Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Optimal Homotopic Exploration of Features of Cattaneo-Christov Model in Second Grade Nanofluid Flow via Darcy-Forchheimer Medium Subject to Viscous Dissipation and Thermal Radiation

Author(s): Ghulam Rasool, Anum Shafiq*, Yu-Ming Chu, Muhammad Shoaib Bhutta and Amjad Ali

Volume 25, Issue 14, 2022

Published on: 04 January, 2022

Page: [2485 - 2497] Pages: 13

DOI: 10.2174/1386207324666210903144447

Price: $65

Abstract

Introduction: In this article, Optimal Homotopy Analysis Method (oHAM) is used for the exploration of the features of the Cattaneo-Christov model in viscous and chemically reactive nanofluid flow through a porous medium with stretching velocity at the solid/sheet surface and free stream velocity at the free surface.

Methods: The two important aspects, Brownian motion and Thermophoresis, are considered. Thermal radiation is also included in the present model. Based on the heat and mass flux, the Cattaneo- Christov model is implemented on the Temperature and Concentration distributions. The governing Partial Differential Equations (PDEs) are converted into Ordinary Differential Equations (ODEs) using similarity transformations. The results are achieved using the optimal homotopy analysis method (oHAM). The optimal convergence and residual errors have been calculated to preserve the validity of the model.

Results: The results are plotted graphically to see the variations in three main profiles. i.e. momentum, temperature and concentration profile.

Conclusion: The outcomes indicate that skin friction enhances due to the implementation of the Darcy medium. It is also noted that the relaxation time parameter results in enhancement of the temperature distribution. Thermal radiation enhances the temperature distribution and so is the case with skin friction.

Keywords: Forchheimer medium, viscous dissipation, stretching surface, nanofluid, cattaneo-christov model, oHAM.

[1]
Choi, S.U.S.; Eastman, J. Enhancing thermal conductivity of fluids with nanoparticles. The Proceedings of the ASME International Mechanical Engineering Congress and Exposition, ASME, 1995, pp. 99-105.
[2]
Buongiorno, J. Convective transport in nanofluids. J. Heat Transfer, 2006, 128, 240-250.
[http://dx.doi.org/10.1115/1.2150834]
[3]
Hayat, T.; Muhammad, T.; Alsaedi, A.; Ahmad, B. Three-dimensional flow of nanofluid with Cattaneo–Christov double diffusion. Results Phys., 2016, 6, 897-903.
[http://dx.doi.org/10.1016/j.rinp.2016.10.017]
[4]
Masood, S.; Farooq, M.; Ahmad, S.; Anjum, A.; Mir, N.A. Investigation of viscous dissipation in the nanofluid flow with a Forchheimer porous medium: Modern transportation of heat and mass. Eur. Phys. J. Plus, 2019, 134, 178.
[http://dx.doi.org/10.1140/epjp/i2019-12519-0]
[5]
Muhammad, N.; Nadeem, S.; Mustafa, T. Squeezed flow of a nanofluid with Cattaneo–Christov heat and mass fluxes. Results Phys., 2017, 7, 862-869.
[http://dx.doi.org/10.1016/j.rinp.2016.12.028]
[6]
Ali, B.; Hussain, S.; Shafique, M.; Habib, D.; Rasool, G. Analyzing the interaction of hybrid base liquid C2H6O2-H2O with hybrid nano-material Ag-MoS2 for unsteady rotational flow referred to an elongated surface using modified Buongiorno’s model: FEM simulation. Math. Comput. Simul., 2021, 190, 57-74.
[http://dx.doi.org/10.1016/j.matcom.2021.05.012]
[7]
Rasool, G.; Khan, W.; Bilal, S.; Khan, I. MHD squeezed Darcy–Forchheimer nanofluid flowbetween two h–distance apart horizontal plates. Open Phys., 2020, 18(1), 1100-1107.
[http://dx.doi.org/10.1515/phys-2020-0191]
[8]
Rasool, G.; Shafiq, A. Numerical exploration of the features of thermally enhanced chemically reactive radiative powell-eyring nanofluid flow via darcy medium over non-linearly stretching surface affected by a transverse magnetic field and convective boundary conditions. Appl. Nanosci., 2020.
[http://dx.doi.org/10.1007/s13204-020-01625-2]
[9]
Rasool, G.; Wakif, A. Numerical spectral examination of EMHD mixed convective flow of secondgrade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno’s nanofluid model. J. Therm. Anal. Calorim., 2020, 143, 2379-2393.
[http://dx.doi.org/10.1007/s10973020-09865-8]
[10]
Cattaneo, C. Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 1948, 3, 83-101.
[11]
Christov, C.I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech. Res. Commun., 2009, 36, 481-6.
[http://dx.doi.org/10.1016/j.mechrescom.2008.11.003]
[12]
Straughan, B. Thermal convection with the Cattaneo–Christov model. Inter. J. Heat Mass Transfer, 2010, 53(1-3), 95-98.
[13]
Tibullo, V.; Zampoli, V. A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech. Res. Commun., 2011, 38(1), 77-79.
[http://dx.doi.org/10.1016/j.mechrescom.2010.10.008]
[14]
Waqas, M.; Hayat, T.; Shehzad, S.A.; Alsaedi, A. Analysis of forced convective modified Burgers liquid flow considering Cattaneo-Christov double diffusion. Results Phys., 2018, 8, 908913.
[http://dx.doi.org/10.1016/j.rinp.2017.12.069]
[15]
Khan, M.; Shahid, A.; Malik, M.Y.; Salahuddin, T. Thermal and concentration diffusion in Jeffery nanofluid flow over an inclined stretching sheet: A generalized Fourier’s and Fick’s perspective. J. Mol. Liq., 2018, 251, 7-14.
[http://dx.doi.org/10.1016/j.molliq.2017.12.001]
[16]
Forchheimer, P. Wasserbewegung durch boden. Zeitschrift Ver. D. Ing., 1901, 45, 1782-1788.
[17]
Hayat, T.; Haider, F.; Muhammad, T.; Alsaedi, A. Darcy-Forchheimer flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. PLoS One, 2017, 12(4), e0174938.
[http://dx.doi.org/10.1371/journal.pone.0174938] [PMID: 28380014]
[18]
Srinivasacharya, D.; Kumar, P.V. Effect of thermal radiation on mixed convection of a nanofluid from an inclined wavy surface embedded in a non-Darcy porous medium with wall heat flux. Propulsion Power Res., 2018, 7(2), 147-157.
[http://dx.doi.org/10.1016/j.jppr.2018.05.002]
[19]
Huang, C.J. Influence of non-Darcy and MHD on free convection of non-Newtonian fluids over a vertical permeable plate in a porous medium with soret/dufour effects and thermal radiation. Int. J. Therm. Sci., 2018, 130, 256-263.
[http://dx.doi.org/10.1016/j.ijthermalsci.2018.04.019]
[20]
Rasool, G.; Zhang, T. Darcy-Forchheimer nanofluidic flow manifested with Cattaneo-Christov theory of heat and mass flux over non-linearly stretching surface. PLoS One, 2019, 14(8), e0221302.
[http://dx.doi.org/10.1371/journal.pone.0221302] [PMID: 31430309]
[21]
Chamkha, A.J.; Al-Mudhaf, A.; Pop, I. Effect of Heat Generation or Absorption on Thermophoretic Free Convection Boundary Layer From a Vertical Flat Plate Embedded in a Porous Medium. Int. Commun. Heat Mass Transf., 2006, 33, 1096-1102.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2006.04.009]
[22]
Ghalambaz, M.; Behseresht, A.; Behseresht, J.; Chamkha, A.J. Effects of nanoparticles diameter and concentration on natural convection of the Al2O3-water nanofluids considering variable thermal conductivity around a vertical cone in porous media. Adv. Powder Technol., 2015, 26, 224-235.
[http://dx.doi.org/10.1016/j.apt.2014.10.001]
[23]
Mehryan, S.A.M.; Kashkooli, F.M.; Ghalambaz, M.; Chamkha, A.J. Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity. Adv. Powder Technol., 2017, 28, 2295-2305.
[http://dx.doi.org/10.1016/j.apt.2017.06.011]
[24]
Ali, B.; Rasool, G.; Hussain, S.; Baleanu, D.; Bano, S. Finite element study of magnetohydrodynamics (MHD) and activation energy in darcy-forchheimer rotating flow of casson carreau nanofluid. Processes (Basel), 2020, 8, 1185.
[http://dx.doi.org/10.3390/pr8091185]
[25]
Rasool, G.; Shafiq, A.; Baleanu, D. Consequences of soret-dufour effects, thermal radiation, and binary chemical reaction on darcy forchheimer flow of nanofluids. Symmetry (Basel), 2020, 12(1), 1421.
[http://dx.doi.org/10.3390/sym12091421]
[26]
Rasool, G.; Shafiq, A.; Khalique, C.M.; Zhang, T. Magnetohydrodynamic Darcy Forchheimer nanofluid flow over nonlinear stretching sheet. Phys. Scr., 2019, 94(10), 105221.
[http://dx.doi.org/10.1088/1402-4896/ab18c8]
[27]
Shafiq, A.; Rasool, G.; Masood, C.M. Significance of thermal slip and convective boundary conditions on three dimensional rotating Darcy-Forchheimer nanofluid flow. Symmetry (Basel), 2020, 12(4), 741.
[http://dx.doi.org/10.3390/sym12050741]
[28]
Tan, W.C.; Masuoka, T. Stokes first problem for second grade fluid in a porous half space. Int. J. Non-linear Mech., 2005, 40, 515-522.
[http://dx.doi.org/10.1016/j.ijnonlinmec.2004.07.016]
[29]
Jamil, M.; Rauf, A.; Fetecau, C.; Khan, N.A. Helical flows of second grade fluid due to constantly accelerated shear stresses. Commun. Nonlinear Sci. Numer. Simul., 2011, 16, 1959-1969.
[http://dx.doi.org/10.1016/j.cnsns.2010.09.003]
[30]
Ramzan, M.; Bilal, M. Time dependent MHD nano-second grade fluid flow induced by permeable vertical sheet with mixed convection and thermal radiation. PLoS One, 2015, 10(5), e0124929.
[http://dx.doi.org/10.1371/journal.pone.0124929] [PMID: 25962063]
[31]
Hayat, T.; Muhammad, T.; Alsaedi, A.; Mustafa, M. A comparative study for flow of viscoelastic fluids with Cattaneo-Christov heat flux. PLoS One, 2016, 11(5), e0155185.
[http://dx.doi.org/10.1371/journal.pone.0155185] [PMID: 27176779]
[32]
Hayat, T.; Ullah, I.; Muhammad, T.; Alsaedi, A. Magnetohydrodynamic (MHD) three-dimensional flow of second grade nanofluid by a convectively heated exponentially stretching surface. J. Mol. Liq., 2016, 220, 1004-1012.
[http://dx.doi.org/10.1016/j.molliq.2016.05.024]
[33]
Liao, S. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul., 2010, 15(8), 2003-2016.
[http://dx.doi.org/10.1016/j.cnsns.2009.09.002]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy