Review Article

癫痫的药物治疗:从偶然的发现到进化机制

卷 29, 期 19, 2022

发表于: 10 January, 2022

页: [3366 - 3391] 页: 26

弟呕挨: 10.2174/0929867328666210910124727

价格: $65

摘要

癫痫是一种由神经元异常放电引起的慢性大脑疾病。到目前为止,抗癫痫药物的使用是治疗癫痫的主要方法。抗癫痫药物的开发持续了几个世纪。一般来说,大多数进入临床实践的药物作用于大脑“兴奋性-抑制”的平衡机制。更具体地说,它们针对电压门控离子通道、GABA能传递和谷氨酸能传递。近年来,人们发现了一些代表新的作用机制的新药物。虽然市场上有30种药物可用,但仍然迫切需要发现更有效和更安全的药物。新抗癫痫药物的开发进入一个新时代:从偶然发现到基于进化机制的设计。本文概述了癫痫的药物治疗,包括一系列传统的和新的药物。

关键词: 抗癫痫药物,作用机制,电压门控离子通道,谷氨酸,GABA,突触囊泡。

[1]
Stafstrom, C.E. Epilepsy: A review of selected clinical syndromes and advances in basic science. J. Cereb. Blood Flow Metab., 2006, 26(8), 983-1004.
[http://dx.doi.org/10.1038/sj.jcbfm.9600265] [PMID: 16437061]
[2]
Abram, M.; Jakubiec, M.; Kamiński, K. Chirality as an important factor for the development of new antiepileptic drugs. ChemMedChem, 2019, 14(20), 1744-1761.
[http://dx.doi.org/10.1002/cmdc.201900367] [PMID: 31476107]
[3]
Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J., Jr; Forsgren, L.; French, J.A.; Glynn, M.; Hesdorffer, D.C.; Lee, B.I.; Mathern, G.W.; Moshé, S.L.; Perucca, E.; Scheffer, I.E.; Tomson, T.; Watanabe, M.; Wiebe, S. ILAE official report: A practical clinical definition of epilepsy. Epilepsia, 2014, 55(4), 475-482.
[http://dx.doi.org/10.1111/epi.12550] [PMID: 24730690]
[4]
Devinsky, O.; Spruill, T.; Thurman, D.; Friedman, D. Recognizing and preventing epilepsy-related mortality: A call for action. Neurology, 2016, 86(8), 779-786.
[http://dx.doi.org/10.1212/WNL.0000000000002253] [PMID: 26674330]
[5]
Manolis, T.A.; Manolis, A.A.; Melita, H.; Manolis, A.S. Sudden unexpected death in epilepsy: The neuro-cardio-respiratory connection. Seizure, 2019, 64, 65-73.
[http://dx.doi.org/10.1016/j.seizure.2018.12.007] [PMID: 30566897]
[6]
Devinsky, O.; Vezzani, A.; O’Brien, T.J.; Jette, N.; Scheffer, I.E.; de Curtis, M.; Perucca, P. Epilepsy. Nat. Rev. Dis. Primers, 2018, 4, 18024.
[http://dx.doi.org/10.1038/nrdp.2018.24] [PMID: 29722352]
[7]
Lucke-Wold, B.P.; Nguyen, L.; Turner, R.C.; Logsdon, A.F.; Chen, Y-W.; Smith, K.E.; Huber, J.D.; Matsumoto, R.; Rosen, C.L.; Tucker, E.S.; Richter, E. Traumatic brain injury and epilepsy: Underlying mechanisms leading to seizure. Seizure, 2015, 33, 13-23.
[http://dx.doi.org/10.1016/j.seizure.2015.10.002] [PMID: 26519659]
[8]
Goldberg, E.M.; Coulter, D.A. Mechanisms of epileptogenesis: A convergence on neural circuit dysfunction. Nat. Rev. Neurosci., 2013, 14(5), 337-349.
[http://dx.doi.org/10.1038/nrn3482] [PMID: 23595016]
[9]
Wang, Y.; Chen, Z. An update for epilepsy research and antiepileptic drug development: Toward precise circuit therapy. Pharmacol. Ther., 2019, 201, 77-93.
[http://dx.doi.org/10.1016/j.pharmthera.2019.05.010] [PMID: 31128154]
[10]
Franco, V.; French, J.A.; Perucca, E. Challenges in the clinical development of new antiepileptic drugs. Pharmacol. Res., 2016, 103, 95-104.
[http://dx.doi.org/10.1016/j.phrs.2015.11.007] [PMID: 26611249]
[11]
Moshé, S.L.; Perucca, E.; Ryvlin, P.; Tomson, T. Epilepsy: New advances. Lancet, 2015, 385(9971), 884-898.
[http://dx.doi.org/10.1016/S0140-6736(14)60456-6] [PMID: 25260236]
[12]
Shorvon, S.D. Drug treatment of epilepsy in the century of the ILAE: The first 50 years, 1909-1958. Epilepsia, 2009, 50(Suppl. 3), 69-92.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02041.x] [PMID: 19298434]
[13]
Löscher, W. Animal models of seizures and epilepsy: Past, present, and future role for the discovery of antiseizure drugs. Neurochem. Res., 2017, 42(7), 1873-1888.
[http://dx.doi.org/10.1007/s11064-017-2222-z] [PMID: 28290134]
[14]
Brodie, M.J. Antiepileptic drug therapy the story so far. Seizure, 2010, 19(10), 650-655.
[http://dx.doi.org/10.1016/j.seizure.2010.10.027] [PMID: 21075011]
[15]
Shorvon, S.D. Drug treatment of epilepsy in the century of the ILAE: the second 50 years, 1959-2009. Epilepsia, 2009, 50(Suppl. 3), 93-130.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02042.x] [PMID: 19298435]
[16]
Bialer, M.; White, H.S. Key factors in the discovery and development of new antiepileptic drugs. Nat. Rev. Drug Discov., 2010, 9(1), 68-82.
[http://dx.doi.org/10.1038/nrd2997] [PMID: 20043029]
[17]
de Lera Ruiz, M.; Kraus, R.L. Voltage-gated sodium channels: Structure, function, pharmacology, and clinical indications. J. Med. Chem., 2015, 58(18), 7093-7118.
[http://dx.doi.org/10.1021/jm501981g] [PMID: 25927480]
[18]
Mantegazza, M.; Curia, G.; Biagini, G.; Ragsdale, D.S.; Avoli, M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol., 2010, 9(4), 413-424.
[http://dx.doi.org/10.1016/S1474-4422(10)70059-4] [PMID: 20298965]
[19]
Payandeh, J.; Scheuer, T.; Zheng, N.; Catterall, W.A. The crystal structure of a voltage-gated sodium channel. Nature, 2011, 475(7356), 353-358.
[http://dx.doi.org/10.1038/nature10238] [PMID: 21743477]
[20]
Zhang, Y.; Wang, K.; Yu, Z. Drug development in channelopathies: Allosteric modulation of ligand-gated and voltage-gated Ion channels. J. Med. Chem., 2020, 63(24), 15258-15278.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01304] [PMID: 33253554]
[21]
Chow, C.Y.; Absalom, N.; Biggs, K.; King, G.F.; Ma, L. Venom-derived modulators of epilepsy-related ion channels. Biochem. Pharmacol., 2020, 181, 114043.
[http://dx.doi.org/10.1016/j.bcp.2020.114043] [PMID: 32445870]
[22]
Löscher, W.; Klitgaard, H.; Twyman, R.E.; Schmidt, D. New avenues for anti-epileptic drug discovery and development. Nat. Rev. Drug Discov., 2013, 12(10), 757-776.
[http://dx.doi.org/10.1038/nrd4126] [PMID: 24052047]
[23]
Patocka, J.; Wu, Q.; Nepovimova, E.; Kuca, K. Phenytoin - An anti-seizure drug: Overview of its chemistry, pharmacology and toxicology. Food Chem. Toxicol., 2020, 142, 111393.
[http://dx.doi.org/10.1016/j.fct.2020.111393] [PMID: 32376339]
[24]
Anger, T.; Madge, D.J.; Mulla, M.; Riddall, D. Medicinal chemistry of neuronal voltage-gated sodium channel blockers. J. Med. Chem., 2001, 44(2), 115-137.
[http://dx.doi.org/10.1021/jm000155h] [PMID: 11170622]
[25]
Keppel Hesselink, J.M. Phenytoin: a step by step insight into its multiple mechanisms of action-80 years of mechanistic studies in neuropharmacology. J. Neurol., 2017, 264(9), 2043-2047.
[http://dx.doi.org/10.1007/s00415-017-8465-4] [PMID: 28349209]
[26]
Patejdl, R.; Leroux, A-C.; Noack, T. Phenytoin inhibits contractions of rat gastrointestinal and portal vein smooth muscle by inhibiting calcium entry. Neurogastroenterol. Motil., 2015, 27(10), 1453-1465.
[http://dx.doi.org/10.1111/nmo.12645] [PMID: 26265316]
[27]
Brodie, M.J. Sodium channel blockers in the treatment of epilepsy. CNS Drugs, 2017, 31(7), 527-534.
[http://dx.doi.org/10.1007/s40263-017-0441-0] [PMID: 28523600]
[28]
Booker, S.A.; Pires, N.; Cobb, S.; Soares-da-Silva, P.; Vida, I. Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors. Neuropharmacology, 2015, 93, 103-115.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.019] [PMID: 25656478]
[29]
Beydoun, A.; DuPont, S.; Zhou, D.; Matta, M.; Nagire, V.; Lagae, L. Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure, 2020, 83, 251-263.
[http://dx.doi.org/10.1016/j.seizure.2020.10.018] [PMID: 33334546]
[30]
Bosak, M.; Słowik, A.; Iwańska, A.; Lipińska, M.; Turaj, W. Co-medication and potential drug interactions among patients with epilepsy. Seizure, 2019, 66, 47-52.
[http://dx.doi.org/10.1016/j.seizure.2019.01.014] [PMID: 30798113]
[31]
Patsalos, P.N.; Stephenson, T.J.; Krishna, S.; Elyas, A.A.; Lascelles, P.T.; Wiles, C.M. Side-effects induced by carbamazepine-10,11-epoxide. Lancet, 1985, 2(8453), 496.
[http://dx.doi.org/10.1016/S0140-6736(85)90420-9] [PMID: 2863509]
[32]
Lawthom, C. Carbamazepine: Out with the old, in with the new? Seizure, 2020, 83, 246-248.
[http://dx.doi.org/10.1016/j.seizure.2020.10.026] [PMID: 33334544]
[33]
Bagal, S.K.; Brown, A.D.; Cox, P.J.; Omoto, K.; Owen, R.M.; Pryde, D.C.; Sidders, B.; Skerratt, S.E.; Stevens, E.B.; Storer, R.I.; Swain, N.A. Ion channels as therapeutic targets: A drug discovery perspective. J. Med. Chem., 2013, 56(3), 593-624.
[http://dx.doi.org/10.1021/jm3011433] [PMID: 23121096]
[34]
Romoli, M.; Mazzocchetti, P.; D’Alonzo, R.; Siliquini, S.; Rinaldi, V.E.; Verrotti, A.; Calabresi, P.; Costa, C. Valproic acid and epilepsy: From molecular mechanisms to clinical evidences. Curr. Neuropharmacol., 2019, 17(10), 926-946.
[http://dx.doi.org/10.2174/1570159X17666181227165722] [PMID: 30592252]
[35]
Campos, M.S.A.; Ayres, L.R.; Morelo, M.R.S.; Carizio, F.A.M.; Pereira, L.R.L. Comparative efficacy of antiepileptic drugs for patients with generalized epileptic seizures: systematic review and network meta-analyses. Int. J. Clin. Pharm., 2018, 40(3), 589-598.
[http://dx.doi.org/10.1007/s11096-018-0641-9] [PMID: 29744790]
[36]
Andrade, C. Valproate in pregnancy: Recent research and regulatory responses. J. Clin. Psychiatry., 2018, 79(3), 18f12351.
[http://dx.doi.org/10.4088/JCP.18f12351] [PMID: 29873961]
[37]
Mitra-Ghosh, T.; Callisto, S.P.; Lamba, J.K.; Remmel, R.P.; Birnbaum, A.K.; Barbarino, J.M.; Klein, T.E.; Altman, R.B. PharmGKB summary: lamotrigine pathway, pharmacokinetics and pharmacodynamics. Pharmacogenet. Genomics, 2020, 30(4), 81-90.
[http://dx.doi.org/10.1097/FPC.0000000000000397] [PMID: 32187155]
[38]
Kuo, C-C. A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels. Mol. Pharmacol., 1998, 54(4), 712-721.
[PMID: 9765515]
[39]
Maryanoff, B.E. Phenotypic assessment and the discovery of topiramate. ACS Med. Chem. Lett., 2016, 7(7), 662-665.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00176] [PMID: 27437073]
[40]
Maryanoff, B.E. 2009 Edward E Smissman Award. Pharmaceutical “gold” from neurostabilizing agents: Topiramate and successor molecules. J. Med. Chem., 2009, 52(11), 3431-3440.
[http://dx.doi.org/10.1021/jm900141j] [PMID: 19385640]
[41]
Zaraei, S-O.; Abduelkarem, A.R.; Anbar, H.S.; Kobeissi, S.; Mohammad, M.; Ossama, A.; El-Gamal, M.I. Sulfamates in drug design and discovery: Pre-clinical and clinical investigations. Eur. J. Med. Chem., 2019, 179, 257-271.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.052] [PMID: 31255926]
[42]
Hoy, S.M. Topiramate extended release: A review in epilepsy. CNS Drugs, 2016, 30(6), 559-566.
[http://dx.doi.org/10.1007/s40263-016-0344-5] [PMID: 27224993]
[43]
Biton, V. Clinical pharmacology and mechanism of action of zonisamide. Clin. Neuropharmacol., 2007, 30(4), 230-240.
[http://dx.doi.org/10.1097/wnf.0b013e3180413d7d] [PMID: 17762320]
[44]
Leppik, I.E. Zonisamide: Chemistry, mechanism of action, and pharmacokinetics. Seizure, 2004, 13(S1)(Suppl. 1), S5-S9.
[http://dx.doi.org/10.1016/j.seizure.2004.04.016] [PMID: 15511691]
[45]
Baulac, M.; Brodie, M.J.; Patten, A.; Segieth, J.; Giorgi, L. Efficacy and tolerability of zonisamide versus controlled release carbamazepine for newly diagnosed partial epilepsy: a phase 3, randomised, double-blind, non-inferiority trial. Lancet Neurol., 2012, 11(7), 579-588.
[http://dx.doi.org/10.1016/S1474-4422(12)70105-9] [PMID: 22683226]
[46]
Stiff, D.D.; Robicheau, J.T.; Zemaitis, M.A. Reductive metabolism of the anticonvulsant agent zonisamide, a 1,2-benzisoxazole derivative. Xenobiotica, 1992, 22(1), 1-11.
[http://dx.doi.org/10.3109/00498259209053097] [PMID: 1615700]
[47]
Holder, J.L., Jr; Wilfong, A.A. Zonisamide in the treatment of epilepsy. Expert Opin. Pharmacother., 2011, 12(16), 2573-2581.
[http://dx.doi.org/10.1517/14656566.2011.622268] [PMID: 21967409]
[48]
Verrotti, A.; Striano, P.; Iapadre, G.; Zagaroli, L.; Bonanni, P.; Coppola, G.; Elia, M.; Mecarelli, O.; Franzoni, E.; Liso, P.; Vigevano, F.; Curatolo, P. The pharmacological management of Lennox-Gastaut syndrome and critical literature review. Seizure, 2018, 63, 17-25.
[http://dx.doi.org/10.1016/j.seizure.2018.10.016] [PMID: 30391662]
[49]
Wheless, J.W.; Vazquez, B. Rufinamide: A novel broad-spectrum antiepileptic drug. Epilepsy Curr., 2010, 10(1), 1-6.
[http://dx.doi.org/10.1111/j.1535-7511.2009.01336.x] [PMID: 20126329]
[50]
Arroyo, S. Rufinamide. Neurotherapeutics, 2007, 4(1), 155-162.
[http://dx.doi.org/10.1016/j.nurt.2006.11.006] [PMID: 17199032]
[51]
Brodie, M.J. Practical use of newer antiepileptic drugs as adjunctive therapy in focal epilepsy. CNS Drugs, 2015, 29(11), 893-904.
[http://dx.doi.org/10.1007/s40263-015-0285-4] [PMID: 26507832]
[52]
Harris, J.A.; Murphy, J.A. Lacosamide and epilepsy. CNS Neurosci. Ther., 2011, 17(6), 678-682.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00198.x] [PMID: 20950330]
[53]
Sheets, P.L.; Heers, C.; Stoehr, T.; Cummins, T.R. Differential block of sensory neuronal voltage-gated sodium channels by lacosamide [(2R)-2-(acetylamino)-N-benzyl-3-methoxypropanamide], lidocaine, and carbamazepine. J. Pharmacol. Exp. Ther., 2008, 326(1), 89-99.
[http://dx.doi.org/10.1124/jpet.107.133413] [PMID: 18378801]
[54]
Catterall, W.A.; Lenaeus, M.J.; El-Din, G.T.M. Structure and pharmacology of voltage-gated sodium and calcium channels. Annu. Rev. Pharmacol. Toxicol., 2020, 60, 133-154.
[http://dx.doi.org/10.1146/annurev-pharmtox-010818-021757] [PMID: 31537174]
[55]
Lees, G.; Errington, A.C. Lacosamide: Novel action mechanisms and emerging targets in epilepsy and pain. Trends Anaesthesia Crit. Care, 2011, 1(5-6), 246-251.
[http://dx.doi.org/10.1016/j.tacc.2011.08.004]
[56]
Beydoun, A.; D’Souza, J.; Hebert, D.; Doty, P. Lacosamide: pharmacology, mechanisms of action and pooled efficacy and safety data in partial-onset seizures. Expert Rev. Neurother., 2009, 9(1), 33-42.
[http://dx.doi.org/10.1586/14737175.9.1.33] [PMID: 19102666]
[57]
Errington, A.C.; Stöhr, T.; Heers, C.; Lees, G. The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels. Mol. Pharmacol., 2008, 73(1), 157-169.
[http://dx.doi.org/10.1124/mol.107.039867] [PMID: 17940193]
[58]
Rogawski, M.A.; Tofighy, A.; White, H.S.; Matagne, A.; Wolff, C. Current understanding of the mechanism of action of the antiepileptic drug lacosamide. Epilepsy Res., 2015, 110, 189-205.
[http://dx.doi.org/10.1016/j.eplepsyres.2014.11.021] [PMID: 25616473]
[59]
Wulff, H.; Zhorov, B.S.K. K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem. Rev., 2008, 108(5), 1744-1773.
[http://dx.doi.org/10.1021/cr078234p] [PMID: 18476673]
[60]
Robbins, J. KCNQ potassium channels: Physiology, pathophysiology, and pharmacology. Pharmacol. Ther., 2001, 90(1), 1-19.
[http://dx.doi.org/10.1016/S0163-7258(01)00116-4] [PMID: 11448722]
[61]
Barrese, V.; Stott, J.B.; Greenwood, I.A. KCNQ-encoded potassium channels as therapeutic targets. Annu. Rev. Pharmacol. Toxicol., 2018, 58, 625-648.
[http://dx.doi.org/10.1146/annurev-pharmtox-010617-052912] [PMID: 28992433]
[62]
Li, T.; Wu, K.; Yue, Z.; Wang, Y.; Zhang, F.; Shen, H. Structural basis for the modulation of human KCNQ4 by small-molecule drugs. Mol. Cell, 2021, 81(1), 25-37.e4.
[http://dx.doi.org/10.1016/j.molcel.2020.10.037] [PMID: 33238160]
[63]
Grunnet, M.; Strøbæk, D.; Hougaard, C.; Christophersen, P. Kv7 channels as targets for anti-epileptic and psychiatric drug-development. Eur. J. Pharmacol., 2014, 726, 133-137.
[http://dx.doi.org/10.1016/j.ejphar.2014.01.017] [PMID: 24457124]
[64]
Boscia, F.; Annunziato, L.; Taglialatela, M. Retigabine and flupirtine exert neuroprotective actions in organotypic hippocampal cultures. Neuropharmacology, 2006, 51(2), 283-294.
[http://dx.doi.org/10.1016/j.neuropharm.2006.03.024] [PMID: 16697426]
[65]
Surur, A.S.; Bock, C.; Beirow, K.; Wurm, K.; Schulig, L.; Kindermann, M.K.; Siegmund, W.; Bednarski, P.J.; Link, A. Flupirtine and retigabine as templates for ligand-based drug design of KV7.2/3 activators. Org. Biomol. Chem., 2019, 17(18), 4512-4522.
[http://dx.doi.org/10.1039/C9OB00511K] [PMID: 30990511]
[66]
Jankovic, S.; Ilickovic, I. The preclinical discovery and development of ezogabine for the treatment of epilepsy. Expert Opin. Drug Discov., 2013, 8(11), 1429-1437.
[http://dx.doi.org/10.1517/17460441.2013.837882] [PMID: 24053653]
[67]
Wickenden, A.D.; Yu, W.; Zou, A.; Jegla, T.; Wagoner, P.K. Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol. Pharmacol., 2000, 58(3), 591-600.
[http://dx.doi.org/10.1124/mol.58.3.591] [PMID: 10953053]
[68]
Tatulian, L.; Delmas, P.; Abogadie, F.C.; Brown, D.A. Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. J. Neurosci., 2001, 21(15), 5535-5545.
[http://dx.doi.org/10.1523/JNEUROSCI.21-15-05535.2001] [PMID: 11466425]
[69]
Czuczwar, P.; Wojtak, A.; Cioczek-Czuczwar, A.; Parada-Turska, J.; Maciejewski, R.; Czuczwar, S.J. Retigabine: The newer potential antiepileptic drug. Pharmacol. Rep., 2010, 62(2), 211-219.
[http://dx.doi.org/10.1016/S1734-1140(10)70260-7] [PMID: 20508276]
[70]
Gunthorpe, M.J.; Large, C.H.; Sankar, R. The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia, 2012, 53(3), 412-424.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03365.x] [PMID: 22220513]
[71]
Seefeld, M.A.; Lin, H.; Holenz, J.; Downie, D.; Donovan, B.; Fu, T.; Pasikanti, K.; Zhen, W.; Cato, M.; Chaudhary, K.W.; Brady, P.; Bakshi, T.; Morrow, D.; Rajagopal, S.; Samanta, S.K.; Madhyastha, N.; Kuppusamy, B.M.; Dougherty, R.W.; Bhamidipati, R.; Mohd, Z.; Higgins, G.A.; Chapman, M.; Rouget, C.; Lluel, P.; Matsuoka, Y. Novel KV7 ion channel openers for the treatment of epilepsy and implications for detrusor tissue contraction. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3793-3797.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.036] [PMID: 30327146]
[72]
Douros, A.; Bronder, E.; Andersohn, F.; Klimpel, A.; Thomae, M.; Orzechowski, H-D.; Kreutz, R.; Garbe, E. Flupirtine-induced liver injury-seven cases from the berlin case-control surveillance study and review of the German spontaneous adverse drug reaction reporting database. Eur. J. Clin. Pharmacol., 2014, 70(4), 453-459.
[http://dx.doi.org/10.1007/s00228-013-1631-4] [PMID: 24366502]
[73]
Garin Shkolnik, T.; Feuerman, H.; Didkovsky, E.; Kaplan, I.; Bergman, R.; Pavlovsky, L.; Hodak, E. Blue-gray mucocutaneous discoloration: A new adverse effect of ezogabine. JAMA Dermatol., 2014, 150(9), 984-989.
[http://dx.doi.org/10.1001/jamadermatol.2013.8895] [PMID: 25006968]
[74]
Neumaier, F.; Dibué-Adjei, M.; Hescheler, J.; Schneider, T. Voltage-gated calcium channels: Determinants of channel function and modulation by inorganic cations. Prog. Neurobiol., 2015, 129, 1-36.
[http://dx.doi.org/10.1016/j.pneurobio.2014.12.003] [PMID: 25817891]
[75]
Zamponi, G.W. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov., 2016, 15(1), 19-34.
[http://dx.doi.org/10.1038/nrd.2015.5] [PMID: 26542451]
[76]
Simms, B.A.; Zamponi, G.W. Neuronal voltage-gated calcium channels: Structure, function, and dysfunction. Neuron, 2014, 82(1), 24-45.
[http://dx.doi.org/10.1016/j.neuron.2014.03.016] [PMID: 24698266]
[77]
Catterall, W.A.; Perez-Reyes, E.; Snutch, T.P.; Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev., 2005, 57(4), 411-425.
[http://dx.doi.org/10.1124/pr.57.4.5] [PMID: 16382099]
[78]
Park, C-G.; Suh, B-C. Modulation mechanisms of voltage-gated calcium channels. Curr. Opin. Physiol., 2018, 2, 77-83.
[http://dx.doi.org/10.1016/j.cophys.2018.01.005]
[79]
Song, I.; Kim, D.; Choi, S.; Sun, M.; Kim, Y.; Shin, H-S. Role of the α1G T-type calcium channel in spontaneous absence seizures in mutant mice. J. Neurosci., 2004, 24(22), 5249-5257.
[http://dx.doi.org/10.1523/JNEUROSCI.5546-03.2004] [PMID: 15175395]
[80]
Chen, Y.; Parker, W.D.; Wang, K. The role of T-type calcium channel genes in absence seizures. Front. Neurol., 2014, 5, 45.
[http://dx.doi.org/10.3389/fneur.2014.00045] [PMID: 24847307]
[81]
Rajakulendran, S.; Hanna, M.G. The role of calcium channels in epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(1), a022723.
[http://dx.doi.org/10.1101/cshperspect.a022723] [PMID: 26729757]
[82]
Calandre, E.P.; Rico-Villademoros, F.; Slim, M. Alpha2delta ligands, gabapentin, pregabalin and mirogabalin: a review of their clinical pharmacology and therapeutic use. Expert Rev. Neurother., 2016, 16(11), 1263-1277.
[http://dx.doi.org/10.1080/14737175.2016.1202764] [PMID: 27345098]
[83]
Bryans, J.S.; Davies, N.; Gee, N.S.; Dissanayake, V.U.K.; Ratcliffe, G.S.; Horwell, D.C.; Kneen, C.O.; Morrell, A.I.; Oles, R.J.; O’Toole, J.C.; Perkins, G.M.; Singh, L.; Suman-Chauhan, N.; O’Neill, J.A. Identification of novel ligands for the gabapentin binding site on the α2δ subunit of a calcium channel and their evaluation as anticonvulsant agents. J. Med. Chem., 1998, 41(11), 1838-1845.
[http://dx.doi.org/10.1021/jm970649n] [PMID: 9599234]
[84]
Sills, G.J. The mechanisms of action of gabapentin and pregabalin. Curr. Opin. Pharmacol., 2006, 6(1), 108-113.
[http://dx.doi.org/10.1016/j.coph.2005.11.003] [PMID: 16376147]
[85]
Gee, N.S.; Brown, J.P.; Dissanayake, V.U.; Offord, J.; Thurlow, R.; Woodruff, G.N. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the α2δ subunit of a calcium channel. J. Biol. Chem., 1996, 271(10), 5768-5776.
[http://dx.doi.org/10.1074/jbc.271.10.5768] [PMID: 8621444]
[86]
Taylor, C.P.; Angelotti, T.; Fauman, E. Pharmacology and mechanism of action of pregabalin: the calcium channel alpha2-delta (alpha2-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res., 2007, 73(2), 137-150.
[http://dx.doi.org/10.1016/j.eplepsyres.2006.09.008] [PMID: 17126531]
[87]
Gören, M.Z.; Onat, F. Ethosuximide: from bench to bedside. CNS Drug Rev., 2007, 13(2), 224-239.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00009.x] [PMID: 17627674]
[88]
Shalomov, B.; Dabbah, S.; Dascal, N. Antiepileptic drug ethosuximide may regulate absence seizures through different ion channels. Biophys. J., 2020, 118(3), 588a.
[http://dx.doi.org/10.1016/j.bpj.2019.11.3189]
[89]
Hainsworth, A.H.; McNaughton, N.C.L.; Pereverzev, A.; Schneider, T.; Randall, A.D. Actions of sipatrigine, 202W92 and lamotrigine on R-type and T-type Ca2+ channel currents. Eur. J. Pharmacol., 2003, 467(1-3), 77-80.
[http://dx.doi.org/10.1016/S0014-2999(03)01625-X] [PMID: 12706458]
[90]
Kuzmiski, J.B.; Barr, W.; Zamponi, G.W.; MacVicar, B.A. Topiramate inhibits the initiation of plateau potentials in CA1 neurons by depressing R-type calcium channels. Epilepsia, 2005, 46(4), 481-489.
[http://dx.doi.org/10.1111/j.0013-9580.2005.35304.x] [PMID: 15816941]
[91]
Matar, N.; Jin, W.; Wrubel, H.; Hescheler, J.; Schneider, T.; Weiergräber, M. Zonisamide block of cloned human T-type voltage-gated calcium channels. Epilepsy Res., 2009, 83(2-3), 224-234.
[http://dx.doi.org/10.1016/j.eplepsyres.2008.11.010] [PMID: 19124225]
[92]
Guo, M.; Cui, C.; Song, X.; Jia, L.; Li, D.; Wang, X.; Dong, H.; Ma, Y.; Liu, Y.; Cui, Z.; Yi, L.; Li, Z.; Bi, Y.; Li, Y.; Liu, Y.; Duan, W.; Li, C. Deletion of FGF9 in GABAergic neurons causes epilepsy. Cell Death Dis., 2021, 12(2), 196.
[http://dx.doi.org/10.1038/s41419-021-03478-1] [PMID: 33608505]
[93]
Rudolph, U.; Knoflach, F. Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat. Rev. Drug Discov., 2011, 10(9), 685-697.
[http://dx.doi.org/10.1038/nrd3502] [PMID: 21799515]
[94]
Hernandez, C.C.; Macdonald, R.L. A structural look at GABAA receptor mutations linked to epilepsy syndromes. Brain Res., 2019, 1714, 234-247.
[http://dx.doi.org/10.1016/j.brainres.2019.03.004] [PMID: 30851244]
[95]
Jacob, T.C.; Moss, S.J.; Jurd, R. GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat. Rev. Neurosci., 2008, 9(5), 331-343.
[http://dx.doi.org/10.1038/nrn2370] [PMID: 18382465]
[96]
Scott, S.; Aricescu, A.R. A structural perspective on GABAA receptor pharmacology. Curr. Opin. Struct. Biol., 2019, 54, 189-197.
[http://dx.doi.org/10.1016/j.sbi.2019.03.023] [PMID: 31129381]
[97]
Olsen, R.W. GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology, 2018, 136((Pt A)), 10-22.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.036] [PMID: 29407219]
[98]
Sigel, E.; Steinmann, M.E. Structure, function, and modulation of GABA(A) receptors. J. Biol. Chem., 2012, 287(48), 40224-40231.
[http://dx.doi.org/10.1074/jbc.R112.386664] [PMID: 23038269]
[99]
Solomon, V.R.; Tallapragada, V.J.; Chebib, M.; Johnston, G.A.R.; Hanrahan, J.R. GABA allosteric modulators: An overview of recent developments in non-benzodiazepine modulators. Eur. J. Med. Chem., 2019, 171, 434-461.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.043] [PMID: 30928713]
[100]
Zhu, S.; Noviello, C.M.; Teng, J.; Walsh, R.M., Jr; Kim, J.J.; Hibbs, R.E. Structure of a human synaptic GABAA receptor. Nature, 2018, 559(7712), 67-72.
[http://dx.doi.org/10.1038/s41586-018-0255-3] [PMID: 29950725]
[101]
Han, W.; Shepard, R.D.; Lu, W. Regulation of GABAARs by transmembrane accessory proteins. Trends Neurosci., 2021, 44(2), 152-165.
[http://dx.doi.org/10.1016/j.tins.2020.10.011] [PMID: 33234346]
[102]
Ochoa, J.G.; Kilgo, W.A. The role of benzodiazepines in the treatment of epilepsy. Curr. Treat. Options Neurol., 2016, 18(4), 18.
[http://dx.doi.org/10.1007/s11940-016-0401-x] [PMID: 26923608]
[103]
Gauthier, A.C.; Mattson, R.H. Clobazam: A safe, efficacious, and newly rediscovered therapeutic for epilepsy. CNS Neurosci. Ther., 2015, 21(7), 543-548.
[http://dx.doi.org/10.1111/cns.12399] [PMID: 25917225]
[104]
Sankar, R. GABA(A) receptor physiology and its relationship to the mechanism of action of the 1,5-benzodiazepine clobazam. CNS Drugs, 2012, 26(3), 229-244.
[http://dx.doi.org/10.2165/11599020-000000000-00000] [PMID: 22145708]
[105]
Giarratano, M.; Standley, K.; Benbadis, S.R. Clobazam for treatment of epilepsy. Expert Opin. Pharmacother., 2012, 13(2), 227-233.
[http://dx.doi.org/10.1517/14656566.2012.647686] [PMID: 22242724]
[106]
Riss, J.; Cloyd, J.; Gates, J.; Collins, S. Benzodiazepines in epilepsy: Pharmacology and pharmacokinetics. Acta Neurol. Scand., 2008, 118(2), 69-86.
[http://dx.doi.org/10.1111/j.1600-0404.2008.01004.x] [PMID: 18384456]
[107]
Yasiry, Z.; Shorvon, S.D. How phenobarbital revolutionized epilepsy therapy: The story of phenobarbital therapy in epilepsy in the last 100 years. Epilepsia, 2012, 53(s8)(Suppl. 8), 26-39.
[http://dx.doi.org/10.1111/epi.12026] [PMID: 23205960]
[108]
Kim, J.J.; Gharpure, A.; Teng, J.; Zhuang, Y.; Howard, R.J.; Zhu, S.; Noviello, C.M.; Walsh, R.M., Jr; Lindahl, E.; Hibbs, R.E. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature, 2020, 585(7824), 303-308.
[http://dx.doi.org/10.1038/s41586-020-2654-5] [PMID: 32879488]
[109]
Bialer, M. How did phenobarbital’s chemical structure affect the development of subsequent antiepileptic drugs (AEDs)? Epilepsia, 2012, 53(Suppl. 8), 3-11.
[http://dx.doi.org/10.1111/epi.12024] [PMID: 23205958]
[110]
Lyons, J.B.; Liversedge, L.A. Primidone in the treatment of epilepsy. BMJ, 1954, 2(4888), 625-627.
[http://dx.doi.org/10.1136/bmj.2.4888.625] [PMID: 13190211]
[111]
Rahim, F.; Azizimalamiri, R.; Sayyah, M.; Malayeri, A. Experimental therapeutic strategies in epilepsies using anti-seizure medications. J. Exp. Pharmacol., 2021, 13, 265-290.
[http://dx.doi.org/10.2147/JEP.S267029] [PMID: 33732031]
[112]
Seyfert, S.; Honé, A.; Holl, G. Primidone and essential tremor. J. Neurol., 1988, 235(3), 168-170.
[http://dx.doi.org/10.1007/BF00314310] [PMID: 3367165]
[113]
Groves, J.O.; Guscott, M.R.; Hallett, D.J.; Rosahl, T.W.; Pike, A.; Davies, A.; Wafford, K.A.; Reynolds, D.S. The role of GABAbeta2 subunit-containing receptors in mediating the anticonvulsant and sedative effects of loreclezole. Eur. J. Neurosci., 2006, 24(1), 167-174.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04890.x] [PMID: 16882014]
[114]
Wingrove, P.B.; Wafford, K.A.; Bain, C.; Whiting, P.J. The modulatory action of loreclezole at the gamma-aminobutyric acid type A receptor is determined by a single amino acid in the beta 2 and beta 3 subunit. Proc. Natl. Acad. Sci. USA, 1994, 91(10), 4569-4573.
[http://dx.doi.org/10.1073/pnas.91.10.4569] [PMID: 8183949]
[115]
Greenfield, L.J., Jr. Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure, 2013, 22(8), 589-600.
[http://dx.doi.org/10.1016/j.seizure.2013.04.015] [PMID: 23683707]
[116]
Hussain, S.A.; Asilnejad, B.; Heesch, J.; Navarro, M.; Ji, M.; Shrey, D.W.; Rajaraman, R.R.; Sankar, R. Felbamate in the treatment of refractory epileptic spasms. Epilepsy Res., 2020, 161, 106284.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106284] [PMID: 32058261]
[117]
Simeone, T.A.; Otto, J.F.; Wilcox, K.S.; White, H.S. Felbamate is a subunit selective modulator of recombinant γ -aminobutyric acid type A receptors expressed in Xenopus oocytes. Eur. J. Pharmacol., 2006, 552(1-3), 31-35.
[http://dx.doi.org/10.1016/j.ejphar.2006.09.002] [PMID: 17056029]
[118]
Chen, H.; He, H.; Xiao, Y.; Luo, M.; Luo, H.; Wang, J. Losigamone add-on therapy for focal epilepsy. Cochrane Database Syst. Rev., 2019, 12(12), CD009324.
[http://dx.doi.org/10.1002/14651858.CD009324.pub5] [PMID: 31823350]
[119]
Dimpfel, W.; Chatterjee, S.S.; Nöldner, M.; Ticku, M.K. Effects of the anticonvulsant losigamone and its isomers on the GABAA receptor system. Epilepsia, 1995, 36(10), 983-989.
[http://dx.doi.org/10.1111/j.1528-1157.1995.tb00956.x] [PMID: 7555962]
[120]
Grosenbaugh, D.K.; Mott, D.D. Stiripentol is anticonvulsant by potentiating GABAergic transmission in a model of benzodiazepine-refractory status epilepticus. Neuropharmacology, 2013, 67, 136-143.
[http://dx.doi.org/10.1016/j.neuropharm.2012.11.002] [PMID: 23168114]
[121]
Fisher, J.L. The effects of stiripentol on GABA(A) receptors. Epilepsia, 2011, 52(Suppl. 2), 76-78.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03008.x] [PMID: 21463286]
[122]
Fisher, J.L. The anti-convulsant stiripentol acts directly on the GABA(A) receptor as a positive allosteric modulator. Neuropharmacology, 2009, 56(1), 190-197.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.004] [PMID: 18585399]
[123]
Quilichini, P.P.; Chiron, C.; Ben-Ari, Y.; Gozlan, H. Stiripentol, a putative antiepileptic drug, enhances the duration of opening of GABA-A receptor channels. Epilepsia, 2006, 47(4), 704-716.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00497.x] [PMID: 16650136]
[124]
Fisher, J.L. Interactions between modulators of the GABA(A) receptor: Stiripentol and benzodiazepines. Eur. J. Pharmacol., 2011, 654(2), 160-165.
[http://dx.doi.org/10.1016/j.ejphar.2010.12.037] [PMID: 21237147]
[125]
Sada, N.; Lee, S.; Katsu, T.; Otsuki, T.; Inoue, T. Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science, 2015, 347(6228), 1362-1367.
[http://dx.doi.org/10.1126/science.aaa1299] [PMID: 25792327]
[126]
Ben-Menachem, E. Mechanism of action of vigabatrin: correcting misperceptions. Acta Neurol. Scand. Suppl., 2011, 124(192), 5-15.
[http://dx.doi.org/10.1111/j.1600-0404.2011.01596.x] [PMID: 22061176]
[127]
Chiron, C. Stiripentol and vigabatrin current roles in the treatment of epilepsy. Expert Opin. Pharmacother., 2016, 17(8), 1091-1101.
[http://dx.doi.org/10.1517/14656566.2016.1161026] [PMID: 26933940]
[128]
Ben-Ari, Y. NKCC1 chloride importer antagonists attenuate many neurological and psychiatric disorders. Trends Neurosci., 2017, 40(9), 536-554.
[http://dx.doi.org/10.1016/j.tins.2017.07.001] [PMID: 28818303]
[129]
Auer, T.; Schreppel, P.; Erker, T.; Schwarzer, C. Functional characterization of novel bumetanide derivatives for epilepsy treatment. Neuropharmacology, 2020, 162, 107754.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107754] [PMID: 31476353]
[130]
Gharaylou, Z.; Tafakhori, A.; Agah, E.; Aghamollaii, V.; Kebriaeezadeh, A.; Hadjighassem, M. A preliminary study evaluating the safety and efficacy of bumetanide, an NKCC1 inhibitor, in patients with drug-resistant epilepsy. CNS Drugs, 2019, 33(3), 283-291.
[http://dx.doi.org/10.1007/s40263-019-00607-5] [PMID: 30784026]
[131]
Gonzalez-Burgos, G. GABA transporter GAT1: A crucial determinant of GABAB receptor activation in cortical circuits? Adv. Pharmacol., 2010, 58, 175-204.
[http://dx.doi.org/10.1016/S1054-3589(10)58008-6] [PMID: 20655483]
[132]
Zafar, S.; Jabeen, I. Molecular dynamic simulations to probe stereoselectivity of tiagabine binding with human GAT1. Molecules, 2020, 25(20), 4745.
[http://dx.doi.org/10.3390/molecules25204745] [PMID: 33081136]
[133]
Richerson, G.B.; Wu, Y. Role of the GABA transporter in epilepsy. Adv. Exp. Med. Biol., 2004, 548, 76-91.
[http://dx.doi.org/10.1007/978-1-4757-6376-8_6] [PMID: 15250587]
[134]
Simeone, T.A.; Wilcox, K.S.; White, H.S. Topiramate modulation of β(1)- and β(3)-homomeric GABA(A) receptors. Pharmacol. Res., 2011, 64(1), 44-52.
[http://dx.doi.org/10.1016/j.phrs.2011.03.004] [PMID: 21421049]
[135]
Yu, J.; Wang, D-S.; Bonin, R.P.; Penna, A.; Alavian-Ghavanini, A.; Zurek, A.A.; Rauw, G.; Baker, G.B.; Orser, B.A. Gabapentin increases expression of δ subunit-containing GABAA receptors. EBioMedicine, 2019, 42, 203-213.
[http://dx.doi.org/10.1016/j.ebiom.2019.03.008] [PMID: 30878595]
[136]
Rundfeldt, C.; Netzer, R. Investigations into the mechanism of action of the new anticonvulsant retigabine. Interaction with GABAergic and glutamatergic neurotransmission and with voltage gated ion channels. Arzneimittelforschung, 2000, 50(12), 1063-1070.
[http://dx.doi.org/10.1055/s-0031-1300346] [PMID: 11190770]
[137]
van Rijn, C.M.; Willems-van Bree, E. Synergy between retigabine and GABA in modulating the convulsant site of the GABAA receptor complex. Eur. J. Pharmacol., 2003, 464(2-3), 95-100.
[http://dx.doi.org/10.1016/S0014-2999(03)01426-2] [PMID: 12620500]
[138]
Pinheiro, P.S.; Mulle, C. Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat. Rev. Neurosci., 2008, 9(6), 423-436.
[http://dx.doi.org/10.1038/nrn2379] [PMID: 18464791]
[139]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[140]
Zhu, S.J.; Gouaux, E. Structure and symmetry inform gating principles of ionotropic glutamate receptors. Neuropharmacology, 2017, 112(Pt A), 11-15.
[http://dx.doi.org/10.1016/j.neuropharm.2016.08.034] [PMID: 27663701]
[141]
Henley, J.M.; Wilkinson, K.A. Synaptic AMPA receptor composition in development, plasticity and disease. Nat. Rev. Neurosci., 2016, 17(6), 337-350.
[http://dx.doi.org/10.1038/nrn.2016.37] [PMID: 27080385]
[142]
Fleming, J.J.; England, P.M. AMPA receptors and synaptic plasticity: A chemist’s perspective. Nat. Chem. Biol., 2010, 6(2), 89-97.
[http://dx.doi.org/10.1038/nchembio.298] [PMID: 20081822]
[143]
Twomey, E.C.; Yelshanskaya, M.V.; Grassucci, R.A.; Frank, J.; Sobolevsky, A.I. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature, 2017, 549(7670), 60-65.
[http://dx.doi.org/10.1038/nature23479] [PMID: 28737760]
[144]
Sobolevsky, A.I.; Rosconi, M.P.; Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature, 2009, 462(7274), 745-756.
[http://dx.doi.org/10.1038/nature08624] [PMID: 19946266]
[145]
Paoletti, P.; Bellone, C.; Zhou, Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci., 2013, 14(6), 383-400.
[http://dx.doi.org/10.1038/nrn3504] [PMID: 23686171]
[146]
Iacobucci, G.J.; Popescu, G.K. NMDA receptors: Linking physiological output to biophysical operation. Nat. Rev. Neurosci., 2017, 18(4), 236-249.
[http://dx.doi.org/10.1038/nrn.2017.24] [PMID: 28303017]
[147]
Reiner, A.; Levitz, J. Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron, 2018, 98(6), 1080-1098.
[http://dx.doi.org/10.1016/j.neuron.2018.05.018] [PMID: 29953871]
[148]
Willard, S.S.; Koochekpour, S. Glutamate, glutamate receptors, and downstream signaling pathways. Int. J. Biol. Sci., 2013, 9(9), 948-959.
[http://dx.doi.org/10.7150/ijbs.6426] [PMID: 24155668]
[149]
Madden, D.R. The structure and function of glutamate receptor ion channels. Nat. Rev. Neurosci., 2002, 3(2), 91-101.
[http://dx.doi.org/10.1038/nrn725] [PMID: 11836517]
[150]
Hanada, T. Ionotropic glutamate receptors in epilepsy: A review focusing on AMPA and NMDA receptors. Biomolecules, 2020, 10(3), 464.
[http://dx.doi.org/10.3390/biom10030464] [PMID: 32197322]
[151]
Fukushima, K.; Hatanaka, K.; Sagane, K.; Ido, K. Inhibitory effect of anti-seizure medications on ionotropic glutamate receptors: special focus on AMPA receptor subunits. Epilepsy Res., 2020, 167, 106452.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106452] [PMID: 32911258]
[152]
Potschka, H.; Trinka, E. Perampanel: Does it have broad-spectrum potential? Epilepsia, 2019, 60(Suppl. 1), 22-36.
[http://dx.doi.org/10.1111/epi.14456] [PMID: 29953584]
[153]
Di Bonaventura, C.; Labate, A.; Maschio, M.; Meletti, S.; Russo, E. AMPA receptors and perampanel behind selected epilepsies: Current evidence and future perspectives. Expert Opin. Pharmacother., 2017, 18(16), 1751-1764.
[http://dx.doi.org/10.1080/14656566.2017.1392509] [PMID: 29023170]
[154]
Yelshanskaya, M.V.; Singh, A.K.; Sampson, J.M.; Narangoda, C.; Kurnikova, M.; Sobolevsky, A.I. Structural bases of noncompetitive inhibition of AMPA-subtype ionotropic glutamate receptors by antiepileptic drugs. Neuron, 2016, 91(6), 1305-1315.
[http://dx.doi.org/10.1016/j.neuron.2016.08.012] [PMID: 27618672]
[155]
Palmer, G.C.; Murray, R.J.; Wilson, T.C.; Eisman, M.S.; Ray, R.K.; Griffith, R.C.; Napier, J.J.; Fedorchuk, M.; Stagnitto, M.L.; Garske, G.E. Biological profile of the metabolites and potential metabolites of the anticonvulsant remacemide. Epilepsy Res., 1992, 12(1), 9-20.
[http://dx.doi.org/10.1016/0920-1211(92)90086-9] [PMID: 1388119]
[156]
Małek, R.; Borowicz, K.K.; Kimber-Trojnar, Z.; Sobieszek, G.; Piskorska, B.; Czuczwar, S.J. Remacemide-a novel potential antiepileptic drug. Pol. J. Pharmacol., 2003, 55(5), 691-698.
[PMID: 14704464]
[157]
Ghasemi, M.; Schachter, S.C. The NMDA receptor complex as a therapeutic target in epilepsy: A review. Epilepsy Behav., 2011, 22(4), 617-640.
[http://dx.doi.org/10.1016/j.yebeh.2011.07.024] [PMID: 22056342]
[158]
Lynch, B.A.; Lambeng, N.; Nocka, K.; Kensel-Hammes, P.; Bajjalieh, S.M.; Matagne, A.; Fuks, B. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl. Acad. Sci. USA, 2004, 101(26), 9861-9866.
[http://dx.doi.org/10.1073/pnas.0308208101] [PMID: 15210974]
[159]
Mendoza-Torreblanca, J.G.; Vanoye-Carlo, A.; Phillips-Farfán, B.V.; Carmona-Aparicio, L.; Gómez-Lira, G. Synaptic vesicle protein 2A: Basic facts and role in synaptic function. Eur. J. Neurosci., 2013, 38(11), 3529-3539.
[http://dx.doi.org/10.1111/ejn.12360] [PMID: 24102679]
[160]
Tokudome, K.; Okumura, T.; Shimizu, S.; Mashimo, T.; Takizawa, A.; Serikawa, T.; Terada, R.; Ishihara, S.; Kunisawa, N.; Sasa, M.; Ohno, Y. Synaptic vesicle glycoprotein 2A (SV2A) regulates kindling epileptogenesis via GABAergic neurotransmission. Sci. Rep., 2016, 6, 27420.
[http://dx.doi.org/10.1038/srep27420] [PMID: 27265781]
[161]
Correa-Basurto, J.; Cuevas-Hernández, R.I.; Phillips-Farfán, B.V.; Martínez-Archundia, M.; Romo-Mancillas, A.; Ramírez-Salinas, G.L.; Pérez-González, O.A.; Trujillo-Ferrara, J.; Mendoza-Torreblanca, J.G. Identification of the antiepileptic racetam binding site in the synaptic vesicle protein 2A by molecular dynamics and docking simulations. Front. Cell. Neurosci., 2015, 9, 125.
[http://dx.doi.org/10.3389/fncel.2015.00125] [PMID: 25914622]
[162]
Tokudome, K.; Okumura, T.; Terada, R.; Shimizu, S.; Kunisawa, N.; Mashimo, T.; Serikawa, T.; Sasa, M.; Ohno, Y. A missense mutation of the gene encoding synaptic vesicle glycoprotein 2A (SV2A) confers seizure susceptibility by disrupting amygdalar synaptic GABA release. Front. Pharmacol., 2016, 7, 210.
[http://dx.doi.org/10.3389/fphar.2016.00210] [PMID: 27471467]
[163]
Lyseng-Williamson, K.A. Spotlight on levetiracetam in epilepsy. CNS Drugs, 2011, 25(10), 901-905.
[http://dx.doi.org/10.2165/11208340-000000000-00000] [PMID: 21936590]
[164]
Lyseng-Williamson, K.A. Levetiracetam: A review of its use in epilepsy. Drugs, 2011, 71(4), 489-514.
[http://dx.doi.org/10.2165/11204490-000000000-00000] [PMID: 21395360]
[165]
Deshpande, L.S.; Delorenzo, R.J. Mechanisms of levetiracetam in the control of status epilepticus and epilepsy. Front. Neurol., 2014, 5, 11.
[http://dx.doi.org/10.3389/fneur.2014.00011] [PMID: 24550884]
[166]
Steinhoff, B.J.; Staack, A.M. Levetiracetam and brivaracetam: A review of evidence from clinical trials and clinical experience. Ther. Adv. Neurol. Disord., 2019, 12, 1756286419873518.
[http://dx.doi.org/10.1177/1756286419873518] [PMID: 31523280]
[167]
Kaur, H.; Kumar, B.; Medhi, B. Antiepileptic drugs in development pipeline: A recent update. eNeurologicalSci, 2016, 4, 42-51.
[http://dx.doi.org/10.1016/j.ensci.2016.06.003] [PMID: 29430548]
[168]
Golyala, A.; Kwan, P. Drug development for refractory epilepsy: The past 25 years and beyond. Seizure, 2017, 44, 147-156.
[http://dx.doi.org/10.1016/j.seizure.2016.11.022] [PMID: 28017578]
[169]
Zaccara, G.; Schmidt, D. Do traditional anti-seizure drugs have a future? A review of potential anti-seizure drugs in clinical development. Pharmacol. Res., 2016, 104, 38-48.
[http://dx.doi.org/10.1016/j.phrs.2015.12.011] [PMID: 26689774]
[170]
Bialer, M.; Johannessen, S.I.; Koepp, M.J.; Levy, R.H.; Perucca, E.; Perucca, P.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV). I. Drugs in preclinical and early clinical development. Epilepsia, 2020, 61(11), 2340-2364.
[http://dx.doi.org/10.1111/epi.16725] [PMID: 33190243]
[171]
Bialer, M.; Johannessen, S.I.; Koepp, M.J.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). I. Drugs in preclinical and early clinical development. Epilepsia, 2018, 59(10), 1811-1841.
[http://dx.doi.org/10.1111/epi.14557] [PMID: 30368792]
[172]
Younus, I.; Reddy, D.S. A resurging boom in new drugs for epilepsy and brain disorders. Expert Rev. Clin. Pharmacol., 2018, 11(1), 27-45.
[http://dx.doi.org/10.1080/17512433.2018.1386553] [PMID: 28956955]
[173]
Keam, S.J. Cenobamate: First Approval. Drugs, 2020, 80(1), 73-78.
[http://dx.doi.org/10.1007/s40265-019-01250-6] [PMID: 31933170]
[174]
Nakamura, M.; Cho, J-H.; Shin, H.; Jang, I-S. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur. J. Pharmacol., 2019, 855, 175-182.
[http://dx.doi.org/10.1016/j.ejphar.2019.05.007] [PMID: 31063770]
[175]
Sharma, R.; Nakamura, M.; Neupane, C.; Jeon, B.H.; Shin, H.; Melnick, S.M.; Glenn, K.J.; Jang, I-S.; Park, J.B. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur. J. Pharmacol., 2020, 879, 173117.
[http://dx.doi.org/10.1016/j.ejphar.2020.173117] [PMID: 32325146]
[176]
Arnold, S. Cenobamate: new hope for treatment-resistant epilepsy. Lancet Neurol., 2020, 19(1), 23-24.
[http://dx.doi.org/10.1016/S1474-4422(19)30434-X] [PMID: 31734104]
[177]
Owen, R.M.; Blakemore, D.; Cao, L.; Flanagan, N.; Fish, R.; Gibson, K.R.; Gurrell, R.; Huh, C.W.; Kammonen, J.; Mortimer-Cassen, E.; Nickolls, S.A.; Omoto, K.; Owen, D.; Pike, A.; Pryde, D.C.; Reynolds, D.S.; Roeloffs, R.; Rose, C.; Stead, C.; Takeuchi, M.; Warmus, J.S.; Watson, C. Design and identification of a novel, functionally subtype selective GABAA positive allosteric modulator (PF-06372865). J. Med. Chem., 2019, 62(12), 5773-5796.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00322] [PMID: 30964988]
[178]
Bialer, M.; Johannessen, S.I.; Koepp, M.J.; Levy, R.H.; Perucca, E.; Perucca, P.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV). II. Drugs in more advanced clinical development. Epilepsia, 2020, 61(11), 2365-2385.
[http://dx.doi.org/10.1111/epi.16726] [PMID: 33165915]
[179]
Nickolls, S.A.; Gurrell, R.; van Amerongen, G.; Kammonen, J.; Cao, L.; Brown, A.R.; Stead, C.; Mead, A.; Watson, C.; Hsu, C.; Owen, R.M.; Pike, A.; Fish, R.L.; Chen, L.; Qiu, R.; Morris, E.D.; Feng, G.; Whitlock, M.; Gorman, D.; van Gerven, J.; Reynolds, D.S.; Dua, P.; Butt, R.P. Pharmacology in translation: the preclinical and early clinical profile of the novel α2/3 functionally selective GABAA receptor positive allosteric modulator PF-06372865. Br. J. Pharmacol., 2018, 175(4), 708-725.
[http://dx.doi.org/10.1111/bph.14119] [PMID: 29214652]
[180]
Hosie, A.M.; Wilkins, M.E.; da Silva, H.M.; Smart, T.G.; Smart, T.G. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature, 2006, 444(7118), 486-489.
[http://dx.doi.org/10.1038/nature05324] [PMID: 17108970]
[181]
Nohria, V.; Giller, E. Ganaxolone. Neurotherapeutics, 2007, 4(1), 102-105.
[http://dx.doi.org/10.1016/j.nurt.2006.11.003] [PMID: 17199022]
[182]
Monaghan, E.P.; McAuley, J.W.; Data, J.L. Ganaxolone: a novel positive allosteric modulator of the GABA(A) receptor complex for the treatment of epilepsy. Expert Opin. Investig. Drugs, 1999, 8(10), 1663-1671.
[http://dx.doi.org/10.1517/13543784.8.10.1663] [PMID: 11139818]
[183]
Yawno, T.; Miller, S.L.; Bennet, L.; Wong, F.; Hirst, J.J.; Fahey, M.; Walker, D.W. Ganaxolone: A new treatment for neonatal seizures. Front. Cell. Neurosci., 2017, 11, 246.
[http://dx.doi.org/10.3389/fncel.2017.00246] [PMID: 28878622]
[184]
Carter, R.B.; Wood, P.L.; Wieland, S.; Hawkinson, J.E.; Belelli, D.; Lambert, J.J.; White, H.S.; Wolf, H.H.; Mirsadeghi, S.; Tahir, S.H.; Bolger, M.B.; Lan, N.C.; Gee, K.W. Characterization of the anticonvulsant properties of ganaxolone (CCD 1042; 3α-hydroxy-3β-methyl-5α-pregnan-20-one), a selective, high-affinity, steroid modulator of the γ-aminobutyric acid(A) receptor. J. Pharmacol. Exp. Ther., 1997, 280(3), 1284-1295.
[PMID: 9067315]
[185]
Pan, Y.; Qiu, J.; Silverman, R.B. Design, synthesis, and biological activity of a difluoro-substituted, conformationally rigid vigabatrin analogue as a potent γ-aminobutyric acid aminotransferase inhibitor. J. Med. Chem., 2003, 46(25), 5292-5293.
[http://dx.doi.org/10.1021/jm034162s] [PMID: 14640537]
[186]
Juncosa, J.I.; Takaya, K.; Le, H.V.; Moschitto, M.J.; Weerawarna, P.M.; Mascarenhas, R.; Liu, D.; Dewey, S.L.; Silverman, R.B. Design and mechanism of (S)-3-amino-4-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic acid, a highly potent γ-aminobutyric acid aminotransferase inactivator for the treatment of addiction. J. Am. Chem. Soc., 2018, 140(6), 2151-2164.
[http://dx.doi.org/10.1021/jacs.7b10965] [PMID: 29381352]
[187]
Cid, J.M.; Tresadern, G.; Duvey, G.; Lütjens, R.; Finn, T.; Rocher, J-P.; Poli, S.; Vega, J.A.; de Lucas, A.I.; Matesanz, E.; Linares, M.L.; Andrés, J.I.; Alcazar, J.; Alonso, J.M.; Macdonald, G.J.; Oehlrich, D.; Lavreysen, H.; Ahnaou, A.; Drinkenburg, W.; Mackie, C.; Pype, S.; Gallacher, D.; Trabanco, A.A. Discovery of 1-butyl-3-chloro-4-(4-phenyl-1-piperidinyl)-(1H)-pyridone (JNJ-40411813): A novel positive allosteric modulator of the metabotropic glutamate 2 receptor. J. Med. Chem., 2014, 57(15), 6495-6512.
[http://dx.doi.org/10.1021/jm500496m] [PMID: 25032784]
[188]
Metcalf, C.S.; Klein, B.D.; Smith, M.D.; Pruess, T.; Ceusters, M.; Lavreysen, H.; Pype, S.; Van Osselaer, N.; Twyman, R.; White, H.S. Efficacy of mGlu2 -positive allosteric modulators alone and in combination with levetiracetam in the mouse 6 Hz model of psychomotor seizures. Epilepsia, 2017, 58(3), 484-493.
[http://dx.doi.org/10.1111/epi.13659] [PMID: 28166368]
[189]
Metcalf, C.S.; Klein, B.D.; Smith, M.D.; Ceusters, M.; Lavreysen, H.; Pype, S.; Van Osselaer, N.; Twyman, R.; White, H.S. Potent and selective pharmacodynamic synergy between the metabotropic glutamate receptor subtype 2-positive allosteric modulator JNJ-46356479 and levetiracetam in the mouse 6-Hz (44-mA) model. Epilepsia, 2018, 59(3), 724-735.
[http://dx.doi.org/10.1111/epi.14005] [PMID: 29360159]
[190]
Straub, C.; Tomita, S. The regulation of glutamate receptor trafficking and function by TARPs and other transmembrane auxiliary subunits. Curr. Opin. Neurobiol., 2012, 22(3), 488-495.
[http://dx.doi.org/10.1016/j.conb.2011.09.005] [PMID: 21993243]
[191]
Jackson, A.C.; Nicoll, R.A. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron, 2011, 70(2), 178-199.
[http://dx.doi.org/10.1016/j.neuron.2011.04.007] [PMID: 21521608]
[192]
Sumioka, A. Auxiliary subunits provide new insights into regulation of AMPA receptor trafficking. J. Biochem., 2013, 153(4), 331-337.
[http://dx.doi.org/10.1093/jb/mvt015] [PMID: 23426437]
[193]
Maher, M.P.; Wu, N.; Ravula, S.; Ameriks, M.K.; Savall, B.M.; Liu, C.; Lord, B.; Wyatt, R.M.; Matta, J.A.; Dugovic, C.; Yun, S.; Ver Donck, L.; Steckler, T.; Wickenden, A.D.; Carruthers, N.I.; Lovenberg, T.W. Discovery and characterization of AMPA receptor modulators selective for TARP-γ8. J. Pharmacol. Exp. Ther., 2016, 357(2), 394-414.
[http://dx.doi.org/10.1124/jpet.115.231712] [PMID: 26989142]
[194]
Dohrke, J-N.; Watson, J.F.; Birchall, K.; Greger, I.H. Characterizing the binding and function of TARP γ8-selective AMPA receptor modulators. J. Biol. Chem., 2020, 295(43), 14565-14577.
[http://dx.doi.org/10.1074/jbc.RA120.014135] [PMID: 32747446]
[195]
Ravula, S.; Savall, B.M.; Wu, N.; Lord, B.; Coe, K.; Wang, K.; Seierstad, M.; Swanson, D.M.; Ziff, J.; Nguyen, M.; Leung, P.; Rynberg, R.; La, D.; Pippel, D.J.; Koudriakova, T.; Lovenberg, T.W.; Carruthers, N.I.; Maher, M.P.; Ameriks, M.K. Lead optimization of 5-aryl benzimidazolone- and oxindole-based AMPA receptor modulators selective for TARP γ-8. ACS Med. Chem. Lett., 2018, 9(8), 821-826.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00215] [PMID: 30128074]
[196]
Kaminski, R.M.; Matagne, A.; Patsalos, P.N.; Klitgaard, H. Benefit of combination therapy in epilepsy: A review of the preclinical evidence with levetiracetam. Epilepsia, 2009, 50(3), 387-397.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01713.x] [PMID: 18627416]
[197]
Leclercq, K.; Matagne, A.; Provins, L.; Klitgaard, H.; Kaminski, R.M. Pharmacological profile of the novel antiepileptic drug candidate padsevonil: Characterization in rodent seizure and epilepsy models. J. Pharmacol. Exp. Ther., 2020, 372(1), 11-20.
[http://dx.doi.org/10.1124/jpet.119.261222] [PMID: 31619464]
[198]
Wood, M.; Daniels, V.; Provins, L.; Wolff, C.; Kaminski, R.M.; Gillard, M. Pharmacological profile of the novel antiepileptic drug candidate padsevonil: Interactions with synaptic vesicle 2 proteins and the GABAA receptor. J. Pharmacol. Exp. Ther., 2020, 372(1), 1-10.
[http://dx.doi.org/10.1124/jpet.119.261149] [PMID: 31619465]
[199]
Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol., 2011, 7(1), 31-40.
[http://dx.doi.org/10.1038/nrneurol.2010.178] [PMID: 21135885]
[200]
Aronica, E.; Bauer, S.; Bozzi, Y.; Caleo, M.; Dingledine, R.; Gorter, J.A.; Henshall, D.C.; Kaufer, D.; Koh, S.; Löscher, W.; Louboutin, J-P.; Mishto, M.; Norwood, B.A.; Palma, E.; Poulter, M.O.; Terrone, G.; Vezzani, A.; Kaminski, R.M. Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia, 2017, 58(Suppl. 3), 27-38.
[http://dx.doi.org/10.1111/epi.13783] [PMID: 28675563]
[201]
Mukhtar, I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure, 2020, 82, 65-79.
[http://dx.doi.org/10.1016/j.seizure.2020.09.015] [PMID: 33011590]
[202]
Maroso, M.; Balosso, S.; Ravizza, T.; Iori, V.; Wright, C.I.; French, J.; Vezzani, A. Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics, 2011, 8(2), 304-315.
[http://dx.doi.org/10.1007/s13311-011-0039-z] [PMID: 21431948]
[203]
Kenney-Jung, D.L.; Vezzani, A.; Kahoud, R.J.; LaFrance-Corey, R.G.; Ho, M-L.; Muskardin, T.W.; Wirrell, E.C.; Howe, C.L.; Payne, E.T. Febrile infection-related epilepsy syndrome treated with anakinra. Ann. Neurol., 2016, 80(6), 939-945.
[http://dx.doi.org/10.1002/ana.24806] [PMID: 27770579]
[204]
DeSena, A.D.; Do, T.; Schulert, G.S. Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J. Neuroinflammation, 2018, 15(1), 38.
[http://dx.doi.org/10.1186/s12974-018-1063-2] [PMID: 29426321]
[205]
Lai, Y-C.; Muscal, E.; Wells, E.; Shukla, N.; Eschbach, K.; Hyeong Lee, K.; Kaliakatsos, M.; Desai, N.; Wickström, R.; Viri, M.; Freri, E.; Granata, T.; Nangia, S.; Dilena, R.; Brunklaus, A.; Wainwright, M.S.; Gorman, M.P.; Stredny, C.M.; Asiri, A.; Hundallah, K.; Doja, A.; Payne, E.; Wirrell, E.; Koh, S.; Carpenter, J.L.; Riviello, J. Anakinra usage in febrile infection related epilepsy syndrome: An international cohort. Ann. Clin. Transl. Neurol., 2020, 7(12), 2467-2474.
[http://dx.doi.org/10.1002/acn3.51229] [PMID: 33506622]
[206]
Ravizza, T.; Noé, F.; Zardoni, D.; Vaghi, V.; Sifringer, M.; Vezzani, A. Interleukin Converting Enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1beta production. Neurobiol. Dis., 2008, 31(3), 327-333.
[http://dx.doi.org/10.1016/j.nbd.2008.05.007] [PMID: 18632279]
[207]
Wong, M. Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies. Epilepsia, 2010, 51(1), 27-36.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02341.x] [PMID: 19817806]
[208]
Galanopoulou, A.S.; Gorter, J.A.; Cepeda, C. Finding a better drug for epilepsy: The mTOR pathway as an antiepileptogenic target. Epilepsia, 2012, 53(7), 1119-1130.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03506.x] [PMID: 22578218]
[209]
Zeng, L-H.; Xu, L.; Gutmann, D.H.; Wong, M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol., 2008, 63(4), 444-453.
[http://dx.doi.org/10.1002/ana.21331] [PMID: 18389497]
[210]
Russo, E.; Citraro, R.; Donato, G.; Camastra, C.; Iuliano, R.; Cuzzocrea, S.; Constanti, A.; De Sarro, G. mTOR inhibition modulates epileptogenesis, seizures and depressive behavior in a genetic rat model of absence epilepsy. Neuropharmacology, 2013, 69, 25-36.
[http://dx.doi.org/10.1016/j.neuropharm.2012.09.019] [PMID: 23092918]
[211]
French, J.A.; Lawson, J.A.; Yapici, Z.; Ikeda, H.; Polster, T.; Nabbout, R.; Curatolo, P.; de Vries, P.J.; Dlugos, D.J.; Berkowitz, N.; Voi, M.; Peyrard, S.; Pelov, D.; Franz, D.N. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet, 2016, 388(10056), 2153-2163.
[http://dx.doi.org/10.1016/S0140-6736(16)31419-2] [PMID: 27613521]
[212]
Williams-Karnesky, R.L.; Sandau, U.S.; Lusardi, T.A.; Lytle, N.K.; Farrell, J.M.; Pritchard, E.M.; Kaplan, D.L.; Boison, D. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Invest., 2013, 123(8), 3552-3563.
[http://dx.doi.org/10.1172/JCI65636] [PMID: 23863710]
[213]
Aronica, E.; Zurolo, E.; Iyer, A.; de Groot, M.; Anink, J.; Carbonell, C.; van Vliet, E.A.; Baayen, J.C.; Boison, D.; Gorter, J.A. Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia, 2011, 52(9), 1645-1655.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03115.x] [PMID: 21635241]
[214]
Sandau, U.S.; Yahya, M.; Bigej, R.; Friedman, J.L.; Saleumvong, B.; Boison, D. Transient use of a systemic adenosine kinase inhibitor attenuates epilepsy development in mice. Epilepsia, 2019, 60(4), 615-625.
[http://dx.doi.org/10.1111/epi.14674] [PMID: 30815855]
[215]
Toti, K.S.; Osborne, D.; Ciancetta, A.; Boison, D.; Jacobson, K.A. South (S)- and north (N)-methanocarba-7-deazaadenosine analogues as inhibitors of human adenosine kinase. J. Med. Chem., 2016, 59(14), 6860-6877.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00689] [PMID: 27410258]
[216]
Damar, U.; Gersner, R.; Johnstone, J.T.; Schachter, S.; Rotenberg, A. Huperzine A as a neuroprotective and antiepileptic drug: A review of preclinical research. Expert Rev. Neurother., 2016, 16(6), 671-680.
[http://dx.doi.org/10.1080/14737175.2016.1175303] [PMID: 27086593]
[217]
Gersner, R.; Ekstein, D.; Dhamne, S.C.; Schachter, S.C.; Rotenberg, A. Huperzine A prophylaxis against pentylenetetrazole-induced seizures in rats is associated with increased cortical inhibition. Epilepsy Res., 2015, 117, 97-103.
[http://dx.doi.org/10.1016/j.eplepsyres.2015.08.012] [PMID: 26432930]
[218]
Fuller, R.W.; Snoddy, H.D.; Robertson, D.W. Mechanisms of effects of d-fenfluramine on brain serotonin metabolism in rats: Uptake inhibition versus release. Pharmacol. Biochem. Behav., 1988, 30(3), 715-721.
[http://dx.doi.org/10.1016/0091-3057(88)90089-5] [PMID: 2463643]
[219]
Gogou, M.; Cross, J.H. Fenfluramine as antiseizure medication for epilepsy. Dev. Med. Child Neurol., 2021, 63(8), 899-907.
[http://dx.doi.org/10.1111/dmcn.14822] [PMID: 33565102]
[220]
Lagae, L.; Sullivan, J.; Knupp, K.; Laux, L.; Polster, T.; Nikanorova, M.; Devinsky, O.; Cross, J.H.; Guerrini, R.; Talwar, D.; Miller, I.; Farfel, G.; Galer, B.S.; Gammaitoni, A.; Mistry, A.; Morrison, G.; Lock, M.; Agarwal, A.; Lai, W.W.; Ceulemans, B. Fenfluramine hydrochloride for the treatment of seizures in Dravet syndrome: a randomised, double-blind, placebo-controlled trial. Lancet, 2019, 394(10216), 2243-2254.
[http://dx.doi.org/10.1016/S0140-6736(19)32500-0] [PMID: 31862249]
[221]
Martin, P.; de Witte, P.A.M.; Maurice, T.; Gammaitoni, A.; Farfel, G.; Galer, B. Fenfluramine acts as a positive modulator of sigma-1 receptors. Epilepsy Behav., 2020, 105, 106989.
[http://dx.doi.org/10.1016/j.yebeh.2020.106989] [PMID: 32169824]
[222]
Garriga-Canut, M.; Schoenike, B.; Qazi, R.; Bergendahl, K.; Daley, T.J.; Pfender, R.M.; Morrison, J.F.; Ockuly, J.; Stafstrom, C.; Sutula, T.; Roopra, A. 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP–dependent metabolic regulation of chromatin structure. Nat. Neurosci., 2006, 9(11), 1382-1387.
[http://dx.doi.org/10.1038/nn1791] [PMID: 17041593]
[223]
Gasior, M.; Yankura, J.; Hartman, A.L.; French, A.; Rogawski, M.A. Anticonvulsant and proconvulsant actions of 2-deoxy-D-glucose. Epilepsia, 2010, 51(8), 1385-1394.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02593.x] [PMID: 20491877]
[224]
Long, Y.; Zhuang, K.; Ji, Z.; Han, Y.; Fei, Y.; Zheng, W.; Song, Z.; Yang, H. 2-Deoxy-D-Glucose Exhibits Anti-seizure Effects by Mediating the Netrin-G1-KATP Signaling Pathway in Epilepsy. Neurochem. Res., 2019, 44(4), 994-1004.
[http://dx.doi.org/10.1007/s11064-019-02734-3] [PMID: 30805800]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy