Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Recent Advancement in the One-pot Synthesis of the Tri-substituted Methanes (TRSMs) and their Biological Applications

Author(s): Monika Verma, Ajay Thakur, Renu Sharma and Ruchi Bharti*

Volume 19, Issue 1, 2022

Published on: 09 September, 2021

Page: [86 - 114] Pages: 29

DOI: 10.2174/1570179418666210910105342

Price: $65

Abstract

The history of tri-substituted methanes (TRSMs) in chemical industries is much older. Tri-substituted methanes were previously used as dyes in the chemical industries. Still, there is a significant surge in researchers' interest in them due to their wide range of bioactivities. Trisubstituted methane derivatives show a wide range of biological activities like anti-tumor, antimicrobial, antibiofilm, antioxidant, anti-inflammatory, anti-arthritic activities. Due to the wide range of medicinal applications shown by tri-substituted methanes, most of the methodologies reported in the literature for the synthesis of TRSMs are focused on the one-pot method. This review explored the recently reported one-pot processes for synthesizing trisubstituted methanes and their various medicinal applications. Based on the substitution attached to the -CH carbon, this review categorizes them into two major classes: (I) symmetrical and (II) unsymmetrical trisubstituted methanes. In addition, this review gives an insight into the growing opportunities for the construction of trisubstituted scaffolds via one-pot methodologies. To the best of our knowledge, no one has yet reported a review on the one-pot synthesis of TRSMs. Therefore, here we present a brief literature review of the synthesis of both symmetrical and unsymmetrical TRSMs covering various one-pot methodologies along with their medicinal applications.

Keywords: Trisubstituted scaffolds, symmetrical and unsymmetrical TRSMs, multicomponent reaction (MCR), bioactivities, environmental-friendly method, chemoselectivity, methane.

Graphical Abstract

[1]
Mondal, S.; Panda, G. Synthetic methodologies of achiral diarylmethanols, diaryl and triarylmethanes (TRAMs) and medicinal properties of diaryl and triarylmethanes-an overview. RSC Advances, 2014, 4(54), 28317-28358.
[http://dx.doi.org/10.1039/C4RA01341G]
[2]
Zhu, J.; Bienaymé, H. Multicomponent reactions; John Wiley & Sons, 2006.
[3]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[4]
Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
[5]
Dondoni, A.; Massi, A. Design and synthesis of new classes of heterocyclic C-glycoconjugates and carbon-linked sugar and heterocyclic amino acids by asymmetric multicomponent reactions (AMCRs). Acc. Chem. Res., 2006, 39(7), 451-463.
[http://dx.doi.org/10.1021/ar068023r] [PMID: 16846209]
[6]
Wessjohann, L.A.; Rivera, D.G.; Vercillo, O.E. Multiple multicomponent macrocyclizations (MiBs): a strategic development toward macrocycle diversity. Chem. Rev., 2009, 109(2), 796-814.
[http://dx.doi.org/10.1021/cr8003407] [PMID: 19166290]
[7]
Nielsen, T.E.; Schreiber, S.L. Towards the optimal screening collection: a synthesis strategy. Angew. Chem. Int. Ed. Engl., 2008, 47(1), 48-56.
[http://dx.doi.org/10.1002/anie.200703073] [PMID: 18080276]
[8]
Schreiber, S.L. Organic chemistry: Molecular diversity by design. Nature, 2009, 457(7226), 153-154.
[http://dx.doi.org/10.1038/457153a] [PMID: 19129834]
[9]
Nair, V.; Thomas, S.; Mathew, S.C.; Abhilash, K.G. Recent advances in the chemistry of triaryl-and triheteroarylmethanes. Tetrahedron, 2006, 29(62), 6731-6747.
[http://dx.doi.org/10.1016/j.tet.2006.04.081]
[10]
Sashidhara, K.V.; Kumar, A.; Kumar, M.; Srivastava, A.; Puri, A. Synthesis and antihyperlipidemic activity of novel coumarin bisindole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(22), 6504-6507.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.055] [PMID: 20932744]
[11]
Al-Qawasmeh, R.A.; Lee, Y.; Cao, M-Y.; Gu, X.; Vassilakos, A.; Wright, J.A.; Young, A. Triaryl methane derivatives as antiproliferative agents. Bioorg. Med. Chem. Lett., 2004, 14(2), 347-350.
[http://dx.doi.org/10.1016/j.bmcl.2003.11.004] [PMID: 14698156]
[12]
Zhou, B.; Liu, D. X.; Yuan, X. J.; Li, J. Y.; Xu, Y. C.; Li, J.; Li, Y.; Yue, J. M. (−)-and (+)-securidanes A and B, natural triarylmethane enantiomers: structure and bioinspired total synthesis. Research, 2018.
[13]
Srivastava, N. Sangita; Ray, S.; Singh, M.M.; Dwivedi, A.; Kumar, A. Diaryl naphthyl methanes a novel class of anti-implantation agents. Bioorg. Med. Chem., 2004, 12(5), 1011-1021.
[http://dx.doi.org/10.1016/j.bmc.2003.12.015] [PMID: 14980614]
[14]
Schnitzer, R.J.; Hawking, F. Experimental Chemotherapy: Edited by RJ Schnitzer [and] Frank Hawking; Academic Press , 1963; 1, .
[15]
Panda, G.; Parai, M.K.; Das, S.K. Shagufta; Sinha, M.; Chaturvedi, V.; Srivastava, A.K.; Manju, Y.S.; Gaikwad, A.N.; Sinha, S. Effect of substituents on diarylmethanes for antitubercular activity. Eur. J. Med. Chem., 2007, 42(3), 410-419.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.020] [PMID: 17112639]
[16]
Shagufta; Kumar, A.; Panda, G.; Siddiqi, M.I. CoMFA and CoMSIA 3D-QSAR analysis of diaryloxy-methano-phenanthrene derivatives as anti-tubercular agents. J. Mol. Model., 2007, 13(1), 99-109.
[http://dx.doi.org/10.1007/s00894-006-0124-0] [PMID: 16858589]
[17]
Shagufta; Srivastava, A.K.; Sharma, R.; Mishra, R.; Balapure, A.K.; Murthy, P.S.; Panda, G. Substituted phenanthrenes with basic amino side chains: a new series of anti-breast cancer agents. Bioorg. Med. Chem., 2006, 14(5), 1497-1505.
[http://dx.doi.org/10.1016/j.bmc.2005.10.002] [PMID: 16249093]
[18]
Filarowski, A. Perkin’s mauve: the history of the chemistry. Resonance, 2010, 15(9), 850-855.
[http://dx.doi.org/10.1007/s12045-010-0094-5]
[19]
Travis, A.S. Perkin’s mauve: ancestor of the organic chemical industry. Technol. Cult., 1990, 31(1), 51-82.
[http://dx.doi.org/10.2307/3105760]
[20]
Clair, K.S. The secret lives of colour; John Murray; Publishers, 2016.
[21]
Brunello, F. The art of dyeing in the history of mankind; Aatcc, 1973.
[22]
Lauth, C. On the new aniline dye, Violet de Paris. Laboratory, 1867, 1, 138-139.
[23]
Abbas, H.A.; Nasr, R.A.; Abu-Zurayk, R.; Al Bawab, A.; Jamil, T.S. Decolourization of crystal violet using nano-sized novel fluorite structure Ga2Zr2-x W x O7 photocatalyst under visible light irradiation. R. Soc. Open Sci., 2020, 7(3)191632
[http://dx.doi.org/10.1098/rsos.191632] [PMID: 32269795]
[24]
Karr, A.E. Malachite green. Text. Color, 1937, 59, 661-664.
[25]
Liu, B.; Jin, S-F.; Li, H-C.; Sun, X-Y.; Yan, S-Q.; Deng, S-J.; Zhao, P. The Bio-safety concerns of three domestic temporary hair dye molecules: Fuchsin Basic, Victoria Blue B and Basic Red 2. Molecules, 2019, 24(9), 1744.
[http://dx.doi.org/10.3390/molecules24091744] [PMID: 31060332]
[26]
Silcoff, E.R.; Sheradsky, T. Polymers containing backbone fluorescein, phenolphthalein and benzaurin. Synthesis and optical properties. New J. Chem., 1999, 23(12), 1187-1192.
[http://dx.doi.org/10.1039/a906178i]
[27]
Al-Kadhemy, M.F.H.; Abaas, W.H. Absorption spectrum of Crystal Violet in Chloroform solution and doped PMMA thin films. Atti Fond. G. Ronchi, 2012, 67(3), 359.
[28]
Bhattacharjee, A.; Ahmaruzzaman, M.; Devi, T.B.; Nath, J. Photodegradation of methyl violet 6B and methylene blue using tin-oxide nanoparticles (synthesized via a green route). J. Photochem. Photobiol. Chem., 2016, 325, 116-124.
[http://dx.doi.org/10.1016/j.jphotochem.2016.03.032]
[29]
Kosanić, M.M.; Tričković, J.S. Degradation of pararosaniline dye photoassisted by visible light. J. Photochem. Photobiol. Chem., 2002, 149(1-3), 247-251.
[http://dx.doi.org/10.1016/S1010-6030(02)00007-2]
[30]
(a) Iyun, J.F.; Onu, A. Kinetics and mechanism for oxidation of rosaniline monochloride by nitrite ion in aqueous media. Niger. J. Chem. Res., 1998, 3, 24-27.
(b) Abou-Gamra, Z.M. Desalination Water Treat., 2016, 57(19), 8809-8814.
[http://dx.doi.org/10.1080/19443994.2015.1023849]
[31]
Montes de Oca, M.N.; Aiassa, I.M.; Urrutia, M.N.; Argüello, G.A.; Ortiz, C.S. Separation, purification, and characterization of analogues components of a commercial sample of new Fuchsin. J. Chromatogr. Sci., 2010, 48(8), 618-623.
[http://dx.doi.org/10.1093/chromsci/48.8.618] [PMID: 20819289]
[32]
Bencedira, S.; Bechiri, O. The oxidation study of fuchsine acid dye by HP2W15Mo3Co2. 5O62, 20H2O/H2O2: Temperature effect, kinetic and thermodynamic study. Chem. Data Collect., 2020, 25100327
[http://dx.doi.org/10.1016/j.cdc.2019.100327]
[33]
Mittal, A.; Kaur, D.; Malviya, A.; Mittal, J.; Gupta, V.K. Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. J. Colloid Interface Sci., 2009, 337(2), 345-354.
[http://dx.doi.org/10.1016/j.jcis.2009.05.016] [PMID: 19541322]
[34]
Chen, C-C.; Chen, C-Y.; Cheng, C-Y.; Teng, P-Y.; Chung, Y-C. Decolorization characteristics and mechanism of Victoria Blue R removal by Acinetobacter calcoaceticus YC210. J. Hazard. Mater., 2011, 196, 166-172.
[http://dx.doi.org/10.1016/j.jhazmat.2011.09.015] [PMID: 21955656]
[35]
Mittal, A.; Kaur, D.; Mittal, J. Applicability of waste materials--bottom ash and deoiled soya--as adsorbents for the removal and recovery of a hazardous dye, brilliant green. J. Colloid Interface Sci., 2008, 326(1), 8-17.
[http://dx.doi.org/10.1016/j.jcis.2008.07.005] [PMID: 18675425]
[36]
Brown, J.P.; Dorsky, A.; Enderlin, F.E.; Hale, R.L.; Wright, V.A.; Parkinson, T.M. Synthesis of 14C-labelled FD & C Blue No. 1 (Brilliant Blue FCF) and its intestinal absorption and metabolic fate in rats. Food Cosmet. Toxicol., 1980, 18(1), 1-5.
[http://dx.doi.org/10.1016/0015-6264(80)90002-4] [PMID: 7372204]
[37]
Tennakone, K.; Hewaparakkrama, K.P.; Dewasurendra, M.; Jayatissa, A.H.; Weerasena, L.K. Dye-sensitised solid-state photovoltaic cells. Semicond. Sci. Technol., 1988, 3(4), 382.
[http://dx.doi.org/10.1088/0268-1242/3/4/017]
[38]
Zhang, Z.H.; Lin, J. Efficient and convenient method for the synthesis of symmetrical triindolylmethanes catalyzed by iodine. Synth. Commun., 2007, 37(2), 209-215.
[http://dx.doi.org/10.1080/00397910601031652]
[39]
Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadiannejad-Abbasabadi, K.; Khavasi, H.R. H3PW12O40-Catalysed alkylation of arenes and diveratryl-methanes: convenient routes to triarylmethanes and to symmetrical and unsymmetrical 9,10-Diaryl-2,3,6,7-tetramethoxyanthracenes. Eur. J. Org. Chem., 2011, 2011(7), 1357-1366.
[http://dx.doi.org/10.1002/ejoc.201001267]
[40]
Thirupathi, P.; Kim, S.S. Regioselective arylations of α-amido sulfones with electron-rich arenes through friedel–crafts alkylations catalyzed by ferric chloride hexahydrate: synthesis of unsymmetrical and bis-symmetrical triarylmethanes. Eur. J. Org. Chem., 2010, 2010(9), 1798-1808.
[http://dx.doi.org/10.1002/ejoc.200901186]
[41]
Jaratjaroonphong, J.; Sathalalai, S.; Techasauvapak, P.; Reutrakul, V. Iodine-catalyzed Friedel–Crafts alkylation of electron-rich arenes with aldehydes: efficient synthesis of triarylmethanes and diarylalkanes. Tetrahedron Lett., 2009, 50(44), 6012-6015.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.036]
[42]
Chakrabarty, M.; Sarkar, S.; Linden, A.; Stein, B.K. First general solvent‐free synthesis of symmetrical triindolylmethanes using acid‐washed montmorillonite clay. Synth. Commun., 2004, 34(10), 1801-1810.
[http://dx.doi.org/10.1081/SCC-120034161]
[43]
Esquivias, J.; Gómez Arrayás, R.; Carretero, J.C. A copper(II)-catalyzed aza-Friedel-Crafts reaction of N-(2-pyridyl)sulfonyl aldimines: synthesis of unsymmetrical diaryl amines and triaryl methanes. Angew. Chem. Int. Ed., 2006, 45(4), 629-633.
[http://dx.doi.org/10.1002/anie.200503305] [PMID: 16345106]
[44]
Liao, H.H.; Chatupheeraphat, A.; Hsiao, C.C. Atodiresei, i.; rueping, m. asymmetric brønsted acid catalyzed synthesis of triarylmethanes-construction of communesin and spiroindoline scaffolds. Angew. Chem. Int. Ed. Engl., 2015, 54(51), 15540-15544.
[http://dx.doi.org/10.1002/anie.201505981] [PMID: 26545412]
[45]
Sun, F-L.; Zheng, X-J.; Gu, Q.; He, Q-L.; You, S-L. Enantioselective synthesis of unsymmetrical triarylmethanes by chiral brønsted acids. Eur. J. Org. Chem., 2010, 2010(1), 47-50.
[http://dx.doi.org/10.1002/ejoc.200901164]
[46]
Yue, C.; Na, F.; Fang, X.; Cao, Y.; Antilla, J.C. Chiral phosphoric acid catalyzed asymmetric synthesis of hetero-triarylmethanes from racemic indolyl alcohols. Angew. Chem. Int. Ed. Engl., 2018, 57(34), 11004-11008.
[http://dx.doi.org/10.1002/anie.201804330] [PMID: 29968269]
[47]
Lin, S.; Lu, X. Cationic Pd(II)/bipyridine-catalyzed addition of arylboronic acids to arylaldehydes. One-pot synthesis of unsymmetrical triarylmethanes. J. Org. Chem., 2007, 72(25), 9757-9760.
[http://dx.doi.org/10.1021/jo071232k] [PMID: 17999518]
[48]
Thombal, P.R.; Han, S.S. Novel synthesis of Lewis and Bronsted acid sites incorporated CS-Fe3O4@ SO3H catalyst and its application in one-pot synthesis of tri (furyl) methane under aqueous media. Biofuel Res. J., 2018, 5(4), 886.
[http://dx.doi.org/10.18331/BRJ2018.5.4.3]
[49]
Tuengpanya, S.; Chantana, C.; Sirion, U.; Siritanyong, W.; Srisook, K.; Jaratjaroonphong, J. One-pot solvent-free synthesis of triaryl-and triheteroarylmethanes by Bi (OTf) 3-catalyzed Friedel-Crafts reaction of arenes/heteroarenes with trialkyl orthoformates. Tetrahedron, 2018, 74(33), 4373-4380.
[http://dx.doi.org/10.1016/j.tet.2018.05.079]
[50]
Azizian, J.; Mohammadizadeh, M.R.; Teimouri, F.; Mohammadi, A.A.; Karimi, A.R. reactions of 6‐aminouracils: the first simple, fast, and highly efficient synthesis of bis (6‐aminopyrimidonyl) methanes (bapms) using thermal or microwave‐assisted solvent‐free methods. Synth. Commun., 2006, 36(23), 3631-3638.
[http://dx.doi.org/10.1080/00397910600943832]
[51]
Bansal, R.; Kumar, R.S.; Kumar, G.; Thota, S.; Thamotharan, S.; Parthasarathi, V.; Linden, A. Formation of aryl-bis (6-amino-1, 3-dimethyluracil-5-yl) methanes by reaction of 6-amino-1, 3-dimethyluracil with aromatic aldehydes. J. Heterocycl. Chem., 2008, 45, 1789-1795.
[http://dx.doi.org/10.1002/jhet.5570450636]
[52]
Das, S.; Thakur, A.J.; Clean, A. Highly Efficient and One-Pot Green Synthesis of Aryl/Alkyl/Heteroaryl-Substituted Bis(6-amino-1,3-dimethyluracil-5-yl)methanes in Water. Eur. J. Org. Chem., 2011, 2011(12), 2301-2308.
[http://dx.doi.org/10.1002/ejoc.201001581]
[53]
Wu, L.; Jing, X.; Lin, M.; Yan, C.; Yang, J.; Zhu, H. Synthesis of Di (6-aminouracil-5-yl)-arylmethane: A New Product of the Reaction of 6-Aminouracil with Aldehyde. Synth. Commun., 2012, 42(6), 849-857.
[http://dx.doi.org/10.1080/00397911.2010.532275]
[54]
Brahmachari, G.; Banerjee, B. Ceric ammonium nitrate (CAN): an efficient and eco-friendly catalyst for the one-pot synthesis of alkyl/aryl/heteroaryl-substituted bis (6-aminouracil-5-yl) methanes at room temperature. RSC Advances, 2015, 5(49), 39263-39269.
[http://dx.doi.org/10.1039/C5RA04723D]
[55]
Terrasson, V.; Michaux, J.; Gaucher, A.; Wehbe, J.; Marque, S.; Prim, D.; Campagne, J.M. iron–palladium association in the preparation of indoles and one‐pot synthesis of bis (indolyl) methanes. Eur. J. Org. Chem., 2007, 2007(32), 5332-5335.
[http://dx.doi.org/10.1002/ejoc.200700831]
[56]
Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadiannejad-Abbasabadi, K.; Zolfigol, M.A. Ultrasound-Assisted eco-friendly synthesis of triarylmethanes catalyzed by silica sulfuric acid. J. Iran. Chem. Soc., 2011, 8(3), 840-850.
[http://dx.doi.org/10.1007/BF03245914]
[57]
Azimi, S.; Zolfigol, M.A.; Moosavi-Zare, A.R. Friedel–Crafts synthesis of triarylmethanes over 3-methyl-1-sulfonic acid imidazolium tetrachloroaluminate under solvent-free conditions. Iran. J. Catal., 2015, 5(3), 269-273.
[58]
Revaprasadu, N.; Sampath, C.; Harika, P. Green synthesis and antiviral activity of novel triarylmethane derivatives via Friedel-Crafts alkylation by polyethylene glycol (PEG-400). Asian J. Chem., 2016, 28(3), 473.
[http://dx.doi.org/10.14233/ajchem.2016.19122]
[59]
Khaksar, S.; Ostad, S.M. Pentafluorophenylammonium triflate as an efficient, environmentally friendly and novel organocatalyst for synthesis of bis-indolyl methane derivatives. J. Fluor. Chem., 2011, 132(11), 937-939.
[http://dx.doi.org/10.1016/j.jfluchem.2011.07.011]
[60]
Kolvari, E.; Koukabi, N.; Hosseini, M.M. Perlite: A cheap natural support for immobilization of sulfonic acid as a heterogeneous solid acid catalyst for the heterocyclic multicomponent reaction. J. Mol. Catal., 2015, 397, 68-75.
[http://dx.doi.org/10.1016/j.molcata.2014.10.026]
[61]
Saghanezhad, S.J.; Sayahi, M.H.; Imanifar, I.; Mombeni, M.; Hamood, S.D. Caffeine-H3 PO4: a novel acidic catalyst for various one-pot multicomponent reactions. Res. Chem. Intermed., 2017, 43(11), 6521-6536.
[http://dx.doi.org/10.1007/s11164-017-3002-8]
[62]
Jejurkar, V.P.; Khatri, C.K.; Chaturbhuj, G.U.; Saha, S. Environmentally benign, highly efficient and expeditious solvent‐free synthesis of trisubstituted methanes catalyzed by sulfated polyborate. ChemistrySelect, 2017, 2(35), 11693-11696.
[http://dx.doi.org/10.1002/slct.201702610]
[63]
Bahuguna, A.; Kumar, S.; Sharma, V.; Reddy, K.L.; Bhattacharyya, K.; Ravikumar, P.C.; Krishnan, V. Nanocomposite of MoS2-RGO as facile, heterogeneous, recyclable, and highly efficient green catalyst for one-pot synthesis of indole alkaloids. ACS Sustain. Chem.& Eng., 2017, 5(10), 8551-8567.
[http://dx.doi.org/10.1021/acssuschemeng.7b00648]
[64]
Bedi, P.; Malkania, L.; Sharma, S.; Pramanik, G.; Pramanik, T. Ultrasound irradiated one-pot green synthesis of pharmaceutically potent bis (indolyl) methane in water medium employing biodegradable lactic acid as eco-friendly catalyst. Drug Invent. Today, 2019, 11(6)
[65]
Abonia, R.; Gutiérrez, L.F.; Insuasty, B.; Quiroga, J.; Laali, K.K.; Zhao, C.; Borosky, G.L.; Horwitz, S.M.; Bunge, S.D. Catalyst-free assembly of giant tris(heteroaryl)methanes: synthesis of novel pharmacophoric triads and model sterically crowded tris(heteroaryl/aryl)methyl cation salts. Beilstein J. Org. Chem., 2019, 15(1), 642-654.
[http://dx.doi.org/10.3762/bjoc.15.60] [PMID: 30931006]
[66]
Shen, X.; Gu, N.; Liu, P.; Ma, X.; Xie, J.; Liu, Y.; Dai, B. One‐pot synthesis of triarylmethanes via metal‐free reductive coupling of diaryl ketones, tosylhydrazide, and arylboronic acids. Chin. J. Chem., 2016, 34(10), 1033-1038.
[http://dx.doi.org/10.1002/cjoc.201600330]
[67]
Nikpassand, M.; Zare Fekri, L. Synthesis of bis coumarinyl methanes using of potassium 2-oxoimidazolidine-1, 3-diide as a novel, efficient and reusable catalyst. Chem. Rev. Lett., 2019, 2(1), 7-12.
[68]
Karami, B.; Eskandari, K.; Khodabakhshi, S.; Hoseini, S.J.; Hashemian, F. Green synthesis of three substituted methane derivatives by employing ZnO nanoparticles as a powerful and recyclable catalyst. RSC Advances, 2013, 3(45), 23335-23342.
[http://dx.doi.org/10.1039/c3ra42993h]
[69]
Khodabakhshi, S.; Shahamirian, M.; Baghernejad, M. Solvent-free and one-pot synthesis of trisubstituted methanes containing coumarin catalysed by yttrium (III) nitrate. J. Chem. Res., 2014, 38(11), 655-657.
[http://dx.doi.org/10.3184/174751914X14137247130017]
[70]
Emmadi, N.R.; Atmakur, K.; Bingi, C.; Godumagadda, N.R.; Chityal, G.K.; Nanubolu, J.B. Regioselective synthesis of 3-benzyl substituted pyrimidino chromen-2-ones and evaluation of anti-microbial and anti-biofilm activities. Bioorg. Med. Chem. Lett., 2014, 24(2), 485-489.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.038] [PMID: 24380770]
[71]
Bharti, R.; Parvin, T. Molecular diversity from the l-proline-catalyzed, three-component reactions of 4-hydroxycoumarin, aldehyde, and 3-aminopyrazole or 1, 3-dimethyl-6-aminouracil. Synth. Commun., 2015, 45(12), 1442-1450.
[http://dx.doi.org/10.1080/00397911.2015.1023900]
[72]
Bharti, R.; Parvin, T. Diversity oriented synthesis of tri-substituted methane containing aminouracil and hydroxynaphthoquinone/hydroxycoumarin moiety using organocatalysed multicomponent reactions in aqueous medium. RSC Advances, 2015, 5(82), 66833-66839.
[http://dx.doi.org/10.1039/C5RA13093J]
[73]
Basumatary, G.; Mohanta, R.; Bez, G. l-proline derived secondary aminothiourea organocatalyst for synthesis of coumarin derived trisubstituted methanes: rate enhancement by bifunctional catalyst over cooperative catalysis. Catal. Lett., 2019, 149(10), 2776-2786.
[http://dx.doi.org/10.1007/s10562-019-02809-4]
[74]
Basumatary, G.; Dhar, E.D.; Das, D.; Deka, R.C.; Yadav, A.K.; Bez, G. Coumarin-based trisubstituted methanes as potent anthelmintic: synthesis, molecular docking and in vitro efficacy. J. Chem. Sci., 2020, 132(1), 40.
[http://dx.doi.org/10.1007/s12039-020-1737-z]
[75]
Kalita, S.J.; Mecadon, H.; Deka, D.C. FeCl3• 6H2O catalyzed aqueous media domino synthesis of 5-monoalkylbarbiturates: water as both reactant and solvent. RSC Advances, 2014, 4(20), 10402-10411.
[http://dx.doi.org/10.1039/C4RA00093E]
[76]
Bharti, R.; Kumari, P.; Parvin, T.; Choudhury, L.H. Molecular diversity from the three-component reaction of 2-hydroxy-1, 4-naphthaquinone, aldehydes and 6-aminouracils: a reaction condition dependent MCR. RSC Advances, 2017, 7(7), 3928-3933.
[http://dx.doi.org/10.1039/C6RA18828A]
[77]
Kumari, P.; Bharti, R.; Parvin, T. Synthesis of aminouracil-tethered tri-substituted methanes in water by iodine-catalyzed multicomponent reactions. Mol. Divers., 2019, 23(1), 205-213.
[http://dx.doi.org/10.1007/s11030-018-9862-z] [PMID: 30109557]
[78]
Barbato, K.S.; Luan, Y.; Ramella, D.; Panek, J.S.; Schaus, S.E. Enantioselective Multicomponent Condensation Reactions of Phenols, Aldehydes, and Boronates Catalyzed by Chiral Biphenols. Org. Lett., 2015, 17(23), 5812-5815.
[http://dx.doi.org/10.1021/acs.orglett.5b02954] [PMID: 26576776]
[79]
Chinta, B.S.; Baire, B. Catalyst free, three-component approach for unsymmetrical triarylmethanes (TRAMs). Tetrahedron Lett., 2016, 57(48), 5381-5384.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.087]
[80]
Eskandari, K.; Khodabakhshi, S. An eco-friendly solvent-free synthesis of trisubstituted methane derivatives catalyzed by magnetic iron oxide nanoparticles as a highly efficient and recyclable catalyst. Lett. Org. Chem., 2018, 15(6), 463-471.
[http://dx.doi.org/10.2174/1570178614666170621095045]
[81]
Chen, L.M.; Zhao, J.; Xia, A.J.; Guo, X.Q.; Gan, Y.; Zhou, C.; Yang, Z.J.; Yang, J.; Kang, T.R. A base-promoted cascade reaction of α,β-unsaturated N-tosylhydrazones with o-hydroxybenzyl alcohols: highly regioselective synthesis of N-sec-alkylpyrazoles. Org. Biomol. Chem., 2019, 17(37), 8561-8570.
[http://dx.doi.org/10.1039/C9OB01780A] [PMID: 31513227]
[82]
Yang, Q.; Wu, R.S.; Wu, K.X.; Gu, Y.C.; Yu, Y.Q.; Xu, D.Z. Direct synthesis of completely unsymmetrical triarylmethanes via Fe (III) salt‐mediated in situ o‐quinone methides process. Appl. Organomet. Chem., 2020, 34(8)e5716
[http://dx.doi.org/10.1002/aoc.5716]
[83]
Duan, W.; Li, Z.; Chen, F.; Zhang, M.; Deng, H.; Song, L. Facile synthesis of fused polyheterocycles containing trifluromethylated benzo [6, 7] chromeno [2, 3-c] pyrazoles via one-pot two-step MCRs. J. Fluor. Chem., 2020, 235109525
[http://dx.doi.org/10.1016/j.jfluchem.2020.109525]
[84]
Martínez, R.; Espinosa, A.; Tárraga, A.; Molina, P. Bis (indolyl) methane derivatives as highly selective colourimetric and ratiometric fluorescent molecular chemosensors for Cu2+ cations. Tetrahedron, 2008, 64(9), 2184-2191.
[http://dx.doi.org/10.1016/j.tet.2007.12.025]
[85]
Thumboo, J.; O’Duffy, J.D. A prospective study of the safety of joint and soft tissue aspirations and injections in patients taking warfarin sodium. Arthritis Rheum., 1998, 41(4), 736-739.
[http://dx.doi.org/10.1002/1529-0131(199804)41:4<736:AID-ART23>3.0.CO;2-P] [PMID: 9550485]
[86]
Eichbaum, F.W.; Slemer, O.; Zyngier, S.B. Anti-inflammatory effect of warfarin and vitamin K1. Naunyn Schmiedebergs Arch. Pharmacol., 1979, 307(2), 185-190.
[http://dx.doi.org/10.1007/BF00498462] [PMID: 573373]
[87]
Berghot, M.A.; Kandeel, E.M.; Abdel-Rahman, A.H.; Abdel-Motaal, M. Synthesis, antioxidant and cytotoxic activities of novel naphthoquinone derivatives from 2, 3-dihydro-2, 3-epoxy-1, 4-naphthoquinone. Med. Chem., 2014, 4(3), 381-388.
[88]
Bhatnagar, A.S. The discovery and mechanism of action of letrozole. Breast Cancer Res. Treat., 2007, 105(1)(Suppl. 1), 7-17.
[http://dx.doi.org/10.1007/s10549-007-9696-3] [PMID: 17912633]
[89]
Buzdar, A.; Douma, J.; Davidson, N.; Elledge, R.; Morgan, M.; Smith, R.; Porter, L.; Nabholtz, J.; Xiang, X.; Brady, C. Phase III, multicenter, double-blind, randomized study of letrozole, an aromatase inhibitor, for advanced breast cancer versus megestrol acetate. J. Clin. Oncol., 2001, 19(14), 3357-3366.
[http://dx.doi.org/10.1200/JCO.2001.19.14.3357] [PMID: 11454883]
[90]
Mouridsen, H.; Gershanovich, M.; Sun, Y.; Pérez-Carrión, R.; Boni, C.; Monnier, A.; Apffelstaedt, J.; Smith, R.; Sleeboom, H.P.; Jänicke, F.; Pluzanska, A.; Dank, M.; Becquart, D.; Bapsy, P.P.; Salminen, E.; Snyder, R.; Lassus, M.; Verbeek, J.A.; Staffler, B.; Chaudri-Ross, H.A.; Dugan, M. Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J. Clin. Oncol., 2001, 19(10), 2596-2606.
[http://dx.doi.org/10.1200/JCO.2001.19.10.2596] [PMID: 11352951]
[91]
Dombernowsky, P.; Smith, I.; Falkson, G.; Leonard, R.; Panasci, L.; Bellmunt, J.; Bezwoda, W.; Gardin, G.; Gudgeon, A.; Morgan, M.; Fornasiero, A.; Hoffmann, W.; Michel, J.; Hatschek, T.; Tjabbes, T.; Chaudri, H.A.; Hornberger, U.; Trunet, P.F. Letrozole, a new oral aromatase inhibitor for advanced breast cancer: double-blind randomized trial showing a dose effect and improved efficacy and tolerability compared with megestrol acetate. J. Clin. Oncol., 1998, 16(2), 453-461.
[http://dx.doi.org/10.1200/JCO.1998.16.2.453] [PMID: 9469328]
[92]
Mason, M.J.; Mayer, B.; Hymel, L.J. Inhibition of Ca2+ transport pathways in thymic lymphocytes by econazole, miconazole, and SKF 96365. Am. J. Physiol., 1993, 264(3 Pt 1), C654-C662.
[http://dx.doi.org/10.1152/ajpcell.1993.264.3.C654] [PMID: 8384787]
[93]
Heel, R.C.; Brogden, R.N.; Speight, T.M.; Avery, G.S. Econazole: a review of its antifungal activity and therapeutic efficacy. Drugs, 1978, 16(3), 177-201.
[http://dx.doi.org/10.2165/00003495-197816030-00001] [PMID: 98315]
[94]
Wyler, R.; Murbach, A.; Möhl, H. An imidazole derivative (Econazole) as an antifungal agent in cell culture systems. In Vitro, 1979, 15(10), 745-750.
[http://dx.doi.org/10.1007/BF02618300] [PMID: 521035]
[95]
Hill, K.; McNulty, S.; Randall, A.D. Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn Schmiedebergs Arch. Pharmacol., 2004, 370(4), 227-237.
[http://dx.doi.org/10.1007/s00210-004-0981-y] [PMID: 15549272]
[96]
Parai, M.K.; Panda, G.; Chaturvedi, V.; Manju, Y.K.; Sinha, S. Thiophene containing triarylmethanes as antitubercular agents. Bioorg. Med. Chem. Lett., 2008, 18(1), 289-292.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.083] [PMID: 17997304]
[97]
Kamal, A.; Srikanth, Y.V.V.; Ramaiah, M.J.; Khan, M.N.A.; Kashi Reddy, M.; Ashraf, M.; Lavanya, A.; Pushpavalli, S.N.; Pal-Bhadra, M. Synthesis, anticancer activity and apoptosis inducing ability of bisindole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorg. Med. Chem. Lett., 2012, 22(1), 571-578.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.080] [PMID: 22104151]
[98]
Lee, S-O.; Abdelrahim, M.; Yoon, K.; Chintharlapalli, S.; Papineni, S.; Kim, K.; Wang, H.; Safe, S. Inactivation of the orphan nuclear receptor TR3/Nur77 inhibits pancreatic cancer cell and tumor growth. Cancer Res., 2010, 70(17), 6824-6836.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1992] [PMID: 20660371]
[99]
Kamal, A.; Khan, M.N.A.; Srinivasa Reddy, K.; Srikanth, Y.V.V.; Kaleem Ahmed, S.; Pranay Kumar, K.; Murthy, U.S.N. An efficient synthesis of bis(indolyl)methanes and evaluation of their antimicrobial activities. J. Enzyme Inhib. Med. Chem., 2009, 24(2), 559-565.
[http://dx.doi.org/10.1080/14756360802292974] [PMID: 18951276]
[100]
Praveen, C. DheenKumar, P.; Muralidharan, D.; Perumal, P.T. Synthesis, antimicrobial and antioxidant evaluation of quinolines and bis(indolyl)methanes. Bioorg. Med. Chem. Lett., 2010, 20(24), 7292-7296.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.075] [PMID: 21071222]
[101]
Damodiran, M.; Muralidharan, D.; Perumal, P.T. Regioselective synthesis and biological evaluation of bis(indolyl)methane derivatized 1,4-disubstituted 1,2,3-bistriazoles as anti-infective agents. Bioorg. Med. Chem. Lett., 2009, 19(13), 3611-3614.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.131] [PMID: 19447624]
[102]
Deng, J.; Sanchez, T.; Neamati, N.; Briggs, J.M. Dynamic pharmacophore model optimization: identification of novel HIV-1 integrase inhibitors. J. Med. Chem., 2006, 49(5), 1684-1692.
[http://dx.doi.org/10.1021/jm0510629] [PMID: 16509584]
[103]
Lézé, M-P.; Le Borgne, M.; Marchand, P.; Loquet, D.; Kogler, M.; Le Baut, G.; Palusczak, A.; Hartmann, R.W. 2- and 3-[(aryl)(azolyl)methyl]indoles as potential non-steroidal aromatase inhibitors. J. Enzyme Inhib. Med. Chem., 2004, 19(6), 549-557.
[http://dx.doi.org/10.1080/14756360400004631] [PMID: 15662958]
[104]
Osborne, C.K. Tamoxifen in the treatment of breast cancer. N. Engl. J. Med., 1998, 339(22), 1609-1618.
[http://dx.doi.org/10.1056/NEJM199811263392207] [PMID: 9828250]
[105]
Day, C.M.; Hickey, S.M.; Song, Y.; Plush, S.E.; Garg, S. Novel tamoxifen nanoformulations for improving breast cancer treatment: Old wine in new bottles. Molecules, 2020, 25(5), 1182.
[http://dx.doi.org/10.3390/molecules25051182] [PMID: 32151063]
[106]
Zhou, W-B.; Ding, Q.; Chen, L.; Liu, X-A.; Wang, S. Toremifene is an effective and safe alternative to tamoxifen in adjuvant endocrine therapy for breast cancer: results of four randomized trials. Breast Cancer Res. Treat., 2011, 128(3), 625-631.
[http://dx.doi.org/10.1007/s10549-011-1556-5] [PMID: 21553116]
[107]
Martin, W.R.; Cheng, F. Repurposing of FDA-approved toremifene to treat COVID-19 by blocking the Spike glycoprotein and NSP14 of SARS-CoV-2. J. Proteome Res., 2020, 19(11), 4670-4677.
[http://dx.doi.org/10.1021/acs.jproteome.0c00397] [PMID: 32907334]
[108]
Harvey, H.A.; Kimura, M.; Hajba, A. Toremifene: an evaluation of its safety profile. Breast, 2006, 15(2), 142-157.
[http://dx.doi.org/10.1016/j.breast.2005.09.007] [PMID: 16289904]
[109]
Gerits, E.; Defraine, V.; Vandamme, K.; De Cremer, K.; De Brucker, K.; Thevissen, K.; Cammue, B.P.A.; Beullens, S.; Fauvart, M.; Verstraeten, N.; Michiels, J. Repurposing toremifene for treatment of oral bacterial infections. Antimicrob. Agents Chemother., 2017, 61(3), e01846-e16.
[http://dx.doi.org/10.1128/AAC.01846-16] [PMID: 27993858]
[110]
Verfaille, C.J.; Vanhoutte, F.P.; Blanchet-Bardon, C.; van Steensel, M.A.; Steijlen, P.M. Oral liarozole vs. acitretin in the treatment of ichthyosis: a phase II/III multicentre, double-blind, randomized, active-controlled study. Br. J. Dermatol., 2007, 156(5), 965-973.
[http://dx.doi.org/10.1111/j.1365-2133.2006.07745.x] [PMID: 17263800]
[111]
Bryson, H.M.; Wagstaff, A.J. Liarozole. Drugs Aging, 1996, 9(6), 478-484.
[http://dx.doi.org/10.2165/00002512-199609060-00010] [PMID: 8972247]
[112]
Ly, L.H.; Zhao, X-Y.; Holloway, L.; Feldman, D. Liarozole acts synergistically with 1α,25-dihydroxyvitamin D3 to inhibit growth of DU 145 human prostate cancer cells by blocking 24-hydroxylase activity. Endocrinology, 1999, 140(5), 2071-2076.
[http://dx.doi.org/10.1210/endo.140.5.6698] [PMID: 10218956]
[113]
Bhushan, M.; Burden, A.D.; McElhone, K.; James, R.; Vanhoutte, F.P.; Griffiths, C.E.M. Oral liarozole in the treatment of palmoplantar pustular psoriasis: a randomized, double-blind, placebo-controlled study. Br. J. Dermatol., 2001, 145(4), 546-553.
[http://dx.doi.org/10.1046/j.1365-2133.2001.04411.x] [PMID: 11703279]
[114]
Levy, G.; Malik, M.; Britten, J.; Gilden, M.; Segars, J.; Catherino, W.H. Liarozole inhibits transforming growth factor-β3--mediated extracellular matrix formation in human three-dimensional leiomyoma cultures. Fertil. Steril., 2014, 102(1), 272-281.e2.
[http://dx.doi.org/10.1016/j.fertnstert.2014.03.042] [PMID: 24825427]
[115]
Van Wauwe, J.; Van Nyen, G.; Coene, M.C.; Stoppie, P.; Cools, W.; Goossens, J.; Borghgraef, P.; Janssen, P.A. Liarozole, an inhibitor of retinoic acid metabolism, exerts retinoid-mimetic effects in vivo. J. Pharmacol. Exp. Ther., 1992, 261(2), 773-779.
[PMID: 1374473]
[116]
Goss, P.E. Pre-clinical and clinical review of vorozole, a new third generation aromatase inhibitor. Breast Cancer Res. Treat., 1998, 49(1)(Suppl. 1), S59-S65.
[http://dx.doi.org/10.1023/A:1006052923468] [PMID: 9797019]
[117]
Wouters, W.; Snoeck, E.; De Coster, R. Vorozole, a specific non-steroidal aromatase inhibitor. Breast Cancer Res. Treat., 1994, 30(1), 89-94.
[http://dx.doi.org/10.1007/BF00682743] [PMID: 7726994]
[118]
Knott, K.K.; McGinley, J.N.; Lubet, R.A.; Steele, V.E.; Thompson, H.J. Effect of the aromatase inhibitor vorozole on estrogen and progesterone receptor content of rat mammary carcinomas induced by 1-methyl-1-nitrosourea. Breast Cancer Res. Treat., 2001, 70(3), 171-183.
[http://dx.doi.org/10.1023/A:1013051107535] [PMID: 11804181]
[119]
Bharate, S.B.; Bharate, J.B.; Khan, S.I.; Tekwani, B.L.; Jacob, M.R.; Mudududdla, R.; Yadav, R.R.; Singh, B.; Sharma, P.R.; Maity, S.; Singh, B.; Khan, I.A.; Vishwakarma, R.A. Discovery of 3,3′-diindolylmethanes as potent antileishmanial agents. Eur. J. Med. Chem., 2013, 63, 435-443.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.024] [PMID: 23517732]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy