Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Airway Fibroblast Secretory Products Enhance Cell Migration

Author(s): Nundisa Jaulin, Ruszymah Hj Idrus, Aminuddin Saim, Wan Izlina Wan-Ibrahim, Puteri Shafinaz Abdul-Rahman and Yogeswaran Lokanathan*

Volume 19, Issue 2, 2022

Published on: 23 August, 2021

Page: [182 - 195] Pages: 14

DOI: 10.2174/1570164618666210823094105

Price: $65

Abstract

Background: The nasal fibroblast secretome, which includes various cytokines, chemokines, and growth factors, promotes cell migration. Currently, the proteomics of Airway Fibroblast (AF) Conditioned Medium (AFCM) are being actively studied.

Objective: This study was aimed at profiling and identifying the AF secreted proteins that can enhance wound healing of the airway epithelium and predict the potential pathway involved.

Methods: Airway Epithelial Cells (AECs) and AFs were isolated from redundant human nasal turbinate and cultured. AFCM was collected by culturing the AFs either with serum-free airway epithelium basal medium (AECM) or with serum-free F12:DMEM (FDCM). For evaluating cell migration, the AECs were supplemented with airway epithelium medium and defined keratinocyte medium (1:1; AEDK; control), or with AEDK supplemented with 20% AECM or 20% FDCM. The mass spectrometry sample was prepared by protein precipitation, followed by gel electrophoresis and in-gel digestion.

Results: AECM promoted better cell migration compared to the FDCM and the control medium. Bioinformatics analysis identified a total of 121, and 92 proteins from AECM and FDCM, respectively: 109 and 82 were identified as secreted proteins, respectively. STRING® analysis predicted that 23 proteins from the AECM and 16 proteins from the FDCM are involved in wound healing.

Conclusion: Conditioned medium promotes wound healing by enhancing cell migration, and we successfully identified various secretory proteins in a conditioned medium that play important roles in wound healing.

Keywords: Secretome, conditioned medium, cell migration, wound healing, fibroblasts, proteomics, airway epithelium.

« Previous
Graphical Abstract

[1]
Welsford, M.; Pardhan, A. Emerg. Med. Serv. Clin. Pract. Syst. Overs, Second Ed.; , 2015, 1, pp. 228-236.
[2]
Stabile, A.M.; Marinucci, L.; Balloni, S.; Giuliani, A.; Pistilli, A.; Bodo, M.; Rende, M. Long term effects of cigarette smoke extract or nicotine on nerve growth factor and its receptors in a bronchial epithelial cell line. Toxicol. In Vitro, 2018, 53, 29-36.
[http://dx.doi.org/10.1016/j.tiv.2018.07.020] [PMID: 30076938]
[3]
Ghosh, A.; Abdelwahab, S.H.; Reeber, S.L.; Reidel, B.; Marklew, A.J.; Garrison, A.J.; Lee, S.; Dang, H.; Herring, A.H.; Glish, G.L.; Kesimer, M.; Tarran, R. Little cigars are more toxic than cigarettes and uniquely change the airway gene and protein expression. Sci. Rep., 2017, 7, 46239.
[http://dx.doi.org/10.1038/srep46239] [PMID: 28447619]
[4]
Langdon, R.; Docherty, P.D.; Schranz, C.; Chase, J.G. Prediction of high airway pressure using a non-linear autoregressive model of pulmonary mechanics. Biomed. Eng. Online, 2017, 16(1), 126.
[http://dx.doi.org/10.1186/s12938-017-0415-y] [PMID: 29096634]
[5]
Vallés, J.; Millán, S.; Díaz, E.; Castanyer, E.; Gallardo, X.; Martín-Loeches, I.; Andreu, M.; Prenafeta, M.; Saludes, P.; Lema, J.; Batlle, M.; Bacelar, N.; Artigas, A. Incidence of airway complications in patients using endotracheal tubes with continuous aspiration of subglottic secretions. Ann. Intensive Care, 2017, 7(1), 109.
[http://dx.doi.org/10.1186/s13613-017-0331-0] [PMID: 29098448]
[6]
Go, N.; Bidot, C.; Belloc, C.; Touzeau, S. Integrative model of the immune response to a pulmonary macrophage infection: What determines the infection duration? PLoS One, 2014, 9(9), e107818.
[http://dx.doi.org/10.1371/journal.pone.0107818] [PMID: 25233096]
[7]
Aghasafari, P.; George, U.; Pidaparti, R. A review of inflammatory mechanism in airway diseases. Inflamm. Res., 2019, 68(1), 59-74.
[http://dx.doi.org/10.1007/s00011-018-1191-2] [PMID: 30306206]
[8]
Holgate, S.T. Epithelial damage and response. Clin. Exp. Allergy, 2000, 30(1)(Suppl. 1), 37-41.
[http://dx.doi.org/10.1046/j.1365-2222.2000.00095.x] [PMID: 10849473]
[9]
Postma, D.S.; Timens, W. Remodeling in asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc., 2006, 3(5), 434-439.
[http://dx.doi.org/10.1513/pats.200601-006AW] [PMID: 16799088]
[10]
He, F.; Liao, B.; Pu, J.; Li, C.; Zheng, M.; Huang, L.; Zhou, Y.; Zhao, D.; Li, B.; Ran, P. Exposure to Ambient Particulate Matter Induced COPD in a Rat Model and a Description of the Underlying Mechanism. Sci. Rep., 2017, 7, 45666.
[http://dx.doi.org/10.1038/srep45666] [PMID: 28361885]
[11]
Hauber, H.P.; Foley, S.C.; Hamid, Q. Mucin overproduction in chronic inflammatory lung disease. Can. Respir. J., 2006, 13(6), 327-335.
[http://dx.doi.org/10.1155/2006/901417] [PMID: 16983448]
[12]
Selvarajah, J.; Saim, A.B.; Bt Hj Idrus, R.; Lokanathan, Y. Current and alternative therapies for nasal mucosa injury: A review. Int. J. Mol. Sci., 2020, 21(2), E480.
[http://dx.doi.org/10.3390/ijms21020480] [PMID: 31940884]
[13]
Sanan, A.; Rabinowitz, M.; Rosen, M.; Nyquist, G. Topical therapies forre fractory chronic rhinosinusitis. Otolaryngol. Clin. North Am., 2017, 50(1), 129-141.
[http://dx.doi.org/10.1016/j.otc.2016.08.011] [PMID: 27888909]
[14]
Cassandro, E.; Chiarella, G.; Cavaliere, M.; Sequino, G.; Cassandro, C.; Prasad, S.C.; Scarpa, A.; Iemma, M. Hyaluronan in the treatment of chronic rhinosinusitis with nasal polyposis. Indian J. Otolaryngol. Head Neck Surg., 2015, 67(3), 299-307.
[http://dx.doi.org/10.1007/s12070-014-0766-7] [PMID: 26405668]
[15]
Leoni, G.; Neumann, P.A.; Sumagin, R.; Denning, T.L.; Nusrat, A. Wound repair: role of immune-epithelial interactions. Mucosal Immunol., 2015, 8(5), 959-968.
[http://dx.doi.org/10.1038/mi.2015.63] [PMID: 26174765]
[16]
Bainbridge, P. Wound healing and the role of fibroblasts. J. Wound Care, 2013, 22(8), 407-408, 410-412.
[http://dx.doi.org/10.12968/jowc.2013.22.8.407] [PMID: 23924840]
[17]
Maddaluno, L.; Urwyler, C.; Werner, S. Fibroblast growth factors: key players in regeneration and tissue repair. Development, 2017, 144(22), 4047-4060.
[http://dx.doi.org/10.1242/dev.152587] [PMID: 29138288]
[18]
Kendall, R.T.; Feghali-Bostwick, C.A. Fibroblasts in fibrosis: novel roles and mediators. Front. Pharmacol., 2014, 5, 123.
[http://dx.doi.org/10.3389/fphar.2014.00123] [PMID: 24904424]
[19]
Reeves, S.R.; Kolstad, T.; Lien, T.Y.; Herrington-Shaner, S.; Debley, J.S. Fibroblast-myofibroblast transition is differentially regulated by bronchial epithelial cells from asthmatic children. Respir. Res., 2015, 16(1), 21.
[http://dx.doi.org/10.1186/s12931-015-0185-7] [PMID: 25849331]
[20]
Maarof, M.; Lokanathan, Y.; Ruszymah, H.I.; Saim, A.; Chowdhury, S.R. Proteomic analysis of human dermal fibroblast conditioned medium (DFCM). Protein J., 2018, 37(6), 589-607.
[http://dx.doi.org/10.1007/s10930-018-9800-z] [PMID: 30343346]
[21]
Man, R.C.; Lokanathan, Y.; Razali, R.A.; Chowdury, S.R.; Saim, A.Bin; Hj Idrus, R.B. Nasal fibroblast conditioned medium promotes cell attachment and migration of human respiratory epithelium. Sains Malays., 2020, 49(2), 429-437.
[http://dx.doi.org/10.17576/jsm-2020-4902-22]
[22]
Paré, B.; Deschênes, L. T.; Pouliot, R.; Dupré, N.; Gros-Louis, F. An optimized approach to recover secreted proteins from fibroblast conditioned-media for secretomic analysis. Front. Cell. Neurosci., 2016, 10
[http://dx.doi.org/10.3389/fncel.2016.00070]
[23]
Gattorno, M.; Martini, A. Inflammation and Its Mediators, 7th ed; Elsevier Inc., 2016.
[http://dx.doi.org/10.1016/B978-0-323-24145-8.00003-X]
[24]
Lan, B.; Mitchel, J.A.; O’Sullivan, M.J.; Park, C.Y.; Kim, J.H.; Cole, W.C.; Butler, J.P.; Park, J.A. Airway epithelial compression promotes airway smooth muscle proliferation and contraction. Am. J. Physiol. Lung Cell. Mol. Physiol., 2018, 315(5), L645-L652.
[http://dx.doi.org/10.1152/ajplung.00261.2018] [PMID: 30070589]
[25]
Park, S.R.; Kim, J.W.; Jun, H.S.; Roh, J.Y.; Lee, H.Y.; Hong, I.S. Stem cell secretome and its effect on cellular mechanisms relevant to wound healing. Mol. Ther., 2018, 26(2), 606-617.
[http://dx.doi.org/10.1016/j.ymthe.2017.09.023] [PMID: 29066165]
[26]
Jeong, D.; Han, C.; Kang, I.; Park, H.T.; Kim, J.; Ryu, H.; Gho, Y.S.; Park, J. Effect of concentrated fibroblast-conditioned media on in vitro maintenance of rat primary hepatocyte. PLoS One, 2016, 11(2), e0148846.
[http://dx.doi.org/10.1371/journal.pone.0148846] [PMID: 26863621]
[27]
Chen, Y.; Tsai, M.; Hsieh, N.; Lo, M.; Lee, M.; Cheng, H. Superiority of Conditioned Medium Derived from Rapidly Expanded Mesenchymal Stem Cells for Neural Repair., 2019, 7, 1-15.
[28]
Creaney, J.; Dick, I.M.; Leon, J.S.; Robinson, B.W.S. A proteomic analysis of the malignant mesothelioma secretome using iTRAQ. Cancer Genomics Proteomics, 2017, 14(2), 103-117.
[http://dx.doi.org/10.21873/cgp.20023] [PMID: 28387650]
[29]
Thio, C.L.P.; Yusof, R.; Ashrafzadeh, A.; Bahari, S.; Abdul-Rahman, P.S.; Karsani, S.A. Differential analysis of the secretome of WRL68 cells infected with the chikungunya virus. PLoS One, 2015, 10(6), e0129033.
[http://dx.doi.org/10.1371/journal.pone.0129033] [PMID: 26083627]
[30]
Nishida, T. The role of fibronectin in corneal wound healing explored by a physician-scientist. Jpn. J. Ophthalmol., 2012, 56(5), 417-431.
[http://dx.doi.org/10.1007/s10384-012-0165-0] [PMID: 22855020]
[31]
Vaz, R.; Martins, G.G.; Thorsteinsdóttir, S.; Rodrigues, G. Fibronectin promotes migration, alignment and fusion in an In Vitro myoblast cell model. Cell Tissue Res., 2012, 348(3), 569-578.
[http://dx.doi.org/10.1007/s00441-012-1364-1] [PMID: 22427060]
[32]
Missirlis, D.; Haraszti, T.; Kessler, H.; Spatz, J.P. Fibronectin promotes directional persistence in fibroblast migration through interactions with both its cell-binding and heparin-binding domains. Sci. Rep., 2017, 7(1), 3711.
[http://dx.doi.org/10.1038/s41598-017-03701-0] [PMID: 28623309]
[33]
Ramos, Gde.O.; Bernardi, L.; Lauxen, I.; Sant’Ana Filho, M.; Horwitz, A.R.; Lamers, M.L. Fibronectin modulates cell adhesion and signaling to promote single cell migration of highly invasive oral squamous cell carcinoma. PLoS One, 2016, 11(3), e0151338.
[http://dx.doi.org/10.1371/journal.pone.0151338] [PMID: 26978651]
[34]
Letourneau, P.C. Axonal pathfinding: Extracellular matrix role; Elsevier, 2016.
[35]
Maarof, M.; Mohd Nadzir, M.; Sin Mun, L.; Fauzi, M.B.; Chowdhury, S.R.; Idrus, R.B.H.; Lokanathan, Y. Hybrid collagen hydrogel/chondroitin-4-sulphate fortified with dermal fibroblast conditioned medium for skin therapeutic application. Polymers (Basel), 2021, 13(4), 508.
[http://dx.doi.org/10.3390/polym13040508] [PMID: 33567703]
[36]
Lokanathan, Y.; Fauzi, M. B.; Man, R. C.; Rashidbenam, Z.; Saim, A. Applied sciences preliminary study on the development of In Vitro human respiratory epithelium using collagen type i scaffold as a potential model for future tracheal tissue engineering. 2021.
[37]
Viana, I.M.M.N.; de Almeida, M.E.S.; Lins, M.P.; dos Santos Reis, M.D.; de Araújo Vieira, L.F.; Smaniotto, S. Combined effect of insulin-like growth factor-1 and CC chemokine ligand 2 on angiogenic events in endothelial cells. PLoS One, 2015, 10(4), e0121249.
[http://dx.doi.org/10.1371/journal.pone.0121249] [PMID: 25830234]
[38]
Randomized, P. I.-L. A.; Trial, P. Effects of Composite Supplement Containing Collagen Peptide and Ornithine on Skin Conditions. 2018, 1-12.
[39]
Zhang, J.; Liu, M.; Huang, M.; Chen, M.; Zhang, D.; Luo, L.; Ye, G.; Deng, L.; Peng, Y.; Wu, X.; Liu, G.; Ye, W.; Zhang, D. Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway. Pharmacol. Res., 2019, 144(April), 292-305.
[http://dx.doi.org/10.1016/j.phrs.2019.04.021] [PMID: 31048033]
[40]
Achar, R.A.N.; Silva, T.C.; Achar, E.; Martines, R.B.; Machado, J.L.M. Use of insulin-like growth factor in the healing of open wounds in diabetic and non-diabetic rats. Acta Cir. Bras., 2014, 29(2), 125-131.
[http://dx.doi.org/10.1590/S0102-86502014000200009] [PMID: 24604317]
[41]
Terwilliger, P. Self-dual leonard pairs insulin promotes wound healing inactivating biosynthesis and alternating pro / anti- inflammatory cytokines dynamics 2019, 11-24.
[42]
Lu, W.; Xu, W.; Li, J.; Chen, Y.; Pan, Y.; Wu, B. Effects of vascular endothelial growth factor and insulin growth factor-1 on proliferation, migration, osteogenesis and vascularization of human carious dental pulp stem cells. Mol. Med. Rep., 2019, 20(4), 3924-3932.
[http://dx.doi.org/10.3892/mmr.2019.10606] [PMID: 31485628]
[43]
Sun, H.; Wang, X.; Zhang, Y.; Che, X.; Liu, Z.; Zhang, L.; Qiu, C.; Lv, Q.; Jiang, J. Biglycan enhances the ability of migration and invasion in endometrial cancer. Arch. Gynecol. Obstet., 2016, 293(2), 429-438.
[http://dx.doi.org/10.1007/s00404-015-3844-5] [PMID: 26275380]
[44]
Shin, J.; Rhim, J.; Kwon, Y.; Choi, S.Y.; Shin, S.; Ha, C.W.; Lee, C. Comparative analysis of differentially secreted proteins in serum-free and serum-containing media by using BONCAT and pulsed SILAC. Sci. Rep., 2019, 9(1), 3096.
[http://dx.doi.org/10.1038/s41598-019-39650-z] [PMID: 30816242]
[45]
Püschel, F.; Favaro, F.; Redondo-pedraza, J.; Lucendo, E.; Iurlaro, R. Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells. Proc. Natl. Acad. Sci. USA., 2020, 117(18), 9932-9941.
[http://dx.doi.org/10.1073/pnas.1913707117]
[46]
Chou, Y.S.; Young, T.H.; Lou, P.J. Effects of biomaterial-derived fibroblast conditioned medium on the α-amylase expression of parotid gland acinar cells. Acta Biomater., 2015, 27, 214-223.
[http://dx.doi.org/10.1016/j.actbio.2015.08.050] [PMID: 26327439]
[47]
Ng, I.C.; Pawijit, P.; Tan, J.; Yu, H. Anatomy and Physiology for Biomaterials Research and Development; Elsevier, 2018, Vol. 1–3, .
[48]
Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev., 2016, 97, 4-27.
[http://dx.doi.org/10.1016/j.addr.2015.11.001] [PMID: 26562801]
[49]
Kusindarta, D.L.; Wihadmadyatami, H. The Role of Extracellular Matrix in Tissue Regeneration; Tissue Regen, 2018.
[http://dx.doi.org/10.5772/intechopen.75728]
[50]
Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol., 2014, 15(12), 786-801.
[http://dx.doi.org/10.1038/nrm3904] [PMID: 25415508]
[51]
Wang, L.; Hu, L.; Zhou, X.; Xiong, Z.; Zhang, C.; Shehada, H.M.A.; Hu, B.; Song, J.; Chen, L. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Sci. Rep., 2017, 7(1), 13321.
[http://dx.doi.org/10.1038/s41598-017-12919-x] [PMID: 29042658]
[52]
Tisler, M.; Alkmin, S.; Chang, H.Y.; Leet, J.; Bernau, K.; Sandbo, N.; Campagnola, P.J.; Campagnola, P.J. Analysis of fibroblast migration dynamics in idiopathic pulmonary fibrosis using image-based scaffolds of the lung extracellular matrix. Am. J. Physiol. Lung Cell. Mol. Physiol., 2020, 318(2), L276-L286.
[http://dx.doi.org/10.1152/ajplung.00087.2019] [PMID: 31774302]
[53]
Feist, E.; Hiepe, F. Fibronectin Autoantibodies, Second Edi; Elsevier Inc., 2013.
[54]
Krafts, K.P. Tissue repair: The hidden drama. Organogenesis, 2010, 6(4), 225-233.
[http://dx.doi.org/10.4161/org.6.4.12555] [PMID: 21220961]
[55]
Frangogiannis, N.G. Fibroblast-extracellular matrix interactions in tissue fibrosis. Curr. Pathobiol. Rep., 2016, 4(1), 11-18.
[http://dx.doi.org/10.1007/s40139-016-0099-1] [PMID: 27171595]
[56]
Johnson, M. B.; Pang, B.; Gardner, D. J.; Niknam-benia, S.; Soundarajan, V.; Bramos, A.; Perrault, D. P.; Banks, K.; Gene, K.; Baker, R. Y.; Gene, H. K.; Lee, S.; Chai, Y.; Chen, M.; Li, W.; Lawrence, K.; Hong, Y.; Wong, A. K. Topical fibronectin improves wound healing of irradiated skin. 2017.
[http://dx.doi.org/10.1038/s41598-017-03614-y]
[57]
Wang, P.; Hu, Z.; Cao, X.; Huang, S.; Dong, Y.; Cheng, P.; Xu, H.; Shu, B.; Xie, J. Fibronectin precoating wound bed enhances the therapeutic effects of autologous epidermal basal cell suspension for full-thickness wounds by improving epidermal stem cells. Utilization., 2019, 7(58), 1-14.
[http://dx.doi.org/10.1186/s13287-019-1236-7]
[58]
Jara, C.P.; Wang, O.; Paulino do Prado, T.; Ismail, A.; Fabian, F.M.; Li, H.; Velloso, L.A.; Carlson, M.A.; Burgess, W.; Lei, Y.; Velander, W.H.; Araújo, E.P. Novel fibrin-fibronectin matrix accelerates mice skin wound healing. Bioact. Mater., 2020, 5(4), 949-962.
[http://dx.doi.org/10.1016/j.bioactmat.2020.06.015] [PMID: 32671290]
[59]
Fleck, C.A.; Simman, R. Modern collagen wound dressings: Function and purpose. J. Am. Col. Certif. Wound Spec., 2011, 2(3), 50-54.
[http://dx.doi.org/10.1016/j.jcws.2010.12.003] [PMID: 24527149]
[60]
Meyer, M. Processing of collagen based biomaterials and the resulting materials properties. Biomed. Eng. Online, 2019, 18(1), 24.
[http://dx.doi.org/10.1186/s12938-019-0647-0] [PMID: 30885217]
[61]
Zhang, M.; Zhao, W.; Fang, Q.; Wang, X.; Chen, C.; Shi, B.; Zheng, B.; Wang, S.; Tan, W.; Wu, L. Effects of chitosan-collagen dressing on wound healing in vitro and in vivo assays. 2021.
[62]
Slade, E.A.; Thorn, R.M.S.; Young, A.; Reynolds, D.M. An In Vitro collagen perfusion wound biofilm model; with applications for antimicrobial studies and microbial metabolomics. BMC Microbiol., 2019, 19(1), 310.
[http://dx.doi.org/10.1186/s12866-019-1682-5] [PMID: 31888471]
[63]
Henriksen, K.; Karsdal, M.A. Type I Collagen; Elsevier Inc., 2016.
[http://dx.doi.org/10.1016/B978-0-12-809847-9.00001-5]
[64]
Gudmann, N.S.; Karsdal, M.A. Type II Collagen; Elsevier Inc., 2016, Vol. 1, .
[65]
Nielsen, M.J.; Karsdal, M.A. Type III Collagen; Elsevier Inc., 2016.
[http://dx.doi.org/10.1016/B978-0-12-809847-9.00003-9]
[66]
Sand, J. M. B.; Genovese, F.; Gudmann, N. S.; Karsdal, M. A. Type IV Collagen, Second Edi.; Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-817068-7.00004-5]
[67]
Konomi, H.; Hayashi, T.; Nakayasu, K.; Arima, M. Localization of type V collagen and type IV collagen in human cornea, lung, and skin. Immunohistochemical evidence by anti-collagen antibodies characterized by immunoelectroblotting. Am. J. Pathol., 1984, 116(3), 417-426.
[PMID: 6383060]
[68]
Bult, C.J. Cellular process Gene Ontology Term (GO:0009987) 2019. Available from:http://www.informatics.jax.org/vocab/gene_ontology/GO:0009987 accessed 2021 -03 -12.
[69]
Müller, F.; Rappsilber, J. A protocol for studying structural dynamics of proteins by quantitative crosslinking mass spectrometry and data-independent acquisition. J. Proteomics, 2020, 218(218), 103721.
[http://dx.doi.org/10.1016/j.jprot.2020.103721] [PMID: 32109607]
[70]
Mishra, M.; Tiwari, S.; Gomes, A.V. Expert Rev. Proteomics, 2017, 14(11), 1037-1053.
[http://dx.doi.org/10.1080/14789450.2017.1388167] [PMID: 28974114]
[71]
Tang, D.D. The dynamic actin cytoskeleton in smooth muscle. In: Adv. Pharmacol; , 2018; 81, p. 1-38.
[http://dx.doi.org/10.1016/bs.apha.2017.06.001]
[72]
Yu, H.; Gao, M.; Ma, Y.; Wang, L.; Shen, Y.; Liu, X. Inhibition of cell migration by focal adhesion kinase: Time-dependent difference in integrin-induced signaling between endothelial and hepatoblastoma cells. Int. J. Mol. Med., 2018, 41(5), 2573-2588.
[http://dx.doi.org/10.3892/ijmm.2018.3512] [PMID: 29484384]
[73]
Sarojini, H.; Billeter, A.T.; Eichenberger, S.; Druen, D.; Barnett, R.; Gardner, S.A.; Galbraith, N.J.; Polk, H.C., Jr; Chien, S. Rapid tissue regeneration induced by intracellular ATP delivery-A preliminary mechanistic study. PLoS One, 2017, 12(4), e0174899.
[http://dx.doi.org/10.1371/journal.pone.0174899] [PMID: 28380006]
[74]
Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res., 2000, 28, 27-30. Available from:https://www.kegg.jp/dbget-bin/www_bget?hsa00010 accessed 2021 -03 -03.
[75]
Xiao, W.; Tang, H.; Wu, M.; Liao, Y.; Li, K.; Li, L.; Xu, X. Ozone oil promotes wound healing by increasing the migration of fibroblasts via PI3K/Akt/mTOR signaling pathway. Biosci. Rep., 2017, 37(6), 1-11.
[http://dx.doi.org/10.1042/BSR20170658] [PMID: 28864782]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy