Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Explore the Active Ingredients and Mechanisms in Musa basjoo Pseudostem Juice against Diabetes Based on Animal Experiment, Gas Chromatography-mass Spectrometer and Network Pharmacology

Author(s): Feng Xu*, Xiangpei Wang, Xiujuan Wei, Teng Chen and Hongmei Wu*

Volume 25, Issue 10, 2022

Published on: 27 August, 2021

Page: [1756 - 1766] Pages: 11

DOI: 10.2174/1386207324666210827112233

Price: $65

Abstract

Background: Musa basjoo pseudostem juice (MBSJ) is a well-known Chinese medicine, and Miao people use MBSJ to treat diabetes. In this work, the active ingredients and molecular mechanism of MBSJ against diabetes were explored.

Methods: Anti-diabetic activity of MBSJ was evaluated using diabetic rats, and then the ingredients in the small-polar parts of MBSJ were analyzed by gas chromatography-mass spectrometer (GC-MS). Targets were obtained from several databases to develop the "ingredienttarget- disease" network by Cytoscape. A collaborative analysis was carried out using the tools in Cytoscape and R packages, and molecular docking was also performed.

Results: MBSJ improved the oral glucose tolerance and insulin tolerance, and reduced fasting blood glucose, glycosylated hemoglobin, total cholesterol, triglyceride, and low-density lipoprotein levels in the serum of diabetic rats. 13 potential compounds were identified by GC-MS for subsequent analysis, including Dibutyl phthalate, Oleamide, Stigmasterol, Stigmast-4-en-3-one, etc. The anti-diabetic effect of MBSJ was related to multiple signaling pathways, including Neuroactive ligand-receptor interaction, Phospholipase D signaling pathway, Endocrine resistance, Rap1 signaling pathway, EGFR tyrosine kinase inhibitor resistance, etc. Molecular docking at least partially verified the screening results of network pharmacology.

Conclusion: MBSJ had good anti-diabetic activity. The small-polar parts of MBSJ were rich in anti-diabetic active ingredients. Furthermore, the analysis results showed that the anti-diabetic effect of the small-polar parts of MBSJ may be the result of multiple components, multiple targets, and multiple pathways. The current research results can provide important support for studying the active ingredients and exploring the underlying mechanism of MBSJ against diabetes.

Keywords: Chinese medicine, oral glucose tolerance, insulin tolerance, lipid metabolism, active ingredients, insulin.

Graphical Abstract

[1]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[2]
Xu, F.; Wei, X.J.; Yang, C.C.; Zhang, M.; Chen, T.; Wu, H.M.; Wang, X.P. Research Progress on Chemical Constituents and Pharmacological Activities of Musa basjoo. Zhong Yi Xue, 2021, 10(1), 14-27.
[http://dx.doi.org/10.12677/TCM.2021.101002]
[3]
Qian, H.B.; Sun, Y.C.; Huang, J.; Wang, X.P. Experimental study on anti-inflammatory and analgesic effects of different extracts from Musa basjoo. Lishizhen Med. Mater. Med. Res., 2010, 21(4), 780-781.
[4]
Qian, H.B.; Hao, J.J.; Wang, X.P. Effcet of effective parts from Musa basjoo on blood glucose and glucose tolerance in mice. Chin. J. Exp. Trandit. Med. Form., 2012, 18(18), 187-189.
[5]
Zhang, Q. Active compounds from the rhizomes and flowers of Musa basjoo sieb.et zucc and trapa acornis nakano., Master thesis, Henan University: Kaifeng, 2011.
[6]
Xu, F.; Wu, H.; Wang, X.; Yang, Y.; Wang, Y.; Qian, H.; Zhang, Y. RP-hplc characterization of lupenone and β-sitosterol in rhizoma musae and evaluation of the anti-diabetic activity of lupenone in diabetic sprague-dawley rats. Molecules, 2014, 19(9), 14114-14127.
[http://dx.doi.org/10.3390/molecules190914114] [PMID: 25207716]
[7]
Wu, H.M.; Xu, F.; Wang, Y.M.; Qian, H.B.; Wang, X.P. Influence of general situation, glucose tolerance and insulin tolerance for lupenone in insulin resistance of type 2 diabetes rats. Lishizhen Med. Mater. Med. Res., 2017, 28(5), 1035-1037.
[8]
Sharma, P.K.; Sharma, A.; Garud, N.; Garud, A. Hypoglycemic effect of petroleum ether extract of Nelumbo nucifera leaves. Plant Arch., 2007, 7(2), 681-684.
[9]
Manjusha, A.; Nitesh, N.; Gupta, P. Effect of petroleum ether extract of Sesbania sesban (Merr.) roots in streptozotocin (STZ) induced diabetes in mice. Asian Pac. J. Trop. Biomed., 2012, 2(3), S1254-S1260.
[http://dx.doi.org/10.1016/S2221-1691(12)60395-5]
[10]
Gupta, R.; Sharma, A.K.; Dobhal, M.P.; Sharma, M.C.; Gupta, R.S. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J. Diabetes, 2011, 3(1), 29-37.
[http://dx.doi.org/10.1111/j.1753-0407.2010.00107.x] [PMID: 21143769]
[11]
Xu, F.; Yang, L.; Huang, X.; Liang, Y.; Wang, X.; Wu, H. Lupenone is a good anti-inflammatory compound based on the network pharmacology. Mol. Divers., 2020, 24(1), 21-30.
[http://dx.doi.org/10.1007/s11030-019-09928-5] [PMID: 30796639]
[12]
Seggelke, S.A.; Lindsay, M.C.; Hazlett, I.; Sanagorski, R.; Eckel, R.H.; Low Wang, C.C. Cardiovascular safety of antidiabetic drugs in the hospital setting. Curr. Diab. Rep., 2017, 17(8), 64.
[http://dx.doi.org/10.1007/s11892-017-0884-1] [PMID: 28699089]
[13]
Donath, M.Y. Targeting inflammation in the treatment of type 2 diabetes: Time to start. Nat. Rev. Drug Discov., 2014, 13(6), 465-476.
[http://dx.doi.org/10.1038/nrd4275] [PMID: 24854413]
[14]
Kumar, S.; Boulton, A.; Hosker, J. Role of glucose and insulin resistance in development of type 2 diabetes mellitus. Lancet, 1992, 340(8831), 1348.
[PMID: 1360053]
[15]
Bailey, C.J.; Day, C. Treatment of type 2 diabetes: Future approaches. Br. Med. Bull., 2018, 126(1), 123-137.
[http://dx.doi.org/10.1093/brimed/ldy013] [PMID: 29897499]
[16]
Stewart, S.L.; Dang, J.; Chen, M.S. Jr Diabetes prevalence and risk factors in four Asian American communities. J. Community Health, 2016, 41(6), 1264-1273.
[http://dx.doi.org/10.1007/s10900-016-0214-6] [PMID: 27339064]
[17]
Ge, Q.; Chen, L.; Tang, M.; Zhang, S.; Liu, L.; Gao, L.; Ma, S.; Kong, M.; Yao, Q.; Feng, F.; Chen, K. Analysis of mulberry leaf components in the treatment of diabetes using network pharmacology. Eur. J. Pharmacol., 2018, 833, 50-62.
[http://dx.doi.org/10.1016/j.ejphar.2018.05.021] [PMID: 29782863]
[18]
Antwi, A.O.; Obiri, D.D.; Osafo, N. Stigmasterol modulates allergic airway inflammation in guinea pig model of ovalbumin-induced asthma. Mediators Inflamm., 2017, 2017, 2953930.
[http://dx.doi.org/10.1155/2017/2953930] [PMID: 28555089]
[19]
Moon, S.M.; Lee, S.A.; Hong, J.H.; Kim, J.S.; Kim, D.K.; Kim, C.S. Oleamide suppresses inflammatory responses in lps-induced RAW264.7 murine macrophages and alleviates paw edema in a carrageenan-induced inflammatory rat model. Int. Immunopharmacol., 2018, 56, 179-185.
[http://dx.doi.org/10.1016/j.intimp.2018.01.032] [PMID: 29414648]
[20]
Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol., 2011, 11(2), 98-107.
[http://dx.doi.org/10.1038/nri2925] [PMID: 21233852]
[21]
Huang, X.; Mu, Z.; Xu, F.; Liang, Y.; Yang, X.; Kong, J.; Zhang, L.; Wang, X.; Wu, H. Mechanism of anti-inflammatory effects of volatile compounds of Ai pian based on network pharmacology, in vivo Animal experiments, and GC-MS. J. Pharm. Biomed. Anal., 2020, 186, 113287.
[http://dx.doi.org/10.1016/j.jpba.2020.113287] [PMID: 32325402]
[22]
Lee, D.S. Dibutyl phthalate, an α-glucosidase inhibitor from Streptomyces melanosporofaciens. J. Biosci. Bioeng., 2000, 89(3), 271-273.
[http://dx.doi.org/10.1016/S1389-1723(00)88832-5] [PMID: 16232742]
[23]
Wang, J.; Huang, M.; Yang, J.; Ma, X.; Zheng, S.; Deng, S.; Huang, Y.; Yang, X.; Zhao, P. Anti-diabetic activity of stigmasterol from soybean oil by targeting the GLUT4 glucose transporter. Food Nutr. Res., 2017, 61(1), 1364117.
[http://dx.doi.org/10.1080/16546628.2017.1364117] [PMID: 28970778]
[24]
Granados-Principal, S.; Quiles, J.L.; Ramirez-Tortosa, C.L.; Ochoa-Herrera, J. Perez- Jamaluddin, F.; Mohameda, S.; Lajis, M. N. Hypoglycaemic effect of stigmast-4-en-3-one, from Parkia speciosa empty pods. Food Chem., 1995, 54(1), 9-13.
[http://dx.doi.org/10.1016/0308-8146(95)92656-5]
[25]
Huang, X.; Gao, Y.; Xu, F.; Fan, D.; Liang, Y.; Wang, X.; Wu, H. Molecular mechanism underlying the anti-inflammatory effects of volatile components of Ligularia fischeri (ledeb) turcz based on network pharmacology. BMC Complement Med Ther, 2020, 20(1), 109.
[http://dx.doi.org/10.1186/s12906-020-2855-3] [PMID: 32276586]
[26]
Tuttle, R.L.; Gill, N.S.; Pugh, W.; Lee, J.P.; Koeberlein, B.; Furth, E.E.; Polonsky, K.S.; Naji, A.; Birnbaum, M.J. Regulation of pancreatic β-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha. Nat. Med., 2001, 7(10), 1133-1137.
[http://dx.doi.org/10.1038/nm1001-1133] [PMID: 11590437]
[27]
Liadis, N.; Murakami, K.; Eweida, M.; Elford, A.R.; Sheu, L.; Gaisano, H.Y.; Hakem, R.; Ohashi, P.S.; Woo, M. Caspase-3-dependent beta-cell apoptosis in the initiation of autoimmune diabetes mellitus. Mol. Cell. Biol., 2005, 25(9), 3620-3629.
[http://dx.doi.org/10.1128/MCB.25.9.3620-3629.2005] [PMID: 15831467]
[28]
Kominato, R.; Fujimoto, S.; Mukai, E.; Nakamura, Y.; Nabe, K.; Shimodahira, M.; Nishi, Y.; Funakoshi, S.; Seino, Y.; Inagaki, N. Src activation generates reactive oxygen species and impairs metabolism-secretion coupling in diabetic goto-kakizaki and ouabain-treated rat pancreatic islets. Diabetologia, 2008, 51(7), 1226-1235.
[http://dx.doi.org/10.1007/s00125-008-1008-x] [PMID: 18449527]
[29]
Kendall, A.C.; Whatmore, J.L.; Harries, L.W.; Winyard, P.G.; Smerdon, G.R.; Eggleton, P. Changes in inflammatory gene expression induced by hyperbaric oxygen treatment in human endothelial cells under chronic wound conditions. Exp. Cell Res., 2012, 318(3), 207-216.
[http://dx.doi.org/10.1016/j.yexcr.2011.10.014] [PMID: 22063471]
[30]
Zelová, H.; Hošek, J. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflamm. Res., 2013, 62(7), 641-651.
[http://dx.doi.org/10.1007/s00011-013-0633-0] [PMID: 23685857]
[31]
Fatima, L.A.; Campello, R.S.; Santos, R.S.; Freitas, H.S.; Frank, A.P.; Machado, U.F.; Clegg, D.J. Estrogen receptor 1 (ESR1) regulates VEGFA in adipose tissue. Sci. Rep., 2017, 7(1), 16716.
[http://dx.doi.org/10.1038/s41598-017-16686-7] [PMID: 29196658]
[32]
Ham, S.W.; Jeon, H.Y.; Jin, X.; Kim, E.J.; Kim, J.K.; Shin, Y.J.; Lee, Y.; Kim, S.H.; Lee, S.Y.; Seo, S.; Park, M.G.; Kim, H.M.; Nam, D.H.; Kim, H. TP53 gain-of-function mutation promotes inflammation in glioblastoma. Cell Death Differ., 2019, 26(3), 409-425.
[http://dx.doi.org/10.1038/s41418-018-0126-3] [PMID: 29786075]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy