Review Article

硼酸盐荧光探针作为 H2O2 传感和识别的重要工具

卷 29, 期 14, 2022

发表于: 10 January, 2022

页: [2476 - 2489] 页: 14

弟呕挨: 10.2174/0929867328666210902101642

价格: $65

摘要

鉴于过氧化氢与多种人类疾病的关键关联,这种化合物目前已赢得了成为流行生物分子靶标的声誉。尽管各种分析方法引起了我们的注意,但荧光探针已被用作测定 H2O2 以反映生物系统的生理和病理状况的重要工具。这些探针的敏感响应部分是硼酸酯和硼酸基团,它们是 H2O2 识别的重要报告分子。在这篇综述中,我们总结了 2012 年至 2020 年报道的基于硼酸酯/硼酸基团的 H2O2 荧光探针,我们将荧光团大致分为六类,以详尽阐述设计策略和综合系统性能。我们希望这篇综述能激发人们探索基于硼酸酯/硼酸基团的新型荧光探针,用于检测 H2O2 和其他相关分析物。

关键词: 荧光探针、硼酸酯/硼酸、过氧化氢、生物分子、生理学、病理学、荧光团。

[1]
Gomez-Jaimes, G.; Barba, V. Boronate esters: Synthesis, characterization and molecular base receptor analysis. J. Mol. Struct., 2014, 1075, 594-598.
[http://dx.doi.org/10.1016/j.molstruc.2014.06.078]
[2]
Trippier, P.C.; McGuigan, C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. MedChemComm, 2010, 1(3), 183-198.
[http://dx.doi.org/10.1039/c0md00119h]
[3]
Lippert, A.R.; Van de Bittner, G.C.; Chang, C.J. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc. Chem. Res., 2011, 44(9), 793-804.
[http://dx.doi.org/10.1021/ar200126t] [PMID: 21834525]
[4]
Yu, F.; Song, P.; Li, P.; Wang, B.; Han, K. A fluorescent probe directly detect peroxynitrite based on boronate oxidation and its applications for fluorescence imaging in living cells. Analyst (Lond.), 2012, 137(16), 3740-3749.
[http://dx.doi.org/10.1039/c2an35246j] [PMID: 22741158]
[5]
Sarkar, Y.; Das, S.; Datta, R.; Chattopadhyay, S.; Ray, A.; Parui, P.P. Exploitation of a new Schiff-base ligand for boric acid fluorescent sensing in aqueous medium with bio-imaging studies in a living plant system. RSC Advances, 2015, 5(64), 51875-51882.
[http://dx.doi.org/10.1039/C5RA08086J]
[6]
Wang, H.; Wang, X.; Liang, M.; Chen, G.; Kong, R.M.; Xia, L.; Qu, F. A boric acid-functionalized lanthanide metal-organic framework as a fluorescence “turn-on” probe for selective monitoring of Hg2+ and CH3Hg. Anal. Chem., 2020, 92(4), 3366-3372.
[http://dx.doi.org/10.1021/acs.analchem.9b05410] [PMID: 31995981]
[7]
Hudnall, T.W.; Gabbaï, F.P. Ammonium boranes for the selective complexation of cyanide or fluoride ions in water. J. Am. Chem. Soc., 2007, 129(39), 11978-11986.
[http://dx.doi.org/10.1021/ja073793z] [PMID: 17845043]
[8]
Tong, A.J.; Yamauchi, A.; Hayashita, T.; Zhang, Z.Y.; Smith, B.D.; Teramae, N. Boronic acid fluorophore/beta-cyclodextrin complex sensors for selective sugar recognition in water. Anal. Chem., 2001, 73(7), 1530-1536.
[http://dx.doi.org/10.1021/ac001363k] [PMID: 11321305]
[9]
Devi, J.S.A.; Aswathy, B.; Asha, S.; George, S. Lactose tailored boronic acid conjugated fluorescent gold nanoclusters for turn-on sensing of dopamine. J. Anal. Chem., 2017, 72(4), 445-459.
[http://dx.doi.org/10.1134/S1061934817040037]
[10]
Du, Q.; Wu, P.; Dramou, P.; Chen, R.; He, H. One-step fabrication of a boric acid-functionalized lanthanide metal-organic framework as a ratiometric fluorescence sensor for the selective recognition of dopamine. New J. Chem., 2019, 43(3), 1291-1298.
[http://dx.doi.org/10.1039/C8NJ05318A]
[11]
Sóvári, D.; Keserű, G.M.; Ábrányi-Balogh, P. Application of boroisoquinoline fluorophores as chemodosimeters for fluoride ion and Pd (0). Materials (Basel), 2020, 13(1), E199.
[http://dx.doi.org/10.3390/ma13010199] [PMID: 31906592]
[12]
Seraj, S.; Rouhani, S.; Faridbod, F. Fructose recognition using new “Off–On” fluorescent chemical probes based on boronate-tagged 1,8-naphthalimide. New J. Chem., 2018, 42(24), 19872-19880.
[http://dx.doi.org/10.1039/C8NJ05092A]
[13]
Li, Z.; Yu, C.; Chen, Y.; Liu, C.; Jia, P.; Zhu, H.; Zhang, X.; Sheng, W.; Zhu, B. A novel ratiometric fluorescent probe for highly sensitive and selective detection of peroxynitrite and its application for tracing endogenous peroxynitrite in live cells. Anal. Methods, 2019, 11(44), 5699-5703.
[http://dx.doi.org/10.1039/C9AY02069A]
[14]
Han, J.; Chu, C.; Cao, G.; Mao, W.; Wang, S.; Zhao, Z.; Gao, M.; Ye, H.; Xu, X. A simple boronic acid-based fluorescent probe for selective detection of hydrogen peroxide in solutions and living cells. Bioorg. Chem., 2018, 81, 362-366.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.036] [PMID: 30196205]
[15]
Woolley, J.F.; Stanicka, J.; Cotter, T.G. Recent advances in reactive oxygen species measurement in biological systems. Trends Biochem. Sci., 2013, 38(11), 556-565.
[http://dx.doi.org/10.1016/j.tibs.2013.08.009] [PMID: 24120034]
[16]
Huang, M.F.; Lin, W.L.; Ma, Y.C. A study of reactive oxygen species in mainstream of cigarette. Indoor Air, 2005, 15(2), 135-140.
[http://dx.doi.org/10.1111/j.1600-0668.2005.00330.x] [PMID: 15737156]
[17]
Starkov, A.A., The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N. Y. Acad. Sci., 2008, 1147, 37-52.
[18]
Yang, S.; Lian, G. ROS and diseases: role in metabolism and energy supply. Mol. Cell. Biochem., 2020, 467(1-2), 13-13.
[http://dx.doi.org/10.1007/s11010-020-03697-8] [PMID: 32067139]
[19]
Zielonka, J.; Sikora, A.; Joseph, J. Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide. J. Biol. Chem., 2010, 285.
[20]
Ćwik, P.; Wawrzyniak, U.E.; Jańczyk, M.; Wróblewski, W. Electrochemical studies of self-assembled monolayers composed of various phenylboronic acid derivatives. Talanta, 2014, 119, 5-10.
[http://dx.doi.org/10.1016/j.talanta.2013.10.059] [PMID: 24401378]
[21]
Li, C.; Wang, S.; Huang, Y.; Wen, Q.; Wang, L.; Kan, Y. Photoluminescence properties of a novel cyclometalated iridium(III) complex with coumarin-boronate and its recognition of hydrogen peroxide. Dalton Trans., 2014, 43(14), 5595-5602.
[http://dx.doi.org/10.1039/c3dt53498g] [PMID: 24549180]
[22]
Kang, S.W.; Lee, S.; Lee, E.K. ROS and energy metabolism in cancer cells: alliance for fast growth. Arch. Pharm. Res., 2015, 38(3), 338-345.
[http://dx.doi.org/10.1007/s12272-015-0550-6] [PMID: 25599615]
[23]
Zhang, P.; Ding, Y.; Liu, W.; Niu, G.; Zhang, H.; Ge, J.; Wu, J.; Li, Y.; Wang, P. Red emissive fluorescent probe for the rapid detection of selenocysteine. Sens. Actuators B Chem., 2018, 264, 234-239.
[http://dx.doi.org/10.1016/j.snb.2018.02.185]
[24]
Li, W.; Liu, Z.; Fang, B.; Jin, M.; Tian, Y. Two-photon fluorescent Zn2+ probe for ratiometric imaging and biosensing of Zn2+ in living cells and larval zebrafish. Biosens. Bioelectron., 2020, 148, 111666.
[http://dx.doi.org/10.1016/j.bios.2019.111666] [PMID: 31698301]
[25]
Guo, H.; Aleyasin, H.; Dickinson, B.C.; Haskew-Layton, R.E.; Ratan, R.R. Recent advances in hydrogen peroxide imaging for biological applications. Cell Biosci., 2014, 4(1), 64.
[http://dx.doi.org/10.1186/2045-3701-4-64] [PMID: 25400906]
[26]
Han, Z.; Liang, X.; Ren, X.; Shang, L.; Yin, Z. A 3,7-Dihydroxyphenoxazine-based fluorescent probe for selective detection of intracellular hydrogen peroxide. Chem. Asian J., 2016, 11(6), 818-822.
[http://dx.doi.org/10.1002/asia.201501304] [PMID: 26807851]
[27]
Choudhury, R.; Ricketts, A.T.; Molina, D.G.; Paudel, P. A boronic acid based intramolecular charge transfer probe for colorimetric detection of hydrogen peroxide. Tetrahedron Lett., 2019, 60(46), 151258.
[http://dx.doi.org/10.1016/j.tetlet.2019.151258]
[28]
Carroll, V.; Michel, B.W.; Blecha, J.; VanBrocklin, H.; Keshari, K.; Wilson, D.; Chang, C.J. A boronate-caged [¹F]FLT probe for hydrogen peroxide detection using positron emission tomography. J. Am. Chem. Soc., 2014, 136(42), 14742-14745.
[http://dx.doi.org/10.1021/ja509198w] [PMID: 25310369]
[29]
Sun, W.; Wu, J.; Li, J.; Fang, H.; Du, L.; Li, M. Boronate can be the fluorogenic switch for the detection of hydrogen peroxide. Curr. Med. Chem., 2012, 19(21), 3622-3634.
[http://dx.doi.org/10.2174/092986712801323270] [PMID: 22612709]
[30]
Wu, L.; Sedgwick, A.C.; Sun, X.; Bull, S.D.; He, X-P.; James, T.D. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Acc. Chem. Res., 2019, 52(9), 2582-2597.
[http://dx.doi.org/10.1021/acs.accounts.9b00302] [PMID: 31460742]
[31]
Lo, L.C.; Chu, C.Y. Development of highly selective and sensitive probes for hydrogen peroxide. Chem. Commun., 2003, (21), 2728-2729.
[http://dx.doi.org/10.1039/b309393j]
[32]
Shen, Y.; Zhang, X.; Zhang, Y.; Wu, Y.; Zhang, C.; Chen, Y.; Jin, J.; Li, H. A mitochondria-targeted colorimetric and ratiometric fluorescent probe for hydrogen peroxide with a large emission shift and bio-imaging in living cells. Sens. Actuators B Chem., 2018, 255, 42-48.
[http://dx.doi.org/10.1016/j.snb.2017.08.020]
[33]
Liu, C.; Shen, Y.; Yin, P.; Li, L.; Liu, M.; Zhang, Y.; Li, H.; Yao, S. Sensitive detection of acetylcholine based on a novel boronate intramolecular charge transfer fluorescence probe. Anal. Biochem., 2014, 465, 172-178.
[http://dx.doi.org/10.1016/j.ab.2014.08.003] [PMID: 25132563]
[34]
Xiao, H.; Li, P.; Hu, X.; Shi, X.; Zhang, W.; Tang, B. Simultaneous fluorescence imaging of hydrogen peroxide in mitochondria and endoplasmic reticulum during apoptosis. Chem. Sci. (Camb.), 2016, 7(9), 6153-6159.
[http://dx.doi.org/10.1039/C6SC01793B] [PMID: 30034754]
[35]
Lee, J.; Yoon, S.A.; Chun, J.; Kang, C.; Lee, M.H. A red-emitting styrylnaphthalimide-based fluorescent probe providing a ratiometric signal change for the precise and quantitative detection of H2O2. Anal. Chim. Acta, 2019, 1080, 153-161.
[http://dx.doi.org/10.1016/j.aca.2019.07.008] [PMID: 31409465]
[36]
Dhoun, S.; Kaur, S.; Kaur, P.; Singh, K. A cyanostilbene-boronate based AIEE probe for hydrogen peroxide-Application in chemical processing. Sens. Actuators B Chem., 2017, 245, 95-103.
[http://dx.doi.org/10.1016/j.snb.2017.01.143]
[37]
Lampard, E.V.; Sedgwick, A.C.; Sun, X.; Filer, K.L.; Hewins, S.C.; Kim, G.; Yoon, J.; Bull, S.D.; James, T.D. Boronate-based fluorescence probes for the detection of hydrogen peroxide. ChemistryOpen, 2018, 7(3), 262-265.
[http://dx.doi.org/10.1002/open.201700189] [PMID: 29531890]
[38]
Wang, T.; Yang, X.; Men, J.; Zhou, J.; Zhang, H. A near-infrared fluorescent probe based on boric acid hydrolysis for hydrogen peroxide detection and imaging in HeLa cells. Luminescence, 2020, 35(2), 208-214.
[39]
Zhang, X.; Zhang, L.; Liu, Y.; Bao, B.; Zang, Y.; Li, J.; Lu, W. A near-infrared fluorescent probe for rapid detection of hydrogen peroxide in living cells. Tetrahedron, 2015, 71(29), 4842-4845.
[http://dx.doi.org/10.1016/j.tet.2015.05.025]
[40]
Li, H.; Yao, Q.; Fan, J.; Du, J.; Wang, J.; Peng, X. A two-photon NIR-to-NIR fluorescent probe for imaging hydrogen peroxide in living cells. Biosens. Bioelectron., 2017, 94, 536-543.
[http://dx.doi.org/10.1016/j.bios.2017.03.039] [PMID: 28347967]
[41]
Zhou, Z.; Li, Y.; Su, W.; Gu, B.; Xu, H.; Wu, C.; Yin, P.; Li, H.; Zhang, Y. A dual-signal colorimetric and near-infrared fluorescence probe for the detection of exogenous and endogenous hydrogen peroxide in living cells. Sens. Actuators B Chem., 2019, 280, 120-128.
[http://dx.doi.org/10.1016/j.snb.2018.09.126]
[42]
Sun, X.; Xu, S-Y.; Flower, S.E.; Fossey, J.S.; Qian, X.; James, T.D. “Integrated” and “insulated” boronate-based fluorescent probes for the detection of hydrogen peroxide. Chem. Commun. (Camb.), 2013, 49(75), 8311-8313.
[http://dx.doi.org/10.1039/c3cc43265c] [PMID: 23765276]
[43]
Wang, C.; Wang, Y.; Wang, G.; Huang, C.; Jia, N. A new mitochondria-targeting fluorescent probe for ratiometric detection of H2O2 in live cells. Anal. Chim. Acta, 2020, 1097, 230-237.
[http://dx.doi.org/10.1016/j.aca.2019.11.024] [PMID: 31910964]
[44]
Murfin, L.C.; Weber, M.; Park, S.J.; Kim, W.T.; Lopez-Alled, C.M.; McMullin, C.L.; Pradaux-Caggiano, F.; Lyall, C.L.; Kociok-Köhn, G.; Wenk, J.; Bull, S.D.; Yoon, J.; Kim, H.M.; James, T.D.; Lewis, S.E. Azulene-derived fluorescent probe for bioimaging: Detection of reactive oxygen and nitrogen species by two-photon microscopy. J. Am. Chem. Soc., 2019, 141(49), 19389-19396.
[http://dx.doi.org/10.1021/jacs.9b09813] [PMID: 31773957]
[45]
Fu, Y.; Yao, J.; Xu, W.; Fan, T.; Jiao, Z.; He, Q.; Zhu, D.; Cao, H.; Cheng, J. Schiff base substituent-triggered efficient deboration reaction and its application in highly sensitive hydrogen peroxide vapor detection. Anal. Chem., 2016, 88(10), 5507-5512.
[http://dx.doi.org/10.1021/acs.analchem.6b01057] [PMID: 27094518]
[46]
Purdey, M.S.; McLennan, H.J.; Sutton-McDowall, M.L.; Drumm, D.W.; Zhang, X.; Capon, P.K.; Heng, S.; Thompson, J.G.; Abell, A.D. Biological hydrogen peroxide detection with aryl boronate and benzil BODIPY-based fluorescent probes. Sens. Actuators B Chem., 2018, 262, 750-757.
[http://dx.doi.org/10.1016/j.snb.2018.01.198]
[47]
Chen, Y.; Shi, X.; Lu, Z.; Wang, X.; Wang, Z. A fluorescent probe for hydrogen peroxide in vivo based on the modulation of intramolecular charge transfer. Anal. Chem., 2017, 89(10), 5278-5284.
[http://dx.doi.org/10.1021/acs.analchem.6b04810] [PMID: 28415838]
[48]
Liu, J.; Liang, J.; Wu, C.; Zhao, Y. A doubly-quenched fluorescent probe for low-background detection of mitochondrial H2O2. Anal. Chem., 2019, 91(10), 6902-6909.
[http://dx.doi.org/10.1021/acs.analchem.9b01294] [PMID: 31021600]
[49]
Sakakibara, K.; Takahashi, Y.; Nishiyabu, R.; Kubo, Y. A Zn2+-coordinated boronate dipyrrin as a chemodosimeter toward hydrogen peroxide. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5(15), 3684-3691.
[http://dx.doi.org/10.1039/C7TC00405B]
[50]
Sk, M.; Banesh, S.; Trivedi, V.; Biswas, S. Selective and sensitive sensing of hydrogen peroxide by a boronic acid functionalized metal-organic framework and its application in live-cell imaging. Inorg. Chem., 2018, 57(23), 14574-14581.
[http://dx.doi.org/10.1021/acs.inorgchem.8b02240] [PMID: 30407802]
[51]
Cui, Y.; Chen, F.; Yin, X.B. A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose. Biosens. Bioelectron., 2019, 135, 208-215.
[http://dx.doi.org/10.1016/j.bios.2019.04.008] [PMID: 31026775]
[52]
Takeshima, K.; Mizuno, K.; Nakahashi, H.; Aoki, H.; Kanekiyo, Y. Ratiometric sensing of hydrogen peroxide utilizing conformational change in fluorescent boronic acid polymers. J. Anal. Methods Chem., 2017, 2017, 7829438.
[http://dx.doi.org/10.1155/2017/7829438] [PMID: 29093982]
[53]
Williams, G.T.; Sedgwick, A.C.; Sen, S.; Gwynne, L.; Gardiner, J.E.; Brewster, J.T., II; Hiscock, J.R.; James, T.D.; Jenkins, A.T.A.; Sessler, J.L. Boronate ester cross-linked PVA hydrogels for the capture and H2O2-mediated release of active fluorophores. Chem. Commun. (Camb.), 2020, 56(41), 5516-5519.
[http://dx.doi.org/10.1039/D0CC01904F] [PMID: 32296797]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy