Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Antitumor Activity of Ginger against Colorectal Cancer Induced by Dimethylhydrazine in Rats

Author(s): Mohammed A. Abdel-Rasol, Nadia M. El-Beih, Shaymaa S. Yahya and Wael M. El-Sayed*

Volume 22, Issue 8, 2022

Published on: 03 September, 2021

Page: [1601 - 1610] Pages: 10

DOI: 10.2174/1871520621666210903112813

Price: $65

Abstract

Background: Bowl or colorectal cancer (CRC) is the third most common type of cancer with about two million new cases every year. CRC is the second leading cause of cancer related mortalities.

Objective: The study aims to evaluate the anticancer activity of ethanolic Ginger Extract (GE) in HCT-116 colon cells and colorectal tumors induced by dimethylhydrazine (DMH).

Methods: The antiproliferative activity was measured by MTT assay and the gene expression was assessed by q-RTPCR. For the antitumor study, rats were divided into five groups in random; control, group two was orally treated with 300 mg/kg of GE for 21 weeks, group three was s.c. injected with DMH (20 mg/kg) for 9 weeks, and groups four and five were treated with DMH and then treated with cisplatin (2.5 mg/kg, i.p) or GE, respectively, for 21 weeks.

Results: GE had a significant antiproliferative activity with IC50~ 12.5 µg/ml. GE induced both extrinsic and intrinsic apoptotic pathways. GE induced the expression of FasL, TRAIL, p53, and caspase-8 and downregulated Bcl-2 and survivin genes. Treatment of rats with DMH resulted in 100% tumor incidence and 2.3 tumors/rat. DMH significantly elevated the serum ALT, urea, and creatinine and significantly decreased the body weight gain. DMH also caused significant reductions in the hepatic GSH level, and the activities of catalase, SOD, GST, and GR in the liver as well as the renal GSH content and γ-GT activity. The colon from rats insulted with DMH showed adenomatous polyps with polymorphism and mitosis. The mucosa and submucosa were infested with inflammatory cells while serosa and muscularis were devoid from these cells. However, the muscularis was infiltrated with cystic formation, anaplastic changes, and hemorrhage. GE was able to alleviate all the previous deleterious effects of DMH and it was superior to cisplatin in its ameliorative effects. It did so without eliciting hepatotoxicity or nephrotoxicity which were shown in the group treated with DMH and cisplatin.

Conclusion: This study proved that the antitumor activity of GE against the DMH induced-CRC is superior to cisplatin. GE was also safer than cisplatin and did not elicit hepatotoxicity or nephrotoxicity. GE induced apoptosis and has carcinostatic activity.

Keywords: Colorectal cancer, HCT-116, apoptosis, tumor incidence, oxidative stress, nephrotoxicity, hepatotoxicity.

Graphical Abstract

[1]
Hamiza, O.O.; Rehman, M.U.; Tahir, M.; Khan, R.; Khan, A.Q.; Lateef, A.; Ali, F.; Sultana, S. Amelioration of 1,2 Dimethylhydrazine (DMH) induced colon oxidative stress, inflammation and tumor promotion response by tannic acid in Wistar rats. Asian Pac. J. Cancer Prev., 2012, 13(9), 4393-4402.
[http://dx.doi.org/10.7314/APJCP.2012.13.9.4393] [PMID: 23167349]
[2]
World Health Organization. Ten statistical highlights in global public health; World Health Statistics: Geneva, 2008.
[3]
Kim, H.J.; Kim, S.K.; Kim, B.S.; Lee, S.H.; Park, Y.S.; Park, B.K.; Kim, S.J.; Kim, J.; Choi, C.; Kim, J.S.; Cho, S.D.; Jung, J.W.; Roh, K.H.; Kang, K.S.; Jung, J.Y. Apoptotic effect of quercetin on HT-29 colon cancer cells via the AMPK signaling pathway. J. Agric. Food Chem., 2010, 58(15), 8643-8650.
[http://dx.doi.org/10.1021/jf101510z] [PMID: 20681654]
[4]
El-Khadragy, M.F.; Nabil, H.M.; Hassan, B.N.; Tohamy, A.A.; Waaer, H.F.; Yehia, H.M.; Alharbi, A.M.; Moneim, A.E.A. Bone marrow cell therapy on 1,2-dimethylhydrazine (DMH)-induced colon cancer in rats. Cell. Physiol. Biochem., 2018, 45(3), 1072-1083.
[http://dx.doi.org/10.1159/000487349] [PMID: 29439258]
[5]
Femia, A.P.; Luceri, C.; Toti, S.; Giannini, A.; Dolara, P.; Caderni, G. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats. BMC Cancer, 2010, 10(10), 194-206.
[http://dx.doi.org/10.1186/1471-2407-10-194] [PMID: 20459814]
[6]
Campbell, P.I.; al-Nasser, I.A. Renal insufficiency induced by cisplatin in rats is ameliorated by cyclosporin A. Toxicol., 1996, 114(1), 11-17.
[http://dx.doi.org/10.1016/S0300-483X(96)03411-7] [PMID: 8931756]
[7]
Ali, B.H.; Al Moundhri, M.S. Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem. Toxicol., 2006, 44(8), 1173-1183.
[http://dx.doi.org/10.1016/j.fct.2006.01.013] [PMID: 16530908]
[8]
Aisner, J.; Jacobs, M.; Sinabaldi, V.; Gray, W.; Eisenberger, M. Chemoradiotherapy for the treatment of regionally advanced head and neck cancers. Semin. Oncol., 1994, 21(5)(Suppl. 12), 35-44.
[PMID: 7992065]
[9]
Kazeem, M.I.; Akanji, M.A.; Hafizur, R.M.; Choudhary, M.I. Antiglycation, antioxidant and toxicological potential of polyphenol extracts of alligator pepper, ginger and nutmeg from Nigeria. Asian Pac. J. Trop. Biomed., 2012, 2(9), 727-732.
[http://dx.doi.org/10.1016/S2221-1691(12)60218-4] [PMID: 23570003]
[10]
Ghasemzadeh, A.; Jaafar, H.Z.; Rahmat, A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules, 2010, 15(6), 4324-4333.
[http://dx.doi.org/10.3390/molecules15064324] [PMID: 20657444]
[11]
Surh, Y.J.; Park, K.K.; Chun, K.S.; Lee, L.J.; Lee, E.; Lee, S.S. Anti-tumor-promoting activities of selected pungent phenolic substances present in ginger. J. Environ. Pathol. Toxicol. Oncol., 1999, 18(2), 131-139.
[PMID: 15281225]
[12]
Emerit, J.; Beaumont, C.; Trivin, F. Iron metabolism, free radicals, and oxidative injury. Biomed. Pharmacother., 2001, 55(6), 333-339.
[http://dx.doi.org/10.1016/S0753-3322(01)00068-3] [PMID: 11478586]
[13]
Aggarwal, B.B.; Shishodia, S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol., 2006, 71(10), 1397-1421.
[http://dx.doi.org/10.1016/j.bcp.2006.02.009] [PMID: 16563357]
[14]
Masuda, T.; Jitoe, A.; Mabry, T.J. Isolation and structure determination of cassumu-narins A, B, C: new anti-inflammatory antioxidants from a tropical ginger, Zingiber cassummar. J. Am. Oil Chem. Soc., 1995, 72(9), 1053-1057.
[http://dx.doi.org/10.1007/BF02660721]
[15]
Surh, Y.J.; Lee, E.; Lee, J.M. Chemoprotective properties of some pungent ingredients present in red pepper and ginger. Mutat. Res., 1998, 402(1-2), 259-267.
[http://dx.doi.org/10.1016/S0027-5107(97)00305-9] [PMID: 9675305]
[16]
Katiyar, S.K.; Agarwal, R.; Mukhtar, H. Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of Zingiber officinale rhizome. Cancer Res., 1996, 56(5), 1023-1030.
[PMID: 8640756]
[17]
Repetto, G.; del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc., 2008, 3(7), 1125-1131.
[http://dx.doi.org/10.1038/nprot.2008.75] [PMID: 18600217]
[18]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[19]
Thangaraj, K.; Natesan, K.; Palani, M.; Vaiyapuri, M. Orientin, a flavanoid, mitigates 1, 2 dimethylhydrazine-induced colorectal lesions in Wistar rats fed a high-fat diet. Toxicol. Rep., 2018, 5(1), 977-987.
[http://dx.doi.org/10.1016/j.toxrep.2018.09.004] [PMID: 30319939]
[20]
Abdel-Rasol, M.; El-Beih, N.M.; Yahya, S.M.M.; Ismail, M.A.; El-Sayed, W.M. The antitumor activity of a novel fluorobenzamidine against dimethylhydrazine-induced colorectal cancer in rats. Anticancer. Agents Med. Chem., 2020, 20(4), 450-463.
[http://dx.doi.org/10.2174/1871520619666191021162411] [PMID: 31736450]
[21]
Patton, C.J.; Crouch, S.R. Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Anal. Chem., 1977, 49(3), 464-469.
[http://dx.doi.org/10.1021/ac50011a034]
[22]
Bowers, L.D. Kinetic serum creatinine assays I. The role of various factors in determining specificity. Clin. Chem., 1980, 26(5), 551-554.
[http://dx.doi.org/10.1093/clinchem/26.5.551] [PMID: 7261300]
[23]
Breuer, J. Report on the symposium Drug effects in Clinical Chemistry Methods. Eur. J. Clin. Chem. Clin. Biochem., 1996, 34(4), 385-386.
[PMID: 8704059]
[24]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[25]
Nishikimi, M.; Appaji, N.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun., 1972, 46(2), 849-854.
[http://dx.doi.org/10.1016/S0006-291X(72)80218-3] [PMID: 4400444]
[26]
Goldberg, D.M.; Spooner, R.J. Assay of glutathione reductase., 1983.
[27]
Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem., 1974, 249(22), 7130-7139.
[http://dx.doi.org/10.1016/S0021-9258(19)42083-8] [PMID: 4436300]
[28]
van Doorn, R.; Leijdekkers, C.M.; Henderson, P.T. Synergistic effects of phorone on the hepatotoxicity of bromobenzene and paracetamol in mice. Toxicol., 1978, 11(3), 225-233.
[http://dx.doi.org/10.1016/S0300-483X(78)91389-6] [PMID: 569914]
[29]
Heerspink, W.; Hafkenscheid, J.C.; Siepel, H.; van der Ven-Jongekrÿg, J.; Dijt, C.C. Temperature-converting factors for enzymes: comparison of methods. Enzyme, 1980, 25(5), 333-341.
[http://dx.doi.org/10.1159/000459276] [PMID: 6108854]
[30]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[31]
Bancroft, J.; Stevens, A.; Turner, D. Theory and practice of histological techniques In: 4th ed; Churchill living stone, New York Edinburgh, Madrid, San Francisco; , 1996.
[32]
Bode, A.; Dong, Z.G. Ginger is an effective inhibitor of HCT 116 human colorectal carcinoma in vivo.Cancer epidemiology biomarkers & prevention; Amer Assoc Cancer Research: 615 chestnut st, 17th floor, Philadelphia, PA 19106-4404 USA, 200312, , (11)-.
[33]
Harliansyah, N.A.; Wan, Z.W.; Yasmin, A.M. Antiproliferative, antioxidant and apoptosis effects of Zingiber officinale and 6-Gingerol on HepG2 cells. Asian J Biochem, 2007, 2(6), 421-426.
[http://dx.doi.org/10.3923/ajb.2007.421.426]
[34]
Huerta, S.; Harris, D.M.; Jazirehi, A.; Bonavida, B.; Elashoff, D.; Livingston, E.H.; Heber, D. Gene expression profile of metastatic colon cancer cells resistant to cisplatin-induced apoptosis. Int. J. Oncol., 2003, 22(3), 663-670.
[PMID: 12579322]
[35]
Peng, Z.H.; Xing, T.H.; Qiu, G.Q.; Tang, H.M. Relationship between Fas/FasL expression and apoptosis of colon adenocarcinoma cell lines. World J. Gastroenterol., 2001, 7(1), 88-92.
[http://dx.doi.org/10.3748/wjg.v7.i1.88] [PMID: 11819739]
[36]
Elkady, A.I.; Hussein, R.A.; Abu-Zinadah, O.A. Differential control of growth, apoptotic activity and gene expression in human colon cancer cells by extracts derived from medicinal herbs, Rhazya stricta and Zingiber officinale and their combination. World J. Gastroenterol., 2014, 20(41), 15275-15288.
[http://dx.doi.org/10.3748/wjg.v20.i41.15275] [PMID: 25386076]
[37]
Gurbuz, V.; Yilmaz, A.; Gokco, O.G.; Konac, E. Apoptotic effects of cisplatin on human colon cancer cell line (HT29). Drug Metab. Rev., 2011, 42, 196-197.
[38]
Gonzalvez, F.; Ashkenazi, A. New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene, 2010, 29(34), 4752-4765.
[http://dx.doi.org/10.1038/onc.2010.221] [PMID: 20531300]
[39]
Hotchkiss, R.S.; Strasser, A.; McDunn, J.E.; Swanson, P.E. Cell death. N. Engl. J. Med., 2009, 361(16), 1570-1583.
[http://dx.doi.org/10.1056/NEJMra0901217] [PMID: 19828534]
[40]
Porter, A.G.; Jänicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ., 1999, 6(2), 99-104.
[http://dx.doi.org/10.1038/sj.cdd.4400476] [PMID: 10200555]
[41]
Szliszka, E.; Mazur, B.; Zydowicz, G.; Czuba, Z.P.; Król, W. TRAIL-induced apoptosis and expression of death receptor TRAIL-R1 and TRAIL-R2 in bladder cancer cells. Folia Histochem. Cytobiol., 2009, 47(4), 579-585.
[PMID: 20430723]
[42]
Eisenberg-Lerner, A.; Bialik, S.; Simon, H.U.; Kimchi, A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ., 2009, 16(7), 966-975.
[http://dx.doi.org/10.1038/cdd.2009.33] [PMID: 19325568]
[43]
Ghatage, D.D.; Gosavi, S.R.; Ganvir, S.M.; Hazarey, V.K. Apoptosis: Molecular mechanism. J. Orofac. Sci., 2012, 4(2), 103-112.
[http://dx.doi.org/10.4103/0975-8844.106199]
[44]
Hyun, H.B.; Lee, W.S.; Go, S.I.; Nagappan, A.; Park, C.; Han, M.H.; Hong, S.H.; Kim, G.; Kim, G.Y.; Cheong, J.; Ryu, C.H.; Shin, S.C.; Choi, Y.H. The flavonoid morin from Moraceae induces apoptosis by modulation of Bcl-2 family members and Fas receptor in HCT 116 cells. Int. J. Oncol., 2015, 46(6), 2670-2678.
[http://dx.doi.org/10.3892/ijo.2015.2967] [PMID: 25892545]
[45]
Kumazaki, M.; Shinohara, H.; Taniguchi, K.; Yamada, N.; Ohta, S.; Ichihara, K.; Akao, Y. Propolis cinnamic acid derivatives induce apoptosis through both extrinsic and intrinsic apoptosis signaling pathways and modulate of miRNA expression. Phytomedi., 2014, 21(8-9), 1070-1077.
[http://dx.doi.org/10.1016/j.phymed.2014.04.006] [PMID: 24854570]
[46]
Elmegeed, G.A.; Yahya, S.M.; Abd-Elhalim, M.M.; Mohamed, M.S.; Mohareb, R.M.; Elsayed, G.H. Evaluation of heterocyclic steroids and curcumin derivatives as anti-breast cancer agents: Studying the effect on apoptosis in MCF-7 breast cancer cells. Steroids, 2016, 115, 80-89.
[http://dx.doi.org/10.1016/j.steroids.2016.08.014] [PMID: 27553725]
[47]
Yahya, S.M.M.; Abdelhamid, A.O.; Abd-Elhalim, M.M.; Elsayed, G.H.; Eskander, E.F. The effect of newly synthesized progesterone derivatives on apoptotic and angiogenic pathway in MCF-7 breast cancer cells. Steroids, 2017, 126, 15-23.
[http://dx.doi.org/10.1016/j.steroids.2017.08.002] [PMID: 28797724]
[48]
Bindhu, T.; Jagadeeshwar, K.; Goverdhan, P. Pharmacological evaluation of Sesbania grandiflora for anticolon cancer activity in 1,2-dimethylhydrazine induced colon cancer. J. Glob. Trends Pharm. Sci., 2017, 8(1), 3727-3741.
[49]
Vinothkumar, R.; Vinothkumar, R.; Sudha, M.; Nalini, N. Chemopreventive effect of zingerone against colon carcinogenesis induced by 1,2-dimethylhydrazine in rats. Eur. J. Cancer Prev., 2014, 23(5), 361-371.
[http://dx.doi.org/10.1097/CEJ.0b013e32836473ac] [PMID: 23903760]
[50]
Sivaranjani, A.; Sivagami, G.; Nalini, N. Chemopreventive effect of carvacrol on 1,2-dimethylhydrazine induced experimental colon carcinogenesis. J. Cancer Res. Ther., 2016, 12(2), 755-762.
[http://dx.doi.org/10.4103/0973-1482.154925] [PMID: 27461646]
[51]
Bekusova, V.V.; Patsanovskii, V.M.; Nozdrachev, A.D.; Trashkov, A.P.; Artemenko, M.R.; Anisimov, V.N. Metformin prevents hormonal and metabolic disturbances and 1,2-dimethylhydrazine-induced colon carcinogenesis in non-diabetic rats. Cancer Biol. Med., 2017, 14(1), 100-107.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0088] [PMID: 28443209]
[52]
Mariyappan, P.; Kalaiyarasu, T.; Manju, V. Effect of eriodictyol on preneoplastic lesions, oxidative stress and bacterial enzymes in 1,2-dimethyl hydrazine-induced colon carcinogenesis. Toxicol. Res. (Camb.), 2017, 6(5), 678-692.
[http://dx.doi.org/10.1039/C7TX00074J] [PMID: 30090535]
[53]
Li, Q.C.; Liang, Y.; Hu, G.R.; Tian, Y. Enhanced therapeutic efficacy and amelioration of cisplatin-induced nephrotoxicity by quercetin in 1,2-dimethyl hydrazine-induced colon cancer in rats. Indian J. Pharmacol., 2016, 48(2), 168-171.
[http://dx.doi.org/10.4103/0253-7613.178834] [PMID: 27127319]
[54]
Saeedifar, A.M.; Mosayebi, G.; Ghazavi, A.; Ganji, A. Synergistic evaluation of ginger and licorice extracts in a mouse model of colorectal cancer. Nutr. Cancer, 2021, 73(6), 1068-1078.
[http://dx.doi.org/10.1080/01635581.2020.1784440] [PMID: 32586136]
[55]
Abd-Elmoneim, M.A.; Bakar, A.A.; Awad, I.M.; Mohamed, E.M.; Moharib, S.A. Anticarcinogenic effect of Raphanus sativus on 1,2-dimethylhydrazine (DMH)-induced colon cancer in rats. Egypt. J. Hosp. Med., 2013, 51, 473-486.
[56]
Khan, M.A.; Tania, M.; Zhang, D.Z.; Chen, H. Antioxidant enzymes and cancers. Chin. J. Cancer Res., 2010, 22(2), 87-92.
[http://dx.doi.org/10.1007/s11670-010-0087-7]
[57]
Ragunath, M.; Prabu, T.; Nadanasabapathy, S.; Revathi, R.; Manju, V. Synergistic and individual effects of umbelliferone with 5-flurouracil on the status of lipid peroxidation and antioxidant defense against 1,2-dimethylhydrazine induced rat colon carcinogenesis. Biomed Prev Nutr, 2013, 3(1), 74-82.
[http://dx.doi.org/10.1016/j.bionut.2012.10.011]
[58]
Selvaraju, M.; Nirmala, P.; Kumar, A. Role of Chlorella pyrenoidosa in 1,2-dimethylhydrazine (DMH)-induced colorectal carcinoma in male Wistar rats. Int J Curr Med Sci, 2018, 8(2), 397-392.
[59]
Manju, V.; Nalini, N. Effect of ginger on lipid peroxidation and antioxidant status in 1,2- dimethyl hydrazine induced experimental colon carcinogenesis. J. Biochem. Technol., 2010, 2(2), 161-167.
[60]
Sreedharan, V.; Venkatachalam, K.K.; Namasivayam, N. Effect of morin on tissue lipid peroxidation and antioxidant status in 1, 2-dimethylhydrazine induced experimental colon carcinogenesis. Invest. New Drugs, 2009, 27(1), 21-30.
[http://dx.doi.org/10.1007/s10637-008-9136-1] [PMID: 18496650]
[61]
Balaji, C.; Muthukumaran, J.; Nalini, N. Chemopreventive effect of sinapic acid on 1,2-dimethylhydrazine-induced experimental rat colon carcinogenesis. Hum. Exp. Toxicol., 2014, 33(12), 1253-1268.
[http://dx.doi.org/10.1177/0960327114522501] [PMID: 24532707]
[62]
Soroka, Y.; Lisnychuk, N.; Demkiv, I.; Oleshchuk, O. Sorption correction of nephron sub-microscopic changes caused by neoplastic chronic intoxication with the application of cytostatic therapy. Georgian Med. News, 2017, 262(262), 20-24.
[PMID: 28252422]
[63]
Mohamed, N.Z.; Abd-Alla, H.I.; Aly, H.F.; Mantawy, M.; Ibrahim, N.; Hassan, S.A. CCl4-induced hepatonephrotoxicity: Protective effect of nutraceuticals on inflammatory factors and antioxidative status in rat. J. Appl. Pharm. Sci., 2014, 4(2), 87-100.
[64]
A v, V.; K, R.R.; Kurrey, N.K.; K A, A.A.; G, V. Protective effects of phenolics rich extract of ginger against Aflatoxin B1-induced oxidative stress and hepatotoxicity. Biomed. Pharmacother., 2017, 91, 415-424.
[http://dx.doi.org/10.1016/j.biopha.2017.04.107] [PMID: 28475920]
[65]
van der Vijgh, W.J.; Peters, G.J. Protection of normal tissues from the cytotoxic effects of chemotherapy and radiation by amifostine (Ethyol): preclinical aspects. Semin. Oncol., 1994, 21(5)(Suppl. 11), 2-7.
[PMID: 7973774]
[66]
Ansil, P.N.; Prabha, S.P.; Nitha, A.; Latha, M.S. Chemopreventive effect of Amorphophallus campanulatus (Roxb.) blume tuber against aberrant crypt foci and cell proliferation in 1, 2-dimethylhydrazine induced colon carcinogenesis. Asian Pac. J. Cancer Prev., 2013, 14(9), 5331-5339.
[http://dx.doi.org/10.7314/APJCP.2013.14.9.5331] [PMID: 24175821]
[67]
Dadkhah, A.; Fatemi, F.; Malayeri, M.; Jahanbani, A.; Batebi, F.; Ghorbanpour, Z. The chemopreventive effect of Nigella sativa on 1,2-dimethylhydrazine-induced colon tumor. Ind J Pharma Edu Res, 2014, 48(1), 39-48.
[http://dx.doi.org/10.5530/ijper.48.1.7]
[68]
Zaafar, D.K.; Zaitone, S.A.; Moustafa, Y.M. Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation. PLoS One, 2014, 9(6)e100562
[http://dx.doi.org/10.1371/journal.pone.0100562] [PMID: 24971882]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy