Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Exploration of Chemopreventive Potential of Linalool in Targeting Lung Cancer Biomarkers

Author(s): Jyoti Singh and Abha Meena*

Volume 22, Issue 14, 2022

Published on: 12 January, 2022

Page: [1416 - 1424] Pages: 9

DOI: 10.2174/1871530321666210909165426

Price: $65

Abstract

Background: Phytochemicals are used to treat lung cancer in contemporary and traditional medicine. The limitations of known chemotherapeutic drugs such as non-specificity, resistance, and toxicity restrict their use for lung cancer treatment. Therefore, the search for target-specific novel entities is required continuously.

Objective: Linalool, a monoterpene alcohol that possesses antiviral, anti-inflammatory, and antibacterial properties, is present in sweet basil, laurel, jasmine, rosewood, and lavender. Previous reports revealed its anticancer potential against colon, breast, and liver cancer. In this study, linalool's efficacy in targeting biomarkers associated with different lung cancer stages has been investigated.

Methods: The in silico molecular docking analysis was used to explore drug-receptor interaction, and further, linalools cytotoxicity potential was evaluated on lung adenocarcinoma cell line (A549). The toxicity profiling of linalool was done by ADMET analysis.

Results: In the results, Linalool revealed an excellent binding affinity with the selected targets. It showed the highest interaction with BRAF with the binding energy of -5.6 kcal/mol. Furthermore, it successfully interacts within the binding pocket of BRAF, similar to its inhibitor (Sorafenib). In MTT analysis, linalool significantly reduces the percent viability IC30 474.94 ± 43.12, 379.33 ± 49.5, and 183.77 ± 66.7 μM in A549 cell lines for 24, 48, and 72 h, respectively.

Conclusion: These results concluded that linalool possesses chemopreventive potential against lung cancer by interacting or modulating selected biomarkers associated with a lung cancer diagnosis, progression, and proliferation.

Keywords: Phytochemicals, terpenoids, linalool, lung cancer, biomarkers, kinase.

Graphical Abstract

[1]
Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med., 2020, 41(1), 1-24.
[http://dx.doi.org/10.1016/j.ccm.2019.10.001] [PMID: 32008623]
[2]
de Mello, R.A.; Amaral, G.A. Biomarkers for non-small cell lung cancer: from the bench to the bedside. J. Clin. Med., 2020, 9(10), E3376.
[http://dx.doi.org/10.3390/jcm9103376] [PMID: 33096867]
[3]
Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc., 2008, 83(5), 584-594.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[4]
Zappa, C.; Mousa, S.A. Non-small cell lung cancer: current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300.
[http://dx.doi.org/10.21037/tlcr.2016.06.07] [PMID: 27413711]
[5]
Demedts, I.K.; Vermaelen, K.Y.; van Meerbeeck, J.P. Treatment of extensive-stage small cell lung carcinoma: current status and future prospects. Eur. Respir. J., 2010, 35(1), 202-215.
[http://dx.doi.org/10.1183/09031936.00105009] [PMID: 20044461]
[6]
Tang, Y.; Qiao, G.; Xu, E.; Xuan, Y.; Liao, M.; Yin, G. Biomarkers for early diagnosis, prognosis, prediction, and recurrence monitoring of non-small cell lung cancer. OncoTargets Ther., 2017, 10, 4527-4534.
[http://dx.doi.org/10.2147/OTT.S142149] [PMID: 28979144]
[7]
Burotto, M.; Chiou, V.L.; Lee, J.M.; Kohn, E.C. The MAPK pathway across different malignancies: a new perspective. Cancer, 2014, 120(22), 3446-3456.
[http://dx.doi.org/10.1002/cncr.28864] [PMID: 24948110]
[8]
Castellano, E.; Downward, J. RAS interaction with PI3K: more than just another effector pathway. Genes Cancer, 2011, 2(3), 261-274.
[http://dx.doi.org/10.1177/1947601911408079] [PMID: 21779497]
[9]
Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8(8), 627-644.
[http://dx.doi.org/10.1038/nrd2926] [PMID: 19644473]
[10]
Li, L.; Zhao, G.D.; Shi, Z.; Qi, L.L.; Zhou, L.Y.; Fu, Z.X. The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncol. Lett., 2016, 12(5), 3045-3050.
[http://dx.doi.org/10.3892/ol.2016.5110] [PMID: 27899961]
[11]
Chappell, W.H.; Steelman, L.S.; Long, J.M.; Kempf, R.C.; Abrams, S.L.; Franklin, R.A.; Bäsecke, J.; Stivala, F.; Donia, M.; Fagone, P.; Malaponte, G.; Mazzarino, M.C.; Nicoletti, F.; Libra, M.; Maksimovic-Ivanic, D.; Mijatovic, S.; Montalto, G.; Cervello, M.; Laidler, P.; Milella, M.; Tafuri, A.; Bonati, A.; Evangelisti, C.; Cocco, L.; Martelli, A.M.; McCubrey, J.A. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget, 2011, 2(3), 135-164.
[http://dx.doi.org/10.18632/oncotarget.240] [PMID: 21411864]
[12]
Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 2015, 20(12), 21138-21156.
[http://dx.doi.org/10.3390/molecules201219753] [PMID: 26633317]
[13]
Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; Tabolacci, C.; Jadeja, R.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int., 2019, 2019, 8748253.
[http://dx.doi.org/10.1155/2019/8748253] [PMID: 31080832]
[14]
Unuofin, J.O.; Lebelo, S.L. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: an updated review. Oxid. Med. Cell. Longev., 2020, 2020, 1356893.
[http://dx.doi.org/10.1155/2020/1356893] [PMID: 32148647]
[15]
Maione, F.; Cicala, C.; Musciacco, G.; De Feo, V.; Amat, A.G.; Ialenti, A.; Mascolo, N. Phenols, alkaloids and terpenes from medicinal plants with antihypertensive and vasorelaxant activities. A review of natural products as leads to potential therapeutic agents. Nat. Prod. Commun., 2013, 8(4), 539-544.
[http://dx.doi.org/10.1177/1934578X1300800434] [PMID: 23738474]
[16]
Kozioł, A.; Stryjewska, A.; Librowski, T.; Sałat, K.; Gaweł, M.; Moniczewski, A.; Lochyński, S. An overview of the pharmacological properties and potential applications of natural monoterpenes. Mini Rev. Med. Chem., 2014, 14(14), 1156-1168.
[http://dx.doi.org/10.2174/1389557514666141127145820] [PMID: 25429661]
[17]
Mujeeb, F.; Bajpai, P.; Pathak, N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. BioMed Res. Int., 2014, 2014, 497606.
[http://dx.doi.org/10.1155/2014/497606] [PMID: 24900969]
[18]
de Cássia da Silveira e Sá, R.; Andrade, L.N.; de Sousa, D.P. A review on anti-inflammatory activity of monoterpenes. Molecules, 2013, 18(1), 1227-1254.
[http://dx.doi.org/10.3390/molecules18011227] [PMID: 23334570]
[19]
Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; Sharifi-Rad, R.; Ayatollahi, S.A.; Iriti, M. Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules, 2017, 22(1), E70.
[http://dx.doi.org/10.3390/molecules22010070] [PMID: 28045446]
[20]
Moon, J.H.; Watanabe, N.; Ijima, Y.; Yagi, A.; Sakata, K. Cis- and trans-linalool 3,7-oxides and methyl salicylate glycosides and (Z)-3-hexenyl beta-D-glucopyranoside as aroma precursors from tea leaves for oolong tea. Biosci. Biotechnol. Biochem., 1996, 60(11), 1815-1819.
[http://dx.doi.org/10.1271/bbb.60.1815] [PMID: 8987857]
[21]
Magnard, J.L.; Bony, A.R.; Bettini, F.; Campanaro, A.; Blerot, B.; Baudino, S.; Jullien, F. Linalool and linalool nerolidol synthases in roses, several genes for little scent. Plant Physiol. Biochem., 2018, 127, 74-87.
[http://dx.doi.org/10.1016/j.plaphy.2018.03.009] [PMID: 29550664]
[22]
Silva, L.L.; Balconi, L.S.; Gressler, L.T.; Garlet, Q.I.; Sutili, F.J.; Vargas, A.P.C.; Baldisserotto, B.; Morel, A.F.; Heinzmann, B.M. S-(+)- and R-(-)-linalool: a comparison of the in vitro anti-Aeromonas hydrophila activity and anesthetic properties in fish. An. Acad. Bras. Cienc., 2017, 89(1), 203-212.
[http://dx.doi.org/10.1590/0001-3765201720150643] [PMID: 28423080]
[23]
Pereira, I.; Severino, P.; Santos, A.C.; Silva, A.M.; Souto, E.B. Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf. B Biointerfaces, 2018, 171, 566-578.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.001] [PMID: 30098535]
[24]
Celik, S.; Ozkaya, A. Effects of intraperitoneally administered lipoic acid, vitamin E, and linalool on the level of total lipid and fatty acids in guinea pig brain with oxidative stress induced by H2O2. J. Biochem. Mol. Biol., 2002, 35(6), 547-552.
[PMID: 12470587]
[25]
Orchard, A.; van Vuuren, S. Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases. Evid. Based Complement. Alternat. Med., 2017, 2017, 4517971.
[http://dx.doi.org/10.1155/2017/4517971] [PMID: 28546822]
[26]
Bickers, D.; Calow, P.; Greim, H.; Hanifin, J.M.; Rogers, A.E.; Saurat, J.H.; Sipes, I.G.; Smith, R.L.; Tagami, H. A toxicologic and dermatologic assessment of linalool and related esters when used as fragrance ingredients. Food Chem. Toxicol., 2003, 41(7), 919-942.
[http://dx.doi.org/10.1016/S0278-6915(03)00016-4] [PMID: 12804649]
[27]
Prashar, A.; Locke, I.C.; Evans, C.S. Cytotoxicity of lavender oil and its major components to human skin cells. Cell Prolif., 2004, 37(3), 221-229.
[http://dx.doi.org/10.1111/j.1365-2184.2004.00307.x] [PMID: 15144499]
[28]
Iwasaki, K.; Zheng, Y.W.; Murata, S.; Ito, H.; Nakayama, K.; Kurokawa, T.; Sano, N.; Nowatari, T.; Villareal, M.O.; Nagano, Y.N.; Isoda, H.; Matsui, H.; Ohkohchi, N. Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer. World J. Gastroenterol., 2016, 22(44), 9765-9774.
[http://dx.doi.org/10.3748/wjg.v22.i44.9765] [PMID: 27956800]
[29]
Pan, W.; Zhang, G. Linalool monoterpene exerts potent antitumor effects in OECM 1 human oral cancer cells by inducing sub-G1 cell cycle arrest, loss of mitochondrial membrane potential and inhibition of PI3K/AKT biochemical pathway. J. BUON, 2019, 24(1), 323-328.
[PMID: 30941988]
[30]
Rodenak-Kladniew, B.; Castro, A.; Stärkel, P.; De Saeger, C.; García de Bravo, M.; Crespo, R. Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways. Life Sci., 2018, 199, 48-59.
[http://dx.doi.org/10.1016/j.lfs.2018.03.006] [PMID: 29510199]
[31]
Chang, M.Y.; Shieh, D.E.; Chen, C.C.; Yeh, C.S.; Dong, H.P. Linalool induces cell cycle arrest and apoptosis in leukemia cells and cervical cancer cells through CDKIs. Int. J. Mol. Sci., 2015, 16(12), 28169-28179.
[http://dx.doi.org/10.3390/ijms161226089] [PMID: 26703569]
[32]
Ravizza, R.; Gariboldi, M.B.; Molteni, R.; Monti, E. Linalool, a plant-derived monoterpene alcohol, reverses doxorubicin resistance in human breast adenocarcinoma cells. Oncol. Rep., 2008, 20(3), 625-630.
[PMID: 18695915]
[33]
Naqsh e Zahra, S.; Khattak, N.A.; Mir, A. Comparative modeling and docking studies of p16ink4/cyclin D1/Rb pathway genes in lung cancer revealed functionally interactive residue of RB1 and its functional partner E2F1. Theor. Biol. Med. Model., 2013, 10, 1.
[http://dx.doi.org/10.1186/1742-4682-10-1] [PMID: 23276293]
[34]
Sharma, V.; Sharma, P.C.; Kumar, V. In silico molecular docking analysis of natural pyridoacridines as anticancer agents. Adv. Chem., 2016, Article ID 5409387.
[35]
Villalobos, P.; Wistuba, I.I. Lung cancer biomarkers. Hematol. Oncol. Clin. North Am., 2017, 31(1), 13-29.
[http://dx.doi.org/10.1016/j.hoc.2016.08.006] [PMID: 27912828]
[36]
Wang, S.; Niu, X.; Bao, X.; Wang, Q.; Zhang, J.; Lu, S.; Wang, Y.; Xu, L.; Wang, M.; Zhang, J. The PI3K inhibitor buparlisib suppresses osteoclast formation and tumour cell growth in bone metastasis of lung cancer, as evidenced by multimodality molecular imaging. Oncol. Rep., 2019, 41(5), 2636-2646.
[http://dx.doi.org/10.3892/or.2019.7080] [PMID: 30896825]
[37]
Tsay, J.J.; Wu, B.G.; Badri, M.H.; Clemente, J.C.; Shen, N.; Meyn, P.; Li, Y.; Yie, T-A.; Lhakhang, T.; Olsen, E.; Murthy, V.; Michaud, G.; Sulaiman, I.; Tsirigos, A.; Heguy, A.; Pass, H.; Weiden, M.D.; Rom, W.N.; Sterman, D.H.; Bonneau, R.; Blaser, M.J.; Segal, L.N. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am. J. Respir. Crit. Care Med., 2018, 198(9), 1188-1198.
[http://dx.doi.org/10.1164/rccm.201710-2118OC] [PMID: 29864375]
[38]
Tang, Z.; Yu, W.; Zhang, C.; Zhao, S.; Yu, Z.; Xiao, X.; Tang, R.; Xuan, Y.; Yang, W.; Hao, J.; Xu, T.; Zhang, Q.; Huang, W.; Deng, W.; Guo, W. CREB-binding protein regulates lung cancer growth by targeting MAPK and CPSF4 signaling pathway. Mol. Oncol., 2016, 10(2), 317-329.
[http://dx.doi.org/10.1016/j.molonc.2015.10.015] [PMID: 26628108]
[39]
Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int. J. Mol. Sci., 2020, 21(3), 1102.
[http://dx.doi.org/10.3390/ijms21031102] [PMID: 32046099]
[40]
Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26.
[http://dx.doi.org/10.1186/s12943-019-0954-x] [PMID: 30782187]
[41]
Girija, C.R.; Karunakar, P.; Poojari, C.S.; Begum, N.S.; Syed, A.A. Molecular docking studies of curcumin derivatives with multiple protein targets for procarcinogen activating enzyme inhibition. J. Proteomics Bioinform., 2010, 03(06), 200-203.
[http://dx.doi.org/10.4172/jpb.1000140]
[42]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[43]
Alam, S.; Khan, F. Virtual screening, Docking, ADMET and system pharmacology studies on Garcinia caged Xanthone derivatives for anticancer activity. Sci. Rep., 2018, 8(1), 5524.
[http://dx.doi.org/10.1038/s41598-018-23768-7] [PMID: 29615704]
[44]
Kalani, K.; Agarwal, J.; Alam, S.; Khan, F.; Pal, A.; Srivastava, S.K.; Srivastava, S.K. In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra. PLoS One, 2013, 8(9), e74761.
[http://dx.doi.org/10.1371/journal.pone.0074761] [PMID: 24086367]
[45]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[46]
Morré, D.J.; Sun, E.; Geilen, C.; Wu, L.Y.; de Cabo, R.; Krasagakis, K.; Orfanos, C.E.; Morré, D.M. Capsaicin inhibits plasma membrane NADH oxidase and growth of human and mouse melanoma lines. Eur. J. Cancer, 1996, 32A(11), 1995-2003.
[http://dx.doi.org/10.1016/0959-8049(96)00234-1] [PMID: 8943687]
[47]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[48]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[49]
Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43(20), 3714-3717.
[http://dx.doi.org/10.1021/jm000942e] [PMID: 11020286]
[50]
Berridge, MV; Herst, PM; Tan, AS Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. 2005, 11, 127-152.
[51]
Singh, S.; Dubey, V.; Singh, D.K.; Fatima, K.; Ahmad, A.; Luqman, S. Antiproliferative and antimicrobial efficacy of the compounds isolated from the roots of Oenothera biennis L. J. Pharm. Pharmacol., 2017, 69(9), 1230-1243.
[http://dx.doi.org/10.1111/jphp.12753] [PMID: 28555835]
[52]
Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, 2019, 24(13), E2471.
[http://dx.doi.org/10.3390/molecules24132471] [PMID: 31284397]
[53]
Hamzeh, S.; Safari-Faramani, R.; Khatony, A. Effects of aromatherapy with lavender and peppermint essential oils on the sleep quality of cancer patients: a randomized controlled trial. Evid. Based Complement. Alternat. Med., 2020, 2020, 7480204.
[http://dx.doi.org/10.1155/2020/7480204] [PMID: 32308715]
[54]
Usta, J.; Kreydiyyeh, S.; Knio, K.; Barnabe, P.; Bou-Moughlabay, Y.; Dagher, S. Linalool decreases HepG2 viability by inhibiting mitochondrial complexes I and II, increasing reactive oxygen species and decreasing ATP and GSH levels. Chem. Biol. Interact., 2009, 180(1), 39-46.
[http://dx.doi.org/10.1016/j.cbi.2009.02.012] [PMID: 19428344]
[55]
Xing, X.; Ma, J.H.; Fu, Y.; Zhao, H.; Ye, X.X.; Han, Z.; Jia, F.J.; Li, X. Essential oil extracted from Erythrina corallodendron L. leaves inhibits the proliferation, migration, and invasion of breast cancer cells. Medicine (Baltimore), 2019, 98(36), e17009.
[http://dx.doi.org/10.1097/MD.0000000000017009] [PMID: 31490383]
[56]
Gustafson, AM; Soldi, R; Anderlind, C; Scholand, MB; Qian, J; Zhang, X; Cooper, K; Walker, D; McWilliams, A; Liu, G Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci. Translat. Med., 2010, 2(26), 26ra25.
[http://dx.doi.org/10.1126/scitranslmed.3000251]
[57]
Tomasini, P.; Walia, P.; Labbe, C.; Jao, K.; Leighl, N.B. Targeting the KRAS pathway in non-small cell lung cancer. Oncologist, 2016, 21(12), 1450-1460.
[http://dx.doi.org/10.1634/theoncologist.2015-0084] [PMID: 27807303]
[58]
O’Leary, C.G.; Andelkovic, V.; Ladwa, R.; Pavlakis, N.; Zhou, C.; Hirsch, F.; Richard, D.; O’Byrne, K. Targeting BRAF mutations in non-small cell lung cancer. Transl. Lung Cancer Res., 2019, 8(6), 1119-1124.
[http://dx.doi.org/10.21037/tlcr.2019.10.22] [PMID: 32010589]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy