D.S. Supramolecular prodrugs based on host-guest interactions. Chem. Soc. Rev., 2020, 49(8), 2303-2315.
[http://dx.doi.org/10.1039/C9CS00622B] [PMID: 32181453]
[141]
Chen, C.; Wang, Z.; Zhang, Z.; Liu, X.; Kang, S.S.; Zhang, Y.; Ye, K. The prodrug of 7,8-dihydroxyflavone development and therapeutic efficacy for treating Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2018, 115(3), 578-583.
[http://dx.doi.org/10.1073/pnas.1718683115] [PMID: 29295929]
[142]
Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[143]
Chen, C.; Ahn, E.H.; Liu, X.; Wang, Z.H.; Luo, S.; Liao, J.; Ye, K. Optimized TrkB agonist ameliorates Alzheimer’s disease pathologies and improves cognitive functions via inhibiting delta-secretase. ACS Chem. Neurosci., 2021, 12(13), 2448-2461.
[http://dx.doi.org/10.1021/acschemneuro.1c00181] [PMID: 34106682]
[144]
Pandey, R.P.; Parajuli, P.; Pokhrel, A.R.; Sohng, J.K. Biosynthesis of novel 7,8-dihydroxyflavone glycoside derivatives and in silico study of their effects on BACE1 inhibition. Biotechnol. Appl. Biochem., 2018, 65(2), 128-137.
[http://dx.doi.org/10.1002/bab.1570] [PMID: 28608479]
[145]
Chen, G.; Seukep, A.J.; Guo, M. Recent advances in molecular docking for the research and discovery of potential marine drugs. Mar. Drugs, 2020, 18(11), E545.
[http://dx.doi.org/10.3390/md18110545] [PMID: 33143025]
[146]
Saikia, S.; Bordoloi, M. Molecular docking: challenges, advances and its use in drug discovery perspective. Curr. Drug Targets, 2019, 20(5), 501-521.
[http://dx.doi.org/10.2174/1389450119666181022153016] [PMID: 30360733]
[147]
Mohankumar, T.; Chandramohan, V.; Lalithamba, H.S.; Jayaraj, R.L.; Kumaradhas, P.; Sivanandam, M.; Hunday, G.; Vijayakumar, R.; Balakrishnan, R.; Manimaran, D.; Elangovan, N. Design and Molecular dynamic investigations of 7,8-dihydroxyflavone derivatives as po-tential neuroprotective agents against alpha-synuclein. Sci. Rep., 2020, 10(1), 599.
[http://dx.doi.org/10.1038/s41598-020-57417-9] [PMID: 31953434]
[148]
Chen, Y.; Xia, G.; Zhao, Z.; Xue, F.; Chen, C.; Zhang, Y. Formation, structural characterization, stability and in vitro bioaccessibility of 7,8-dihydroxyflavone loaded zein-/sophorolipid composite nanoparticles: effect of sophorolipid under two blending sequences. Food Funct., 2020, 11(2), 1810-1825.
[http://dx.doi.org/10.1039/C9FO02704A] [PMID: 32057043]
[149]
Chen, Y.; Zhao, Z.; Xia, G.; Xue, F.; Chen, C.; Zhang, Y. Fabrication and characterization of zein/lactoferrin composite nanoparticles for encapsulating 7,8-dihydroxyflavone: Enhancement of stability, water solubility and bioaccessibility. Int. J. Biol. Macromol., 2020, 146, 179-192.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.251] [PMID: 31899246]
[150]
Tian, Z.; Mai, Y.; Meng, T.; Ma, S.; Gou, G.; Yang, J. Nanocrystals for improving oral bioavailability of drugs: intestinal transport mecha-nisms and influencing factors. AAPS PharmSciTech, 2021, 22(5), 179.
[http://dx.doi.org/10.1208/s12249-021-02041-7] [PMID: 34128132]
[151]
Williams, H.D.; Ford, L.; Igonin, A.; Shan, Z.; Botti, P.; Morgen, M.M.; Hu, G.; Pouton, C.W.; Scammells, P.J.; Porter, C.J.H.; Benameur, H. Unlocking the full potential of lipid-based formulations using lipophilic salt/ionic liquid forms. Adv. Drug Deliv. Rev., 2019, 142, 75-90.
[http://dx.doi.org/10.1016/j.addr.2019.05.008] [PMID: 31150666]
[152]
Schittny, A.; Huwyler, J.; Puchkov, M. Mechanisms of increased bioavailability through amorphous solid dispersions: A review. Drug Deliv., 2020, 27(1), 110-127.
[http://dx.doi.org/10.1080/10717544.2019.1704940] [PMID: 31885288]
[153]
Paul, R.; Nath, J.; Paul, S.; Mazumder, M.K.; Phukan, B.C.; Roy, R.; Bhattacharya, P.; Borah, A. Suggesting 7,8-dihydroxyflavone as a promising nutraceutical against CNS disorders. Neurochem. Int., 2021, 148, 105068.
[http://dx.doi.org/10.1016/j.neuint.2021.105068] [PMID: 34022252]
[154]
Han, M.; Zhang, J.C.; Yao, W.; Yang, C.; Ishima, T.; Ren, Q.; Ma, M.; Dong, C.; Huang, X.F.; Hashimoto, K. Intake of 7,8-Dihydroxyflavone during juvenile and adolescent stages prevents onset of psychosis in adult offspring after maternal immune activation. Sci. Rep., 2016, 6, 36087.
[http://dx.doi.org/10.1038/srep36087] [PMID: 27824119]
[155]
Han, M.; Zhang, J.C.; Huang, X.F.; Hashimoto, K. Intake of 7,8-dihydroxyflavone from pregnancy to weaning prevents cognitive deficits in adult offspring after maternal immune activation. Eur. Arch. Psychiatry Clin. Neurosci., 2017, 267(5), 479-483.
[http://dx.doi.org/10.1007/s00406-017-0802-1] [PMID: 28417199]
[156]
Han, M.; Zhang, J.C.; Hashimoto, K. Increased levels of C1q in the prefrontal cortex of adult offspring after maternal immune activation: prevention by 7,8-dihydroxyflavone. Clin. Psychopharmacol. Neurosci., 2017, 15(1), 64-67.
[http://dx.doi.org/10.9758/cpn.2017.15.1.64] [PMID: 28138113]
[157]
Yang, Y.J.; Li, Y.K.; Wang, W.; Wan, J.G.; Yu, B.; Wang, M.Z.; Hu, B. Small-molecule TrkB agonist 7,8-dihydroxyflavone reverses cogni-tive and synaptic plasticity deficits in a rat model of schizophrenia. Pharmacol. Biochem. Behav., 2014, 122, 30-36.
[http://dx.doi.org/10.1016/j.pbb.2014.03.013] [PMID: 24662915]
[158]
Waltman, S.H.; Shearer, D.; Moore, B.A. Management of post-traumatic nightmares: A review of pharmacologic and nonpharmacologic treatments since 2013. Curr. Psychiatry Rep., 2018, 20(12), 108.
[http://dx.doi.org/10.1007/s11920-018-0971-2] [PMID: 30306339]
[159]
Koek, R.J.; Luong, T.N. Theranostic pharmacology in PTSD: Neurobiology and timing. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 90, 245-263.
[http://dx.doi.org/10.1016/j.pnpbp.2018.12.001] [PMID: 30529001]
[160]
Compean, E.; Hamner, M. Posttraumatic stress disorder with secondary psychotic features (PTSD-SP): Diagnostic and treatment challeng-es. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 88, 265-275.
[http://dx.doi.org/10.1016/j.pnpbp.2018.08.001] [PMID: 30092241]
[161]
Baker-Andresen, D.; Flavell, C.R.; Li, X.; Bredy, T.W. Activation of BDNF signaling prevents the return of fear in female mice. Learn. Mem., 2013, 20(5), 237-240.
[http://dx.doi.org/10.1101/lm.029520.112] [PMID: 23589089]
[162]
Andero, R.; Daviu, N.; Escorihuela, R.M.; Nadal, R.; Armario, A. 7,8-dihydroxyflavone, a TrkB receptor agonist, blocks long-term spatial memory impairment caused by immobilization stress in rats. Hippocampus, 2012, 22(3), 399-408.
[http://dx.doi.org/10.1002/hipo.20906] [PMID: 21136519]
[163]
Kutlu, M.G.; Cole, R.D.; Connor, D.A.; Natwora, B.; Gould, T.J. Tyrosine receptor kinase B receptor activation reverses the impairing effects of acute nicotine on contextual fear extinction. J. Psychopharmacol., 2018, 32(3), 367-372.
[http://dx.doi.org/10.1177/0269881118758305] [PMID: 29493350]
[164]
Sanz-García, A.; Knafo, S.; Pereda-Pérez, I.; Esteban, J.A.; Venero, C.; Armario, A. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity. Hippocampus, 2016, 26(9), 1179-1188.
[http://dx.doi.org/10.1002/hipo.22599] [PMID: 27068341]
[165]
Tohyama, S.; Matsuda, S.; Mizutani, A. Sex-dependent opposite effects of a tropomyosin-related kinase B receptor (TrkB) agonist 7,8-dihydroxyflavone on cued fear extinction in mice. Neurosci. Lett., 2020, 715, 134670.
[http://dx.doi.org/10.1016/j.neulet.2019.134670] [PMID: 31805374]
[166]
Choi, J.W.; Lee, J.; Park, Y.I. 7,8-Dihydroxyflavone attenuates TNF-α-induced skin aging in Hs68 human dermal fibroblast cells via down-regulation of the MAPKs/Akt signaling pathways. Biomed. Pharmacother., 2017, 95, 1580-1587.
[http://dx.doi.org/10.1016/j.biopha.2017.09.098] [PMID: 28950658]
[167]
Jin, Z.; Yang, Y.Z.; Chen, J.X.; Tang, Y.Z. Inhibition of pro-inflammatory mediators in RAW264.7 cells by 7-hydroxyflavone and 7,8-dihydroxyflavone. J. Pharm. Pharmacol., 2017, 69(7), 865-874.
[http://dx.doi.org/10.1111/jphp.12714] [PMID: 28295316]
[168]
Butterfield, D.A. Perspectives on oxidative stress in Alzheimer’s disease and predictions of future research emphases. J. Alzheimers Dis., 2018, 64(s1), S469-S479.
[http://dx.doi.org/10.3233/JAD-179912] [PMID: 29504538]
[169]
Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol., 2016, 147, 1-19.
[http://dx.doi.org/10.1016/j.pneurobio.2016.07.005] [PMID: 27769868]
[170]
Santos, J.R.; Gois, A.M.; Mendonça, D.M.; Freire, M.A. Nutritional status, oxidative stress and dementia: the role of selenium in Alz-heimer’s disease. Front. Aging Neurosci., 2014, 6, 206.
[http://dx.doi.org/10.3389/fnagi.2014.00206] [PMID: 25221506]
[171]
Akhtar, A.; Dhaliwal, J.; Sah, S.P. 7,8-Dihydroxyflavone improves cognitive functions in ICV-STZ rat model of sporadic Alzheimer’s disease by reversing oxidative stress, mitochondrial dysfunction, and insulin resistance. Psychopharmacology (Berl.), 2021, 238(7), 1991-2009.
[http://dx.doi.org/10.1007/s00213-021-05826-7] [PMID: 33774703]
[172]
Ahmed, S.; Kwatra, M.; Gawali, B.; Panda, S.R.; Naidu, V.G.M. Potential role of TrkB agonist in neuronal survival by promoting CREB/BDNF and PI3K/Akt signaling in vitro and in vivo model of 3-nitropropionic acid (3-NP)-induced neuronal death. Apoptosis, 2021, 26(1-2), 52-70.
[http://dx.doi.org/10.1007/s10495-020-01645-x] [PMID: 33226552]
[173]
Li, X.; Chen, C.; Zhan, X.; Li, B.; Zhang, Z.; Li, S.; Xie, Y.; Song, X.; Shen, Y.; Liu, J.; Liu, P.; Liu, G.P.; Yang, X. R13 preserves motor performance in SOD1G93A mice by improving mitochondrial function. Theranostics, 2021, 11(15), 7294-7307.
[http://dx.doi.org/10.7150/thno.56070] [PMID: 34158851]
[174]
Fang, Y.Y.; Luo, M.; Yue, S.; Han, Y.; Zhang, H.J.; Zhou, Y.H.; Liu, K.; Liu, H.G. 7,8-dihydroxyflavone protects retinal ganglion cells against chronic intermittent hypoxia-induced oxidative stress damage via activation of the BDNF/TrkB signaling pathway. Sleep Breath., 2021, 26(1), 287-295.
[http://dx.doi.org/10.1007/s11325-021-02400-5] [PMID: 33993395]
[175]
Mohankumar, T.; Lalithamba, H.S.; Manigandan, K.; Muthaiyan, A.; Elangovan, N. DHF-BAHPC molecule exerts ameliorative antioxidant status and reduced cadmium-induced toxicity in zebrafish (Danio rerio) embryos. Environ. Toxicol. Pharmacol., 2020, 79, 103425.
[http://dx.doi.org/10.1016/j.etap.2020.103425] [PMID: 32470610]
[176]
Hynd, M.R.; Scott, H.L.; Dodd, P.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int., 2004, 45(5), 583-595.
[http://dx.doi.org/10.1016/j.neuint.2004.03.007] [PMID: 15234100]
[177]
Lau, A.; Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch., 2010, 460(2), 525-542.
[http://dx.doi.org/10.1007/s00424-010-0809-1] [PMID: 20229265]
[178]
Beal, M.F. Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann. Neurol., 1998, 44(3)(Suppl. 1), S110-S114.
[http://dx.doi.org/10.1002/ana.410440716] [PMID: 9749581]
[179]
Chen, J.; Chua, K.W.; Chua, C.C.; Yu, H.; Pei, A.; Chua, B.H.; Hamdy, R.C.; Xu, X.; Liu, C.F. Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity. Neurosci. Lett., 2011, 499(3), 181-185.
[http://dx.doi.org/10.1016/j.neulet.2011.05.054] [PMID: 21651962]
[180]
Zhao, Z.; Xue, F.; Gu, Y.; Han, J.; Jia, Y.; Ye, K.; Zhang, Y. Crosstalk between the muscular estrogen receptor α and BDNF/TrkB signaling alleviates metabolic syndrome via 7,8-dihydroxyflavone in female mice. Mol. Metab., 2021, 45, 101149.
[http://dx.doi.org/10.1016/j.molmet.2020.101149] [PMID: 33352311]
[181]
Sharma, P.; Wu, G.; Kumaraswamy, D.; Burchat, N.; Ye, H.; Gong, Y.; Zhao, L.; Lam, Y.Y.; Sampath, H. Sex-dependent effects of 7,8-dihydroxyflavone on metabolic health are associated with alterations in the host gut microbiome. Nutrients, 2021, 13(2), 637.
[http://dx.doi.org/10.3390/nu13020637] [PMID: 33669347]
[182]
Sun, T.; Chen, S.; Huang, H.; Li, T.; Yang, W.; Liu, L. Metabolic profile study of 7, 8-dihydroxyflavone in monkey plasma using high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1061-1062, 97-102.
[http://dx.doi.org/10.1016/j.jchromb.2017.07.001] [PMID: 28715685]
[183]
Sanchez-Rangel, E.; Inzucchi, S.E. Metformin: clinical use in type 2 diabetes. Diabetologia, 2017, 60(9), 1586-1593.
[http://dx.doi.org/10.1007/s00125-017-4336-x] [PMID: 28770321]
[184]
Kamarudin, M.N.A.; Sarker, M.M.R.; Zhou, J.R.; Parhar, I. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects. J. Exp. Clin. Cancer Res., 2019, 38(1), 491.
[http://dx.doi.org/10.1186/s13046-019-1495-2] [PMID: 31831021]
[185]
Kessing, L.V.; Rytgaard, H.C.; Ekstrøm, C.T.; Knop, F.K.; Berk, M.; Gerds, T.A. Antidiabetes agents and incident depression: a nation-wide population-based study. Diabetes Care, 2020, 43(12), 3050-3060.
[http://dx.doi.org/10.2337/dc20-1561] [PMID: 32978179]
[186]
Fang, W.; Zhang, J.; Hong, L.; Huang, W.; Dai, X.; Ye, Q.; Chen, X. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J. Affect. Disord., 2020, 260, 302-313.
[http://dx.doi.org/10.1016/j.jad.2019.09.013] [PMID: 31521867]
[187]
Zilov, A.V.; Abdelaziz, S.I.; AlShammary, A.; Al Zahrani, A.; Amir, A.; Assaad, K.S.H.; Brand, K.; Elkafrawy, N.; Hassoun, A.A.K.; Jahed, A.; Jarrah, N.; Mrabeti, S.; Paruk, I. Mechanisms of action of metformin with special reference to cardiovascular protection. Diabetes Metab. Res. Rev., 2019, 35(7), e3173.
[http://dx.doi.org/10.1002/dmrr.3173] [PMID: 31021474]
[188]
Itoh, H.; Inoue, M. Comprehensive structure-activity relationship studies of macrocyclic natural products enabled by their total syntheses. Chem. Rev., 2019, 119(17), 10002-10031.
[http://dx.doi.org/10.1021/acs.chemrev.9b00063] [PMID: 30945851]
[189]
Chen, Y.; Xue, F.; Xia, G.; Zhao, Z.; Chen, C.; Li, Y.; Zhang, Y. Transepithelial transport mechanisms of 7,8-dihydroxyflavone, a small molecular TrkB receptor agonist, in human intestinal Caco-2 cells. Food Funct., 2019, 10(8), 5215-5227.
[http://dx.doi.org/10.1039/C9FO01007F] [PMID: 31384856]
[190]
Ascherio, A.; Schwarzschild, M.A. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol., 2016, 15(12), 1257-1272.
[http://dx.doi.org/10.1016/S1474-4422(16)30230-7] [PMID: 27751556]
[191]
Crous-Bou, M.; Minguillón, C.; Gramunt, N.; Molinuevo, J.L. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res. Ther., 2017, 9(1), 71.
[http://dx.doi.org/10.1186/s13195-017-0297-z] [PMID: 28899416]
[192]
Kwon, M.J.; Kim, J.H.; Kim, T.; Lee, S.B. Pharmacological intervention of early neuropathy in neurodegenerative diseases. Pharmacol. Res., 2017, 119, 169-177.
[http://dx.doi.org/10.1016/j.phrs.2017.02.003] [PMID: 28167240]
[193]
Aytan, N.; Choi, J.K.; Carreras, I.; Crabtree, L.; Nguyen, B.; Lehar, M.; Blusztajn, J.K.; Jenkins, B.G.; Dedeoglu, A. Protective effects of 7,8-dihydroxyflavone on neuropathological and neurochemical changes in a mouse model of Alzheimer’s disease. Eur. J. Pharmacol., 2018, 828, 9-17.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.045] [PMID: 29510124]
[194]
Giacomini, A.; Stagni, F.; Emili, M.; Uguagliati, B.; Rimondini, R.; Bartesaghi, R.; Guidi, S. Timing of treatment with the flavonoid 7,8-DHF critically impacts on its effects on learning and memory in the Ts65Dn mouse. Antioxidants, 2019, 8(6), 163.
[http://dx.doi.org/10.3390/antiox8060163] [PMID: 31174258]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy