Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

A Review: Discovering 1,3,4-oxadiazole and Chalcone Nucleus for Cytotoxicity / EGFR Inhibitory Anticancer Activity

Author(s): Shital Patil* and Shashikant Bhandari

Volume 22, Issue 5, 2022

Published on: 04 January, 2022

Page: [805 - 820] Pages: 16

DOI: 10.2174/1389557521666210902160644

Price: $65

Abstract

Introduction: Cancer is reported to be one of the most life-threatening diseases. Major limitations of currently used anticancer agents are drug resistance, very small therapeutic index, and severe, multiple side effects.

Objective: The current scenario necessitates developing new anticancer agents, acting on novel targets for effectively controlling cancer. The epidermal growth factor receptor is one such target, which is being explored for 1,3,4-oxadiazole and chalcone nuclei.

Methods: Findings of different researchers working on these scaffolds have been reviewed and analyzed, and the outcomes were summarized. This review focuses on Structure-Activity Relationship studies (SARs) and computational studies of various 1,3,4-oxadiazole and chalcone hybrids/ derivatives reported as cytotoxic/EGFR-TK inhibitory anticancer activity.

Result and Conclusion: 1,3,4-oxadiazole and chalcone hybrids/derivatives with varied substitutions are found to be effective pharmacophores in obtaining potent anticancer activity. Having done a thorough literature survey, we conclude that this review will surely provide firm and better insights to the researchers to design and develop potent hybrids/derivatives that inhibit EGFR.

Keywords: 1, 3, 4-oxadiazole, chalcone, hybrids, cytotoxic anticancer activity, EGFR-TK inhibitors, cancer.

Graphical Abstract

[1]
WHO, Report 2020.
[2]
Xing, Ke.; Shen, L. Molecular targeted therapy of cancer: The progress and future prospect. Fronti. Lab. Med., 2017, 1, 69-75.
[4]
Singh, D.; Attri, B.K.; Gill, R.K.; Bariwal, J. Review on EGFR Inhibitors: critical Updates. Mini Rev. Med. Chem., 2016, 16(14), 1134-1166.
[http://dx.doi.org/10.2174/1389557516666160321114917 ] [PMID: 26996617]
[5]
Yarden, Y.; Schlessinger, J. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry, 1987, 26(5), 1443-1451.
[http://dx.doi.org/10.1021/bi00379a035 ] [PMID: 3494473]
[6]
Downward, J.; Parker, P.; Waterfield, M.D. Autophosphorylation sites on the epidermal growth factor receptor. Nature, 1984, 311(5985), 483-485.
[http://dx.doi.org/10.1038/311483a0 ] [PMID: 6090945]
[7]
Ayati, A.; Moghimi, S.; Salarinejad, S.; Safavi, M.; Pouramiri, B.; Foroumadi, A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem., 2020, 99, 103811.
[http://dx.doi.org/10.1016/j.bioorg.2020.103811 ] [PMID: 32278207]
[8]
Oda, K.; Matsuoka, Y.; Funahashi, A.; Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol., 2005, 1, 0010.
[http://dx.doi.org/10.1038/msb4100014] [PMID: 16729045]
[9]
Chang, Y.S.; Choi, C.M.; Lee, J.C. Mechanisms of epidermal growth factor receptor tyrosine kinase inhibitor resistance and strategies to overcome resistance in lung adenocarcinoma. Tuberc. Respir. Dis. (Seoul), 2016, 79(4), 248-256.
[http://dx.doi.org/10.4046/trd.2016.79.4.248 ] [PMID: 27790276]
[10]
Okamoto, I.; Mitsudomi, T.; Nakagawa, K.; Fukuoka, M. The emerging role of epidermal growth factor receptor (EGFR) inhibitors in first-line treatment for patients with advanced non-small cell lung cancer positive for EGFR mutations. Ther. Adv. Med. Oncol., 2010, 2(5), 301-307.
[http://dx.doi.org/10.1177/1758834010370698 ] [PMID: 21789142]
[11]
Garg, A.; Batra, U.; Choudhary, P.; Jain, D.; Khurana, S.; Malik, P.S.; Muthu, V.; Prasad, K.T.; Singh, N.; Suri, T.; Mohan, A. Clinical predictors of response to EGFR-tyrosine kinase inhibitors in EGFR-mutated non-small cell lung cancer: A real-world multicentric cohort analysis from India. Curr. Prob. in Cancer, 2020, 44(3), 100570.
[12]
Ceresoli, G.L. Role of EGFR inhibitors in the treatment of central nervous system metastases from non-small cell lung cancer. Curr. Cancer Drug Targets, 2012, 12(3), 237-246.
[http://dx.doi.org/10.2174/156800912799277430 ] [PMID: 22229252]
[13]
Maione, P.; Rossi, A.; Bareschino, M.; Sacco, P.C.; Schettino, C.; Casaluce, F.; Sgambato, A.; Gridelli, C. Irreversible EGFR inhibitors in the treatment of advanced NSCLC. Curr. Pharm. Des., 2014, 20(24), 3894-3900.
[http://dx.doi.org/10.2174/13816128113196660764 ] [PMID: 24138713]
[14]
Haley, J. D.; Gullick, W. J. EGFR signaling networks in cancer therapy; , 1-393.
[15]
Patel, H.; Pawara, R.; Ansari, A.; Surana, S. Recent updates on third generation EGFR inhibitors and emergence of fourth generation EGFR inhibitors to combat C797S resistance. Eur. J. Med. Chem., 2017, 142, 32-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.027 ] [PMID: 28526474]
[16]
Abdelbaset, M.S.; Abdel-Aziz, M.; Ramadan, M.; Abdelrahman, M.H.; Abbas Bukhari, S.N.; Ali, T.F.S.; Abuo-Rahma, G.E.A. Discovery of novel thienoquinoline-2-carboxamide chalcone derivatives as antiproliferative EGFR tyrosine kinase inhibitors. Bioorg. Med. Chem., 2019, 27(6), 1076-1086.
[http://dx.doi.org/10.1016/j.bmc.2019.02.012 ] [PMID: 30744932]
[17]
Armour, A.A.; Watkins, C.L. The challenge of targeting EGFR: experience with gefitinib in nonsmall cell lung cancer. Eur. Respir. Rev., 2010, 19(117), 186-196.
[http://dx.doi.org/10.1183/09059180.00005110 ] [PMID: 20956191]
[18]
Yewale, C.; Baradia, D.; Vhora, I.; Patil, S.; Misra, A. Epidermal growth factor receptor targeting in cancer: A review of trends and strategies. Biomaterials, 2013, 34(34), 8690-8707.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.100 ] [PMID: 23953842]
[19]
Chen, L.; Fu, W.; Zheng, L.; Liu, Z.; Liang, G. Recent progress of small-molecule epidermal growth factor receptor (EGFR) Inhibitors against C797S resistance in nonsmall- cell lung cancer. J. Med. Chem., 2018, 61(10), 4290-4300.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01310 ] [PMID: 29136465]
[20]
Cheng, H.; Nair, S.K.; Murray, B.W. Recent progress on third generation covalent EGFR inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(8), 1861-1868.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.067 ] [PMID: 26968253]
[21]
Cheng, W.; Zhou, J.; Tian, X.; Zhang, X. Development of the third generation EGFR tyrosine kinase inhibitors for anticancer therapy. Curr. Med. Chem., 2016, 23(29), 3343-3359.
[http://dx.doi.org/10.2174/0929867323666160510123604 ] [PMID: 27160532]
[22]
Malik, P.S.; Jain, D.; Kumar, L. Epidermal growth factor receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncology, 2016, 91(Suppl. 1), 26-34.
[http://dx.doi.org/10.1159/000447578 ] [PMID: 27462979]
[23]
Chen, F.; Chen, N.; Yu, Y.; Cui, J. Efficacy and safety of epidermal growth factor receptor (egfr) inhibitors plus antiangiogenic agents as first-line treatments for patients with advanced EGFR-Mutated non-small cell lung cancer: A meta-analysis. Front. Oncol., 2020, 10, 904.
[http://dx.doi.org/10.3389/fonc.2020.00904 ] [PMID: 32714857]
[24]
He, J.; Zhou, Z.; Sun, X.; Yang, Z.; Zheng, P.; Xu, S.; Zhu, W. The new opportunities in medicinal chemistry of fourth-generation EGFR inhibitors to overcome C797S mutation. Eur. J. Med. Chem., 2021, 210, 112995.
[http://dx.doi.org/10.1016/j.ejmech.2020.112995 ] [PMID: 33243531]
[25]
Abou-Zied, H.A.; Youssif, B.G.M.; Mohamed, M.F.A.; Hayallah, A.M.; Abdel-Aziz, M. EGFR inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorg. Chem., 2019, 89, 102997.
[http://dx.doi.org/10.1016/j.bioorg.2019.102997 ] [PMID: 31136902]
[26]
Su, Z.; Yang, T.; Wang, J.; Lai, M.; Tong, L.; Wumaier, G.; Chen, Z.; Li, S.; Li, H.; Xie, H.; Zhao, Z. Design, synthesis and biological evaluation of potent EGFR kinase inhibitors against 19D/T790M/C797S mutation. Bioorg. Med. Chem. Lett., 2020, 30(16), 127327.
[http://dx.doi.org/10.1016/j.bmcl.2020.127327 ] [PMID: 32631532]
[27]
Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent advances (2015-2016) in anticancer hybrids. Eur. J. Med. Chem., 2017, 142(15), 179-212.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.033 ] [PMID: 28760313]
[28]
Shaveta; Mishra, S.; Singh, P. Review article Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039]
[29]
Maione, P.; Sacco, P.C.; Casaluce, F.; Sgambato, A.; Santabarbara, G.; Rossi, A.; Gridelli, C. Overcoming resistance to EGFR Inhibitors in NSCLC. Rev. Recent Clin. Trials, 2016, 11(2), 99-105.
[http://dx.doi.org/10.2174/1574887111666160330120431 ] [PMID: 27028971]
[30]
Song, Z.; Ge, Y.; Wang, C.; Huang, S.; Shu, X.; Liu, K.; Zhou, Y.; Ma, X. Challenges and perspectives on the development of small-molecule EGFR inhibitors against T790M-mediated resistance in non-small-cell lung cancer. J. Med. Chem., 2016, 59(14), 6580-6594.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00840 ] [PMID: 26882288]
[31]
Chen, L.; Fu, W.; Zheng, L.; Liu, Z.; Liang, G. Recent Progress of Small-Molecule Epidermal Growth Factor Receptor (EGFR) inhibitors against C797S resistance in non-small-cell lung cancer. J. Med. Chem., 2018, 61(10), 4290-4300.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01310 ] [PMID: 29136465]
[32]
Xu, M.J.; Johnson, D.E.; Grandis, J.R. EGFR-targeted therapies in the post-genomic era. Cancer Metastasis Rev., 2017, 36(3), 463-473.
[http://dx.doi.org/10.1007/s10555-017-9687-8 ] [PMID: 28866730]
[33]
Hossam, M.; Lasheen, D.S.; Abouzid, K.A. Covalent EGFR inhibitors: Binding mechanisms, synthetic approaches, and clinical profiles. Arch. Pharm. (Weinheim), 2016, 349(8), 573-593.
[http://dx.doi.org/10.1002/ardp.201600063 ] [PMID: 27258393]
[34]
Guan, H.; Du, Y.; Ning, Y.; Cao, X. A brief perspective of drug resistance toward EGFR inhibitors: The crystal structures of EGFRs and their variants. Future Med. Chem., 2017, 9(7), 693-704.
[http://dx.doi.org/10.4155/fmc-2016-0222 ] [PMID: 28504890]
[35]
Mitrasinovic, P.M. Progress in structure-based design of EGFR inhibitors. Curr. Drug Targets, 2013, 14(7), 817-829.
[http://dx.doi.org/10.2174/1389450111314070009 ] [PMID: 23547755]
[36]
Majhi, M.; Ali, M.A.; Limaye, A.; Sinha, K.; Bairagi, P.; Chouksey, M.; Shukla, R.; Kanwar, N.; Hussain, T.; Nayarisseri, A.; Singh, S.K. An in silico investigation of potential EGFR inhibitors for the clinical treatment of colorectal cancer. Curr. Top. Med. Chem., 2018, 18(27), 2355-2366.
[http://dx.doi.org/10.2174/1568026619666181129144107 ] [PMID: 30499396]
[37]
Roskoski, R. Jr Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. J. Pharma Res., 2019, 139, 395-411.
[http://dx.doi.org/10.1016/j.phrs.2018.11.014 ] [PMID: 30500458]
[38]
Hesham, A.; Abou-Zieda, G.M.; Youssifb, C.; Mamdouh, F.A. Mohammed, Alaa M, B.; Mohamed, A.A.; EGFR inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorg. Chem., 2019, 89, 102-997.
[39]
Akhtar, M.J. Khan, A. A., Ali, Z., Dewangan, R.P., Rafi Md.; Hassan Md. Q., Md S., Siddiqui, A.A., Partap, S., Pasha, S., Yar M. S. Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors. Biol. Chem., 2018, 78, 158-169.
[40]
Sangani, C.B.; Makawana, J.A.; Zhang, X.; Teraiya, S.B.; Lin, L.; Zhu, H.L. Design, synthesis and molecular modeling of pyrazole-quinoline-pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Med. Chem., 2014, 76, 549-557.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.018 ] [PMID: 24607998]
[41]
Madhavi, S.; Sreenivasulu, R.; Yazala, J.P.; Raju, R.R. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Saudi Pharm. J., 2017, 25(2), 275-279.
[http://dx.doi.org/10.1016/j.jsps.2016.06.005 ] [PMID: 28344479]
[42]
Chhajed, S.S.; Sonawane, S.S.; Upasani, C.D.; Kshirsagar, S.J.; Gupta, P.P. Design, synthesis and molecular modeling studies of few chalcone analogues of benzimidazole for epidermal growth factor receptor inhibitor in search of useful anticancer agent. Comput. Biol. Chem., 2016, 61, 138-144.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.02.001 ] [PMID: 26878127]
[43]
Djemoui, A.; Naouri, A.; Ouahrani, M.R.; Djemoui, D.; Lahcene, S.; Lahrech, M.B.; Boukenna, L.; Albuquerquee, H.M.T.; Saher, L.; Rocha, D.H.A.; Monteiro, F.L.; Helguero, L.A.; Bachari, K.; Talhi, O.; Silva, A.M.S. A step-by-step synthesis of Triazole-Benzimidazole-Chalcone hybrids: Anticancer activity in human cells. J. Mol. Struct., 2020, 1204, 127487.
[http://dx.doi.org/10.1016/j.molstruc.2019.127487]
[44]
Fathi, M.; El-Hafeez, A.A.; Abdelhamid, D.A. 1,3,4-oxadiazole/chalcone hybrids: Design, synthesis, and inhibition of leukemia cell growth and EGFR, Src, IL-6 and STAT3 activities. Biol. Chem., 2019, 84, 150-163.
[PMID: 30502626]
[45]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700 ] [PMID: 31546197]
[46]
Le-Nhat-Thuy, G.; Dinh, T.V.; Pham-The, H.; Nguyen Quang, H.; Nguyen Thi, N.; Dang Thi, T.A.; Hoang Thi, P.; Le Thi, T.A.; Nguyen, H.T.; Nguyen Thanh, P.; Le Duc, T.; Nguyen, T.V. Design, synthesis and evaluation of novel hybrids between 4-anilinoquinazolines and substituted triazoles as potent cytotoxic agents. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3741-3747.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.016 ] [PMID: 30337229]
[47]
Banerji, B.; Chandrasekhar, K.; Sreenath, K.; Roy, S.; Nag, S.; Saha, K.D. Synthesis of triazole-substituted quinazoline hybrids for anticancer activity and a lead compound as the EGFR blocker and ROS inducer agent. ACS Omega 3, 2018, 3(11), 16134-16142.
[48]
Srinivasa Reddy, T.; Kulhari, H.; Ganga Reddy, V.; Subba Rao, A.V.; Bansal, V.; Kamal, A.; Shukla, R. Synthesis and biological evaluation of pyrazolo-triazole hybrids as cytotoxic and apoptosis inducing agents. Org. Biomol. Chem., 2015, 13(40), 10136-10149.
[http://dx.doi.org/10.1039/C5OB00842E ] [PMID: 26346902]
[49]
Gilandoust, M.; Harsha, K.B.; Mohan, C.D.; Raquib, A.R.; Rangappa, S.; Pandey, V.; Lobie, P.E. Basappa; Rangappa, K.S. Synthesis, characterization and cytotoxicity studies of 1,2,3-triazoles and 1,2,4-triazolo [1,5-a] pyrimidines in human breast cancer cells. Bioorg. Med. Chem. Lett., 2018, 28(13), 2314-2319.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.020 ] [PMID: 29789259]
[50]
Liu, M.; Hou, Y.; Yin, W.; Zhou, S.; Qian, P.; Guo, Z.; Xu, L.; Zhao, Y. Discovery of a novel 6,7-disubstituted-4-(2-fluorophenoxy)quinolines bearing 1,2,3-triazole-4-carboxamide moiety as potent c-Met kinase inhibitors. Eur. J. Med. Chem., 2016, 119, 96-108.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.035 ] [PMID: 27155466]
[51]
Glomb, T.; Szymankiewicz, K.; Świątek, P. Anti-cancer activity of derivatives of 1,3,4-oxadiazole. Molecules, 2018, 23(12), 3361.
[52]
Bajaj, S.; Kumar, M.S.; Tinwala, H.; Yc, M. Design, synthesis, modelling studies and biological evaluation of 1,3,4-oxadiazole derivatives as potent anticancer agents targeting thymidine phosphorylase enzyme. Bioorg. Chem., 2021, 111, 104873.
[http://dx.doi.org/10.1016/j.bioorg.2021.104873 ] [PMID: 33845381]
[53]
Khalilullah, H.; Ahsan, M.J.; Hedaitullah, M.; Khan, S.; Ahmed, B. 1,3,4-oxadiazole: A biologically active scaffold. Mini Rev. Med. Chem., 2012, 12(8), 789-801.
[http://dx.doi.org/10.2174/138955712801264800 ] [PMID: 22512560]
[54]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020 ] [PMID: 28488435]
[55]
Farooq, S.; Ngaini, Z. Recent synthetic methodologies for chalcone synthesis 2013-2018. Curr. Organocatal., 2019, 6(3), 184-192.
[http://dx.doi.org/10.2174/2213337206666190306155140]
[56]
Verma, G.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Akhter, M.; Shaquiquzzaman, M. A review exploring therapeutic worth of 1,3,4-Oxadiazole tailored compounds. Mini Rev. Med. Chem., 2019, 19(6), 477-509.
[http://dx.doi.org/10.2174/1389557518666181015152433 ] [PMID: 30324877]
[57]
Salahuddin, A.; Mazumder, M. Shahar Yar, R. Mazumder, G. S. Chakraborthy, Mohamed Jawed Ahsan & Mujeeb Ur Rahman, Updates on synthesis and biological activities of 1,3,4-oxadiazole: A review. Synth. Commun., 2017, 47(20), 1805-1847.
[http://dx.doi.org/10.1080/00397911.2017.1360911]
[58]
Bajaj, S.; Asati, V.; Singh, J.; Roy, P.P. 1,3,4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. Eur. J. Med. Chem., 2015, 97, 124-141.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.051 ] [PMID: 25965776]
[59]
Aboraia, A.S.; Abdel-Rahman, H.M.; Mahfouz, N.M.; El-Gendy, M.A. Novel 5-(2-hydroxyphenyl)-3-substituted-2,3-dihydro-1,3,4-oxadiazole-2-thione derivatives: Promising anticancer agents. Bioorg. Med. Chem., 2006, 14(4), 1236-1246.
[http://dx.doi.org/10.1016/j.bmc.2005.09.053 ] [PMID: 16242340]
[60]
Gudipati, R.; Anreddy, R.N.R.; Manda, S. Synthesis, characterization and anticancer activity of certain 3-{4-(5-mercapto-1,3,4-oxadiazole-2- yl) phenylimino} indolin-2-one derivatives. Saudi Pharm. J., 2011, 19(3), 153-158.
[http://dx.doi.org/10.1016/j.jsps.2011.03.002 ] [PMID: 23960753]
[61]
Dash, S.; Kumar, B.A.; Singh, J.; Maiti, B.C.; Maity, T.K. Synthesis of some novel 3,5- disubstituted 1,3,4-oxadiazole derivatives and anticancer activity on EAC animal model. Med. Chem., 2011, 20, 1206-1213.
[http://dx.doi.org/10.1007/s00044-010-9455-6]
[62]
Puthiyapurayil, P.; Poojary, B.; Chikkanna, C.; Buridipad, S.K. Design, synthesis and biological evaluation of a novel series of 1,3,4-oxadiazole bearing N-methyl-4-(trifluoromethyl)phenyl pyrazole moiety as cytotoxic agents. Eur. J. Med. Chem., 2012, 53, 203-210.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.056 ] [PMID: 22542958]
[63]
Bondock, S.; Adel, S.; Etman, H.A.; Badria, F.A. Synthesis and antitumor evaluation of some new 1,3,4-oxadiazole-based heterocycles. Eur. J. Med. Chem., 2012, 48, 192-199.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.013 ] [PMID: 22204901]
[64]
Rashid, M.; Husain, A.; Mishra, R. Synthesis of benzimidazoles bearing oxadiazole nucleus as anticancer agents. Eur. J. Med. Chem., 2012, 54, 855-866.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.027 ] [PMID: 22608854]
[65]
Ahsan, M.J. Rathod, V.P.S.; Singh, M.; Sharma, R.; Jadav, S.S.; Yasmin, S.; Salahuddin; Kumar, P. Synthesis, Anticancer and molecular docking studies of 2-(4-chlorophenyl)-5-aryl-1,3,4- oxadiazole analogues. Med. Chem., 2013, 3(4), 294-297.
[66]
Ahmad, A.; Varshney, H.; Rauf, A.; Sherwani, A.; Owais, M. Synthesis and anticancer activity of long chain substituted 1,3,4-oxadiazol-2-thione, 1,2,4-triazol-3-thione and 1,2,4-triazolo [3,4-b]-1,3,4-thiadiazine derivatives. Arab. J. Chem., 2017, 10(2), S3347-S3357.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.015]
[67]
Khalil, N.A.; Kamal, A.M.; Emam, S.H. Design, synthesis, and antitumor activity of novel 5-pyridyl-1,3,4-oxadiazole derivatives against the breast cancer cell line MCF-7. Biol. Pharm. Bull., 2015, 38(5), 763-773.
[http://dx.doi.org/10.1248/bpb.b14-00867 ] [PMID: 25947922]
[68]
Akhtar, M.J.; Siddiqui, A.A.; Khan, A.A.; Ali, Z.; Dewangan, R.P.; Pasha, S.; Yar, M.S. Design, synthesis, docking and QSAR study of substituted benzimidazole linked oxadiazole as cytotoxic agents, EGFR and erbB2 receptor inhibitors. Eur. J. Med. Chem., 2017, 126, 853-869.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.014 ] [PMID: 27987485]
[69]
El-Sayed, N.A.; Nour, M.S.; Salem, M.A.; Arafa, R.K. New oxadiazoles with selective-COX-2 and EGFR dual inhibitory activity: Design, synthesis, cytotoxicity evaluation and in silico studies. Eur. J. Med. Chem., 2019, 183, 111693.
[http://dx.doi.org/10.1016/j.ejmech.2019.111693 ] [PMID: 31539778]
[70]
Mathew, B.; Suresh, J.; Anbazghagan, S.; Paulraj, J.; Krishnan, G.K. Heteroaryl chalcones: Mini review about their therapeutic voyage. Biomed. Prevent. Nutri., 2014, 4(3), 451-458.
[http://dx.doi.org/10.1016/j.bionut.2014.04.003]
[71]
Yang, E.B.; Guo, Y.J.; Zhang, K.; Chen, Y.Z.; Mack, P. Inhibition of epidermal growth factor receptor tyrosine kinase by chalcone derivatives. Biochim. Biophys. Acta, 2001, 1550(2), 144-152.
[http://dx.doi.org/10.1016/S0167-4838(01)00276-X ] [PMID: 11755203]
[72]
Zhang, H-J.; Qian, Y.; Zhu, D.D.; Yang, X.G.; Zhu, H.L. Synthesis, molecular modeling and biological evaluation of chalcone thiosemicarbazide derivatives as novel anticancer agents. Eur. J. Med. Chem., 2011, 46(9), 4702-4708.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.016 ] [PMID: 21816517]
[73]
Dias, T.A.; Duarte, C.L.; Lima, C.F.; Proença, M.F.; Pereira-Wilson, C. Superior anticancer activity of halogenated chalcones and flavonols over the natural flavonol quercetin. Eur. J. Med. Chem., 2013, 65, 500-510.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.064 ] [PMID: 23771043]
[74]
Mphahlele, M.J.; Maluleka, M.M.; Parbhoo, N.; Malindisa, S.T. Synthesis, evaluation for cytotoxicity and molecular docking studies of benzo[c]furan-chalcones for potential to inhibit tubulin polymerization and/or EGFR-tyrosine kinase phosphorylation. Int. J. Mol. Sci., 2018, 19(9), 2552-2569.
[http://dx.doi.org/10.3390/ijms19092552 ] [PMID: 30154363]
[75]
Gan, X.; Hu, D.; Chen, Z.; Wang, Y.; Song, B. Synthesis and antiviral evaluation of novel 1,3,4-oxadiazole/thiadiazole-chalcone conjugates. Bioorg. Med. Chem. Lett., 2017, 27(18), 4298-4301.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.038 ] [PMID: 28838690]
[76]
Joshi, D.K.; Parikh, K.S. Synthesis and antimicrobial evaluation of 1,3,4-oxadiazole-basedchalcone derivatives. Med. Chem. Res., 2014, 23, 1855-1864.
[http://dx.doi.org/10.1007/s00044-013-0791-1]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy