Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Anticancer Potential of Naringenin, Biosynthesis, Molecular Target, and Structural Perspectives

Author(s): Om Prakash*, Ruchi Singh, Namrata Singh, Shazia Usmani, Mohd Arif , Rajesh Kumar and Akash Ved

Volume 22, Issue 5, 2022

Published on: 12 January, 2022

Page: [758 - 769] Pages: 12

DOI: 10.2174/1389557521666210913112733

Price: $65

Abstract

Numerous novel medicinal agents isolated from plant sources were used as indigenous remedies for the management and treatment of various types of cancer diseases. Naringenin is a naturally occurring flavanone glycoside, and aglycone (genin) moiety of naringin, predominantly found in citrus and grapefruits, has emerged as a potential therapeutic agent for the management of a variety of diseases. A number of scientific papers have been published on naringenin describing its detailed studies and its therapeutic application in different diseases. The current study highlights a comprehensive study on naringenin concerning its biosynthesis, molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), and structure-activity relationships (SARs), and patents granted have been highlighted. Naringenin and its derivatives have great anti-cancer activity due to their inhibitory potential against diverse targets, namely ABCG2/P-gp/BCRP, 5a-reductase, 17- bhydroxysteroid dehydrogenase, aromatase, proteasome, HDAC/Situin-1, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, topoisomerase-II, cathepsin-K, Wnt, NF-kB, B-Raf and mTOR, etc. With the in-depth knowledge of molecular targets, structural intuition, and SARs, the current study may be beneficial to design more potent, safe, effective, and economic anti-cancer naringenin. This has been concluded that naringenin is a promising natural product for the management and therapy of cancer. Further evolution for pharmacological importance, clinical research, and trials are required to manifest its therapeutic action on metabolic syndrome in the human community.

Keywords: Naringenin, flavanone, citrus fruit, anticancer, molecular target, clinical trial.

Graphical Abstract

[1]
Available from: www.who.int/news-room/fact-sheets/detail/cancer [Accessed 20/08/2020]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 1-24.
[3]
Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 2014, 74(11), 2913-2921.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0155] [PMID: 24840647]
[6]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Braym, F. Global cancer observatory. Cancer today; International agency for research on cancer: Lyon, France, , 2018. Available from: gco.iarc.fr/today
[7]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[8]
Prakash, O.; Usmani, S.; Singh, R.; Mahapatra, D.; Gupta, A. Cancer chemotherapy by novel bio-active natural products, looking towards the future. Curr. Cancer Ther. Rev., 2019, 15(1), 37-49.
[http://dx.doi.org/10.2174/1573394714666180321151315]
[9]
Prakash, O.; Kumar, A.; Kumar, P.; Ajeet, A. Anticancer potential of plants and natural products, a review. Am. J. Pharmacol. Sci., 2013, 1(6), 104-115.
[http://dx.doi.org/10.12691/ajps-1-6-1]
[10]
Prakash, O.; Usmani, S.; Gupta, A.; Singh, R.; Singh, N.; Ved, A. Bioactive polyphenols as promising natural medicinal agents against cancer, the emerging trends and prospective goals. Curr. Bioact. Compd., 2020, 16(3), 243-264.
[http://dx.doi.org/10.2174/1573407214666181030122046]
[11]
Kim, C.; Kim, B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients, 2018, 10(8), 1021.
[http://dx.doi.org/10.3390/nu10081021] [PMID: 30081573]
[12]
Kikuchi, H.; Yuan, B.; Hu, X.; Okazaki, M. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am. J. Cancer Res., 2019, 9(8), 1517-1535.
[PMID: 31497340]
[13]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5e47
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[14]
Rani, N.; Bharti, S.; Krishnamurthy, B.; Bhatia, J.; Sharma, C.; Kamal, M.A.; Ojha, S.; Arya, D.S. Pharmacological properties and therapeutic potential of naringenin, a citrus flavonoid of pharmaceutical promise. Curr. Pharm. Des., 2016, 22(28), 4341-4359.
[http://dx.doi.org/10.2174/1381612822666160530150936] [PMID: 27238365]
[15]
Available from: www.scbt.com/p/plus-minus-naringenin-67604-48-2 [Assessed on 20/08/2020]
[16]
Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J.; Giampieri, F.; Battino, M.; Sobarzo-Sanchez, E.; Nabavi, S.F.; Yousefi, B.; Jeandet, P.; Xu, S.; Shirooie, S. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol. Adv., 2020, 38107316
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.005] [PMID: 30458225]
[17]
Available from: en.wikipedia.org/wiki/Naringenin [Assessed on 20/08/2020]
[18]
Wilcox, L.J.; Borradaile, N.M.; Huff, M.W. Antiatherogenic properties of naringenin, a citrus flavonoid. Cardiovasc. Drug Rev., 1999, 17(2), 160-178.
[http://dx.doi.org/10.1111/j.1527-3466.1999.tb00011.x]
[19]
Ho, P.C.; Saville, D.J.; Coville, P.F.; Wanwimolruk, S. Content of CYP3A4 inhibitors, naringin, naringenin and bergapten in grapefruit and grapefruit juice products. Pharm. Acta Helv., 2000, 74(4), 379-385.
[http://dx.doi.org/10.1016/S0031-6865(99)00062-X] [PMID: 10812937]
[20]
Gel-Moreto, N.; Streich, R.; Galensa, R. Chiral separation of diastereomeric flavanone-7-O-glycosides in citrus by capillary electrophoresis. Electrophoresis, 2003, 24(15), 2716-2722.
[http://dx.doi.org/10.1002/elps.200305486] [PMID: 12900888]
[21]
Wang, H.; Nair, M.G.; Strasburg, G.M.; Booren, A.M.; Gray, J.I. Antioxidant polyphenols from tart cherries (Prunus cerasus). J. Agric. Food Chem., 1999, 47(3), 840-844.
[http://dx.doi.org/10.1021/jf980936f] [PMID: 10552377]
[22]
Vallverdú-Queralt, A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Lamuela-Raventós, R.M.; Elez-Martínez, P.; Martín-Belloso, O. Changes in the polyphenol profile of tomato juices processed by pulsed electric fields. J. Agric. Food Chem., 2012, 60(38), 9667-9672.
[http://dx.doi.org/10.1021/jf302791k] [PMID: 22957841]
[23]
Hungria, M.; Johnston, A.W.; Phillips, D.A. Effects of flavonoids released naturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli. Mol. Plant Microbe Interact., 1992, 5(3), 199-203.
[http://dx.doi.org/10.1094/MPMI-5-199] [PMID: 1421508]
[24]
Agus, S.; Achmadi, S.S.; Mubarik, N.R. Antibacterial activity of naringenin-rich fraction of pigeon pea leaves toward Salmonella typhi. Asian Pac. J. Trop. Biomed., 2017, 7(8), 725-728.
[http://dx.doi.org/10.1016/j.apjtb.2017.07.019]
[25]
Den Hartogh, D.J.; Tsiani, E. Antidiabetic properties of naringenin, A citrus fruit polyphenol. Biomolecules, 2019, 9(3), 99.
[http://dx.doi.org/10.3390/biom9030099] [PMID: 30871083]
[26]
Pinho-Ribeiro, F.A.; Zarpelon, A.C.; Fattori, V.; Manchope, M.F.; Mizokami, S.S.; Casagrande, R.; Verri, W.A., Jr Naringenin reduces inflammatory pain in mice. Neuropharmacology, 2016, 105, 508-519.
[http://dx.doi.org/10.1016/j.neuropharm.2016.02.019] [PMID: 26907804]
[27]
Cavia-Saiz, M.; Busto, M.D.; Pilar-Izquierdo, M.C.; Ortega, N.; Perez-Mateos, M.; Muñiz, P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: A comparative study. J. Sci. Food Agric., 2010, 90(7), 1238-1244.
[http://dx.doi.org/10.1002/jsfa.3959] [PMID: 20394007]
[28]
Testai, L.; Piragine, E.; Piano, I.; Flori, L.; Da Pozzo, E.; Miragliotta, V.; Pirone, A.; Citi, V.; Di Cesare Mannelli, L.; Brogi, S.; Carpi, S.; Martelli, A.; Nieri, P.; Martini, C.; Ghelardini, C.; Gargini, C.; Calderone, V. The citrus flavonoid naringenin protects the Myocardium from ageing-dependent dysfunction: Potential role of SIRT1. Oxid. Med. Cell. Longev., 2020, 20204650207
[http://dx.doi.org/10.1155/2020/4650207] [PMID: 32047577]
[29]
Rajamani, S.; Radhakrishnan, A.; Sengodan, T.; Thangavelu, S. Augmented anticancer activity of naringenin-loaded TPGS polymeric nanosuspension for drug resistive MCF-7 human breast cancer cells. Drug Dev. Ind. Pharm., 2018, 44(11), 1752-1761.
[http://dx.doi.org/10.1080/03639045.2018.1496445] [PMID: 29968480]
[30]
Yi, L.T.; Liu, B.B.; Li, J.; Luo, L.; Liu, Q.; Geng, D.; Tang, Y.; Xia, Y.; Wu, D. BDNF signaling is necessary for the antidepressant-like effect of naringenin. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 48C, 135-141.
[31]
Maatouk, M.; Elgueder, D.; Mustapha, N.; Chaaban, H.; Bzéouich, I.M.; Loannou, I.; Kilani, S.; Ghoul, M.; Ghedira, K.; Chekir-Ghedira, L. Effect of heated naringenin on immunomodulatory properties and cellular antioxidant activity. Cell Stress Chaperones, 2016, 21(6), 1101-1109.
[http://dx.doi.org/10.1007/s12192-016-0734-0] [PMID: 27623863]
[32]
Song, S.H.; Wang, D.; Mo, Y.Y.; Ding, C.; Shang, P. Antiosteoporotic effects of naringenin on ovariectomy-induced osteoporosis in rat. Yao Xue Xue Bao, 2015, 50(2), 154-161.
[PMID: 25975021]
[33]
Rodríguez-García, C.; Sánchez-Quesada, C.J.; Gaforio, J. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants, 2019, 8(5), 137.
[http://dx.doi.org/10.3390/antiox8050137] [PMID: 31109072]
[34]
Guleria, P.; Kumar, V. Understanding the phenylpropanoid pathway for agronomical and nutritional improvement of mungbean. J. Hortic. Sci. Biotechnol., 2017, 92(4), 335-348.
[http://dx.doi.org/10.1080/14620316.2017.1286236]
[35]
Forkmann, G.; Martens, S. Metabolic engineering and applications of flavonoids. Curr. Opin. Biotechnol., 2001, 12(2), 155-160.
[http://dx.doi.org/10.1016/S0958-1669(00)00192-0] [PMID: 11287230]
[36]
Koopman, F.; Beekwilder, J.; Crimi, B.; van Houwelingen, A.; Hall, R.D.; Bosch, D.; van Maris, A.J.; Pronk, J.T.; Daran, J.M. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb. Cell Fact., 2012, 11(1), 155.
[http://dx.doi.org/10.1186/1475-2859-11-155] [PMID: 23216753]
[37]
Wang, C.H.; Yu, J.; Cai, Y.X.; Zhu, P.P.; Liu, C.Y.; Zhao, A.C.; Lü, R.H.; Li, M.J.; Xu, F.X.; Yu, M.D. Characterization and functional analysis of 4-coumarate, CoA ligase genes in mulberry. PLoS One, 2016, 11(5)e0155814
[http://dx.doi.org/10.1371/journal.pone.0155814] [PMID: 27213624]
[38]
Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol., 2001, 126(2), 485-493.
[http://dx.doi.org/10.1104/pp.126.2.485] [PMID: 11402179]
[39]
Jeandet, P.; Sobarzo-Sánchez, E.; Clément, C.; Nabavi, S.F.; Habtemariam, S.; Nabavi, S.M.; Cordelier, S. Engineering stilbene metabolic pathways in microbial cells. Biotechnol. Adv., 2018, 36(8), 2264-2283.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.002] [PMID: 30414914]
[40]
Álvarez-Álvarez, R.; Botas, A.; Albillos, S.M.; Rumbero, A.; Martín, J.F.; Liras, P. Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus. Microb. Cell Fact., 2015, 14(1), 178.
[http://dx.doi.org/10.1186/s12934-015-0373-7] [PMID: 26553209]
[41]
Eichenberger, M.; Lehka, B.J.; Folly, C.; Fischer, D.; Martens, S.; Simón, E.; Naesby, M. Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties. Metab. Eng., 2017, 39, 80-89.
[http://dx.doi.org/10.1016/j.ymben.2016.10.019] [PMID: 27810393]
[42]
Chambers, C.S.; Viktorová, J.; Řehořová, K.; Biedermann, D.; Turková, L.; Macek, T.; Křen, V.; Valentová, K. Defying multidrug resistance! Modulation of related transporters by flavonoids and flavonolignans. J. Agric. Food Chem., 2020, 68(7), 1763-1779.
[http://dx.doi.org/10.1021/acs.jafc.9b00694] [PMID: 30907588]
[43]
Dean, M.; Hamon, Y.; Chimini, G. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res., 2001, 42(7), 1007-1017.
[http://dx.doi.org/10.1016/S0022-2275(20)31588-1] [PMID: 11441126]
[44]
Vasiliou, V.; Vasiliou, K.; Nebert, D.W. Human ATP-binding cassette (ABC) transporter family. Hum. Genomics, 2009, 3(3), 281-290.
[http://dx.doi.org/10.1186/1479-7364-3-3-281] [PMID: 19403462]
[45]
Michalak, K.; Wesolowska, O. Polyphenols counteract tumor cell chemoresistance conferred by multidrug resistance proteins. Anticancer. Agents Med. Chem., 2012, 12(8), 880-890.
[http://dx.doi.org/10.2174/187152012802650011] [PMID: 22583399]
[46]
Sun, Y.L.; Patel, A.; Kumar, P.; Chen, Z.S. Role of ABC transporters in cancer chemotherapy. Chin. J. Cancer, 2012, 31(2), 51-57.
[http://dx.doi.org/10.5732/cjc.011.10466] [PMID: 22257384]
[47]
Alfarouk, K.O.; Stock, C.M.; Taylor, S.; Walsh, M.; Muddathir, A.K.; Verduzco, D.; Bashir, A.H.; Mohammed, O.Y.; Elhassan, G.O.; Harguindey, S.; Reshkin, S.J.; Ibrahim, M.E.; Rauch, C. Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell Int., 2015, 15(1), 71.
[http://dx.doi.org/10.1186/s12935-015-0221-1] [PMID: 26180516]
[48]
Kathawala, R.J.; Gupta, P.; Ashby, C.R., Jr; Chen, Z.S. The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updat., 2015, 18, 1-17.
[http://dx.doi.org/10.1016/j.drup.2014.11.002] [PMID: 25554624]
[49]
Michaelis, M.; Rothweiler, F.; Nerreter, T.; Sharifi, M.; Ghafourian, T.; Cinatl, J. Karanjin interferes with ABCB1, ABCC1, and ABCG2. J. Pharm. Pharm. Sci., 2014, 17(1), 92-105.
[http://dx.doi.org/10.18433/J3BW2S] [PMID: 24735762]
[50]
Arana, M.R.; Altenberg, G.A. ATP-binding cassette exporters: Structure and mechanism with a focus on P-glycoprotein and MRP1. Curr. Med. Chem., 2019, 26(7), 1062-1078.
[http://dx.doi.org/10.2174/0929867324666171012105143] [PMID: 29022498]
[51]
Behrens, C.E.; Smith, K.E.; Iancu, C.V.; Choe, J.Y.; Dean, J.V. Transport of anthocyanins and other flavonoids by the arabidopsis ATP-binding cassette transporter AtABCC2. Sci. Rep., 2019, 9(1), 437.
[http://dx.doi.org/10.1038/s41598-018-37504-8] [PMID: 30679715]
[52]
Rice, A.J.; Park, A.; Pinkett, H.W. Diversity in ABC transporters: Type I, II and III importers. Crit. Rev. Biochem. Mol. Biol., 2014, 49(5), 426-437.
[http://dx.doi.org/10.3109/10409238.2014.953626] [PMID: 25155087]
[53]
Chen, Z.; Shi, T.; Zhang, L.; Zhu, P.; Deng, M.; Huang, C.; Hu, T.; Jiang, L.; Li, J. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett., 2016, 370(1), 153-164.
[http://dx.doi.org/10.1016/j.canlet.2015.10.010] [PMID: 26499806]
[54]
Klappe, K.; Hummel, I.; Hoekstra, D.; Kok, J.W. Lipid dependence of ABC transporter localization and function. Chem. Phys. Lipids, 2009, 161(2), 57-64.
[http://dx.doi.org/10.1016/j.chemphyslip.2009.07.004] [PMID: 19651114]
[55]
Murakami, T.; Takano, M. Intestinal efflux transporters and drug absorption. Expert Opin. Drug Metab. Toxicol., 2008, 4(7), 923-939.
[http://dx.doi.org/10.1517/17425255.4.7.923] [PMID: 18624680]
[56]
Russel, F.G. Transporters, importance in drug absorption, distribution, and removal.Enzyme- and transporter-based drug-drug interactions; Pang, K.; Rodrigues, A; Peter, R., Ed.; Springer: New York, NY, 2010, pp. 27-49.
[http://dx.doi.org/10.1007/978-1-4419-0840-7_2]
[57]
Alvarez, A.I.; Real, R.; Pérez, M.; Mendoza, G.; Prieto, J.G.; Merino, G. Modulation of the activity of ABC transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response. J. Pharm. Sci., 2010, 99(2), 598-617.
[http://dx.doi.org/10.1002/jps.21851] [PMID: 19544374]
[58]
Cermak, R.; Wolffram, S. The potential of flavonoids to influence drug metabolism and pharmacokinetics by local gastrointestinal mechanisms. Curr. Drug Metab., 2006, 7(7), 729-744.
[http://dx.doi.org/10.2174/138920006778520570] [PMID: 17073577]
[59]
Silbermann, K.; Shah, C.P.; Sahu, N.U.; Juvale, K.; Stefan, S.M.; Kharkar, P.S.; Wiese, M. Novel chalcone and flavone derivatives as selective and dual inhibitors of the transport proteins ABCB1 and ABCG2. Eur. J. Med. Chem., 2019, 164, 193-213.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.019] [PMID: 30594677]
[60]
Nakanishi, T.; Ross, D.D. Breast cancer resistance protein (BCRP/ABCG2): Its role in multidrug resistance and regulation of its gene expression. Chin. J. Cancer, 2012, 31(2), 73-99.
[http://dx.doi.org/10.5732/cjc.011.10320] [PMID: 22098950]
[61]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 98, 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[62]
Imai, Y.; Tsukahara, S.; Asada, S.; Sugimoto, Y. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Res., 2004, 64(12), 4346-4352.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0078] [PMID: 15205350]
[63]
Zhang, S.; Yang, X.; Morris, M.E. Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol. Pharmacol., 2004, 65(5), 1208-1216.
[http://dx.doi.org/10.1124/mol.65.5.1208] [PMID: 15102949]
[64]
Pick, A.; Müller, H.; Mayer, R.; Haenisch, B.; Pajeva, I.K.; Weigt, M.; Bönisch, H.; Müller, C.E.; Wiese, M. Structure-activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorg. Med. Chem., 2011, 19(6), 2090-2102.
[http://dx.doi.org/10.1016/j.bmc.2010.12.043] [PMID: 21354800]
[65]
Juvale, K.; Stefan, K.; Wiese, M. Synthesis and biological evaluation of flavones and benzoflavones as inhibitors of BCRP/ABCG2. Eur. J. Med. Chem., 2013, 67, 115-126.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.035] [PMID: 23851114]
[66]
Fan, X.; Bai, J.; Zhao, S.; Hu, M.; Sun, Y.; Wang, B.; Ji, M.; Jin, J.; Wang, X.; Hu, J.; Li, Y. Evaluation of inhibitory effects of flavonoids on breast cancer resistance protein (BCRP): From library screening to biological evaluation to structure-activity relationship. Toxicol. In Vitro, 2019, 61104642
[http://dx.doi.org/10.1016/j.tiv.2019.104642] [PMID: 31493543]
[67]
Dewanjee, S.; Dua, T.K.; Bhattacharjee, N.; Das, A.; Gangopadhyay, M.; Khanra, R.; Joardar, S.; Riaz, M.; Feo, V.; Zia-Ul-Haq, M. Natural products as alternative choices for P-glycoprotein (P-gp) inhibition. Molecules, 2017, 22(6), 871.
[http://dx.doi.org/10.3390/molecules22060871] [PMID: 28587082]
[68]
Abdallah, H.M.; Al-Abd, A.M.; El-Dine, R.S.; El-Halawany, A.M. P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: A review. J. Adv. Res., 2015, 6(1), 45-62.
[http://dx.doi.org/10.1016/j.jare.2014.11.008] [PMID: 25685543]
[69]
Bansal, T.; Jaggi, M.; Khar, R.K.; Talegaonkar, S. Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J. Pharm. Pharm. Sci., 2009, 12(1), 46-78.
[http://dx.doi.org/10.18433/J3RC77] [PMID: 19470292]
[70]
Wesołowska, O.; Wiśniewski, J.; Środa, K.; Krawczenko, A.; Bielawska-Pohl, A.; Paprocka, M.; Duś, D.; Michalak, K. 8-Prenylnaringenin is an inhibitor of multidrug resistance-associated transporters, P-glycoprotein and MRP1. Eur. J. Pharmacol., 2010, 644(1-3), 32-40.
[http://dx.doi.org/10.1016/j.ejphar.2010.06.069] [PMID: 20633549]
[71]
Sun, L.; Chen, W.; Qu, L.; Wu, J.; Si, J. Icaritin reverses multidrug resistance of HepG2/ADR human hepatoma cells via downregulation of MDR1 and P glycoprotein expression. Mol. Med. Rep., 2013, 8(6), 1883-1887.
[http://dx.doi.org/10.3892/mmr.2013.1742] [PMID: 24145579]
[72]
Li, C.; Kim, M.; Choi, H.; Choi, J. Effects of baicalein on the pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats: Possible role of cytochrome P450 3A4 and P-glycoprotein inhibition by baicalein. Arch. Pharm. Res., 2011, 34(11), 1965-1972.
[http://dx.doi.org/10.1007/s12272-011-1117-9] [PMID: 22139696]
[73]
Zhang, S.; Morris, M.E. Effect of the flavonoids biochanin A and silymarin on the P-glycoprotein-mediated transport of digoxin and vinblastine in human intestinal Caco-2 cells. Pharm. Res., 2003, 20(8), 1184-1191. a
[http://dx.doi.org/10.1023/A:1025044913766] [PMID: 12948016]
[74]
Zhang, S.; Morris, M.E. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J. Pharmacol. Exp. Ther., 2003, 304(3), 1258-1267. b
[http://dx.doi.org/10.1124/jpet.102.044412] [PMID: 12604704]
[75]
Romiti, N.; Tramonti, G.; Donati, A.; Chieli, E. Effects of grapefruit juice on the multidrug transporter P-glycoprotein in the human proximal tubular cell line HK-2. Life Sci., 2004, 76(3), 293-302.
[http://dx.doi.org/10.1016/j.lfs.2004.06.015] [PMID: 15531381]
[76]
Krishna, R.; Mayer, L.D. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharm. Sci., 2000, 11(4), 265-283.
[http://dx.doi.org/10.1016/S0928-0987(00)00114-7] [PMID: 11033070]
[77]
Lee, E.; Enomoto, R.; Koshiba, C.; Hirano, H. Inhibition of P-glycoprotein by wogonin is involved with the potentiation of etoposide-induced apoptosis in cancer cells. Ann. N. Y. Acad. Sci., 2009, 1171(1), 132-136.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04722.x] [PMID: 19723047]
[78]
Patanasethanont, D.; Nagai, J.; Yumoto, R.; Murakami, T.; Sutthanut, K.; Sripanidkulchai, B.O.; Yenjai, C.; Takano, M. Effects of Kaempferia parviflora extracts and their flavone constituents on P-glycoprotein function. J. Pharm. Sci., 2007, 96(1), 223-233.
[http://dx.doi.org/10.1002/jps.20769] [PMID: 17031860]
[79]
Patanasethanont, D.; Nagai, J.; Matsuura, C.; Fukui, K.; Sutthanut, K.; Sripanidkulchai, B.O.; Yumoto, R.; Takano, M. Modulation of function of multidrug resistance associated-proteins by Kaempferia parviflora extracts and their components. Eur. J. Pharmacol., 2007, 566(1-3), 67-74.
[http://dx.doi.org/10.1016/j.ejphar.2007.04.001] [PMID: 17481606]
[80]
Lee, C.H.; Bradley, G.; Zhang, J.T.; Ling, V. Differential expression of P-glycoprotein genes in primary rat hepatocyte culture. J. Cell. Physiol., 1993, 157(2), 392-402.
[http://dx.doi.org/10.1002/jcp.1041570223] [PMID: 7901227]
[81]
Yi, X.; Zuo, J.; Tan, C.; Xian, S.; Luo, C.; Chen, S.; Yu, L.; Luo, Y. Kaempferol, a flavonoid compound from Gynura medica induced apoptosis and growth inhibition in MCF-7 breast Cancer cell. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(4), 210-215.
[http://dx.doi.org/10.21010/ajtcam.v13i4.27] [PMID: 28852738]
[82]
Chaitanya, G.V.; Steven, A.J.; Babu, P.P. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun. Signal., 2010, 8(1), 31.
[http://dx.doi.org/10.1186/1478-811X-8-31] [PMID: 21176168]
[83]
Md, S.; Alhakamy, N.A.; Akhter, S.; Awan, Z.A.Y.; Aldawsari, H.M.; Alharbi, W.S.; Haque, A.; Choudhury, A.; Sivakumar, P.M. Development of polymer and surfactant based naringenin nanosuspension for improvement of stability, antioxidant, and antitumour activity. J. Chem., 2020, 1-10.
[84]
Chin, L.H.; Hon, C.M.; Chellappan, D.K.; Chellian, J.; Madheswaran, T.; Zeeshan, F.; Awasthi, R.; Aljabali, A.A.A.; Tambuwala, M.M.; Dureja, H.; Negi, P.; Kapoor, D.N.; Goyal, R.; Paudel, K.R.; Satija, S.; Gupta, G.; Hsu, A.; Wark, P.; Mehta, M.; Wadhwa, R.; Hansbro, P.M.; Dua, K. Molecular mechanisms of action of naringenin in chronic airway diseases. Eur. J. Pharmacol., 2020, 879173139
[http://dx.doi.org/10.1016/j.ejphar.2020.173139] [PMID: 32343971]
[85]
Park, J.H.; Jin, C.Y.; Lee, B.K.; Kim, G.Y.; Choi, Y.H.; Jeong, Y.K. Naringenin induces apoptosis through downregulation of Akt and caspase-3 activation in human leukemia THP-1 cells. Food Chem. Toxicol., 2008, 46(12), 3684-3690.
[http://dx.doi.org/10.1016/j.fct.2008.09.056] [PMID: 18930780]
[86]
Memariani, Z.; Abbas, S.Q.; Ul Hassan, S.S.; Ahmadi, A.; Chabra, A. Naringin and naringeninin as anticancer agents and adjuvants in cancer combination therapy; efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol. Res., 2020.105264
[http://dx.doi.org/10.1016/j.phrs.2020.105264] [PMID: 33166734]
[87]
Zeng, X.; Su, W.; Zheng, Y.; He, Y.; He, Y.; Rao, H.; Peng, W.; Yao, H. Pharmacokinetics, tissue distribution, metabolism, and excretion of Naringin in aged rats. Front. Pharmacol., 2019, 10, 34.
[http://dx.doi.org/10.3389/fphar.2019.00034] [PMID: 30761003]
[88]
Hsiu, S.L.; Huang, T.Y.; Hou, Y.C.; Chin, D.H.; Chao, P.D. Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits. Life Sci., 2002, 70(13), 1481-1489.
[http://dx.doi.org/10.1016/S0024-3205(01)01491-6] [PMID: 11895099]
[89]
Bai, Y.; Peng, W.; Yang, C.; Zou, W.; Liu, M.; Wu, H.; Fan, L.; Li, P.; Zeng, X.; Su, W. Pharmacokinetics and metabolism of Naringin and active metabolite Naringenin in rats, dogs, humans, and the differences between species. Front. Pharmacol., 2020, 11, 364.
[http://dx.doi.org/10.3389/fphar.2020.00364] [PMID: 32292344]
[90]
Shi, M.D.; Liao, Y.C.; Shih, Y.W.; Tsai, L.Y. Nobiletin attenuates metastasis via both ERK and PI3K/Akt pathways in HGF-treated liver cancer HepG2 cells. Phytomedicine, 2013, 20(8-9), 743-752.
[http://dx.doi.org/10.1016/j.phymed.2013.02.004] [PMID: 23537747]
[91]
Yumnam, S.; Park, H.S.; Kim, M.K.; Nagappan, A.; Hong, G.E.; Lee, H.J.; Lee, W.S.; Kim, E.H.; Cho, J.H.; Shin, S.C.; Kim, G.S. hesperidin induces paraptosis like cell death in hepatoblastoma, HepG2 Cells: Involvement of ERK1/2 MAPK. [corrected] PLoS One, 2014, 9(6)e101321
[http://dx.doi.org/10.1371/journal.pone.0101321] [PMID: 24977707]
[92]
Chahar, M.K.; Sharma, N.; Dobhal, M.P.; Joshi, Y.C. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev., 2011, 5(9), 1-12.
[http://dx.doi.org/10.4103/0973-7847.79093] [PMID: 22096313]
[93]
Fuhr, U.; Kummert, A.L. The fate of naringin in humans: a key to grapefruit juice-drug interactions? Clin. Pharmacol. Ther., 1995, 58(4), 365-373.
[http://dx.doi.org/10.1016/0009-9236(95)90048-9] [PMID: 7586927]
[94]
Kocyigit, A.; Koyuncu, I.; Dikilitas, M.; Bahadori, F.; Turkkan, B. Cytotoxic, genotoxic and apoptotic effects of naringenin-oxime relative to naringenin on normal and cancer cell lines. Asian Pac. J. Trop. Biomed., 2016, 6(10), 872-880.
[http://dx.doi.org/10.1016/j.apjtb.2016.08.004]
[95]
Wadhwa, R.; Paudel, K.R.; Chin, L.H.; Hon, C.M.; Madheswaran, T.; Gupta, G.; Panneerselvam, J.; Lakshmi, T.; Singh, S.K.; Gulati, M.; Dureja, H.; Hsu, A.; Mehta, M.; Anand, K.; Devkota, H.P.; Chellian, J.; Chellappan, D.K.; Hansbro, P.M.; Dua, K. Anti-inflammatory and anticancer activities of Naringenin-loaded liquid crystalline nanoparticles in vitro. J. Food Biochem., 2021, 45(1)e13572
[http://dx.doi.org/10.1111/jfbc.13572] [PMID: 33249629]
[96]
Krishna, K.N.; Sulfikkarali, N.; Rajendra, P.N.; Karthikeyan, S. Enhanced anticancer activity of naringenin-loaded nanoparticles in human cervical (HeLa) cancer cells. Biomed. Prev. Nutr., 2011, 1(4), 223-231.
[http://dx.doi.org/10.1016/j.bionut.2011.09.003]
[97]
Pateliya, B.; Burade, V.; Goswami, S. Combining naringenin and metformin with doxorubicin enhances anticancer activity against triple-negative breast cancer in vitro and in vivo. Eur. J. Pharmacol., 2021, 891(891)173725
[http://dx.doi.org/10.1016/j.ejphar.2020.173725] [PMID: 33157041]
[98]
Choi, J.; Lee, D.H.; Jang, H.; Park, S.Y.; Seol, J.W. Naringenin exerts anticancer effects by inducing tumor cell death and inhibiting angiogenesis in malignant melanoma. Int. J. Med. Sci., 2020, 17(18), 3049-3057.
[http://dx.doi.org/10.7150/ijms.44804] [PMID: 33173425]
[99]
Wang, R.; Wang, J.; Dong, T.; Shen, J.; Gao, X.; Zhou, J. Naringenin has a chemoprotective effect in MDA-MB-231 breast cancer cells via inhibition of caspase-3 and -9 activities. Oncol. Lett., 2019, 17(1), 1217-1222.
[PMID: 30655887]
[100]
Camargo, C.A.; Gomes-Marcondes, M.C.; Wutzki, N.C.; Aoyama, H. Naringin inhibits tumor growth and reduces interleukin-6 and tumor necrosis factor α levels in rats with Walker 256 carcinosarcoma. Anticancer Res., 2012, 32(1), 129-133.
[PMID: 22213297]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy