Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design and Study of In Silico Binding Dynamics of Certain Isoxazole Bearing Leads Against Aβ-42 and BACE-1 Loop in Protein Fibrillation

Author(s): Puja Mishra*, Souvik Basak*, Arup Mukherjee and Anindya Basu

Volume 19, Issue 3, 2022

Published on: 13 August, 2021

Page: [192 - 213] Pages: 22

DOI: 10.2174/1570180818666210813120444

Price: $65

Abstract

Aims: Design isoxazole bearing leads as dual inhibitors against Amyloid β and BACE-1 loop in protein fibrillation.

Background: Protein fibrillation is one of the key reasons for several diseases, namely Alzheimer’s, Parkinson’s, and many others. One of the key strategies of preventing protein fibrillation is destabilizing the protein fibrils themselves or inhibiting the amyloid fibril-forming pathway in the initial stage.

Introduction: Attempts have been taken to design newer leads to inhibit protein fibrillation by targeting the β-amyloidogenesis pathway in the brain. To exploit interfenestration between Amyloid β -42 protein and BACE-1 (β-site amyloid precursor protein cleaving enzyme) for amyloidogenesis, studies are undertaken to design dual inhibitors against the same.

Methods: In vitro binding interactions were found using docking, de novo ligand design, and MD simulation study.

Results: Three compounds bearing an isoxazole heterocyclic nucleus were designed which could successfully bind to the hydrophobic raft and salt bridge residues Asp 23-Lys-26 of Amyloid β, destabilizing the growing fibril. Additionally, one of our candidate compounds exhibited force of interaction with Thr232 at the S3 pocket of BACE-1, interacted with key residue Asp228, Tyr71, and Thr72 of the β-hairpin flap and hydrogen bonding with Gly11 at loop 10s.

Conclusion: Protein flexibility dynamics of the Aβ-42 protein revealed that there is a considerable conformational change of the same with or without ligand binding. The lower RMSF of the bound region and reprogramming residual contacts within the Aβ-42 protein suggested successful binding of the ligand with the protein, lowering the access for further β-β dimerization.

Keywords: Aβ fibril, curcumin, isoxazole, docking, de novo ligand design, MD simulation.

Graphical Abstract

[1]
Broe, G.A.; Grayson, D.A.; Creasey, H.M.; Waite, L.M.; Casey, B.J.; Bennett, H.P.; Brooks, W.S.; Halliday, G.M. Anti-inflammatory drugs protect against Alzheimer disease at low doses. Arch. Neurol., 2000, 57(11), 1586-1591.
[http://dx.doi.org/10.1001/archneur.57.11.1586] [PMID: 11074790]
[2]
Bandyopadhyay, S.; Huang, X.; Lahiri, D.K.; Rogers, J.T. Novel drug targets based on metallobiology of Alzheimer’s disease. Expert Opin. Ther. Targets, 2010, 14(11), 1177-1197.
[http://dx.doi.org/10.1517/14728222.2010.525352] [PMID: 20942746]
[3]
Strooper, B.; De, No. Figure, 2004, 1, 582-588.
[http://dx.doi.org/10.1016/j.conb.2004.08.001]
[4]
Zhang, C.; Browne, A.; Divito, J.R.; Stevenson, J.A.; Romano, D. Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density. J. Alzheimers Dis., 2010, 22(2), 683-694.
[http://dx.doi.org/10.3233/JAD-2010-100816]
[5]
Shcherbatykh; Carpenter. Shcherbatykh, I., Carpenter, D.O. 2007 The Role of Metals in the Etiology of Alzheimer’s Disease. J Alzh Dis, 2007, 11, 191-205.
[6]
Ramshini, H. mohammad-zadeh, M.; Ebrahim-Habibi, A. Inhibition of amyloid fibril formation and cytotoxicity by a chemical analog of Curcumin as a stable inhibitor. Int. J. Biol. Macromol., 2015, 78, 396-404.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.038] [PMID: 25931400]
[7]
Han, X.; He, G. Toward a Rational Design to Regulate β-Amyloid Fibrillation for Alzheimer’s Disease Treatment. ACS Chem. Neurosci., 2018, 9(2), 198-210.
[http://dx.doi.org/10.1021/acschemneuro.7b00477] [PMID: 29251488]
[8]
Chan, S.; Kantham, S.; Rao, V.M.; Palanivelu, M.K.; Pham, H.L.; Shaw, P.N.; McGeary, R.P.; Ross, B.P. Metal chelation, radical scavenging and inhibition of Aβ42 fibrillation by food constituents in relation to alzheimer’s disease. Food Chem., 2016, 199, 185-194.
[http://dx.doi.org/10.1016/j.foodchem.2015.11.118] [PMID: 26775960]
[9]
Liu, Y.; Dargusch, R.; Maher, P.; Schubert, D. A broadly neuroprotective derivative of curcumin. J. Neurochem., 2008, 105(4), 1336-1345.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05236.x] [PMID: 18208543]
[10]
Lakey-Beitia, J.; González, Y.; Doens, D.; Stephens, D.E.; Santamaría, R.; Murillo, E.; Gutiérrez, M.; Fernández, P.L.; Rao, K.S.; Larionov, O.V.; Durant-Archibold, A.A. Assessment of Novel Curcumin Derivatives as Potent Inhibitors of Inflammation and Amyloid-β Aggregation in Alzheimer’s Disease. J. Alzheimers Dis., 2017, 60(s1), S59-S68.
[http://dx.doi.org/10.3233/JAD-170071] [PMID: 28453488]
[11]
Narlawar, R.; Baumann, K.; Schubenel, R.; Schmidt, B. Curcumin derivatives inhibit or modulate beta-amyloid precursor protein metabolism. Neurodegener. Dis., 2007, 4(2-3), 88-93.
[http://dx.doi.org/10.1159/000101832] [PMID: 17596702]
[12]
Ahmad, B.; Borana, M.S.; Chaudhary, A.P. Understanding curcumin-induced modulation of protein aggregation. Int. J. Biol. Macromol., 2017, 100, 89-96.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.053] [PMID: 27327907]
[13]
Lin, C.F.; Yu, K.H.; Jheng, C.P.; Chung, R.; Lee, C.I. Curcumin reduces amyloid fibrillation of prion protein and decreases reactive oxidative stress. Pathogens, 2013, 2(3), 506-519.
[http://dx.doi.org/10.3390/pathogens2030506] [PMID: 25437204]
[14]
Curcumin, N. Ahsan, N.; Mishra, S.; Jain, M. K.; Surolia, A.; Gupta, S; Modulate Toxicity of Wild Type And, 2015.
[http://dx.doi.org/10.1038/srep09862]
[15]
Narlawar, R.; Pickhardt, M.; Leuchtenberger, S.; Baumann, K.; Krause, S.; Dyrks, T.; Weggen, S.; Mandelkow, E.; Schmidt, B. Curcumin-derived pyrazoles and isoxazoles: Swiss army knives or blunt tools for alzheimer’s disease? 2008, 165-172.
[http://dx.doi.org/10.1002/cmdc.200700218]
[16]
Endo, H.; Nikaido, Y.; Nakadate, M.; Ise, S.; Konno, H. Structure activity relationship study of curcumin analogues toward the amyloid-beta aggregation inhibitor. Bioorg. Med. Chem. Lett., 2014, 24(24), 5621-5626.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.076] [PMID: 25467149]
[17]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[18]
Douguet, D. e-LEA3D: a computational-aided drug design web server. Nucleic Acids Res, 2010, 38(Web Server issue), (Suppl.2)W615-21.
[http://dx.doi.org/10.1093/nar/gkq322] [PMID: 20444867]
[19]
Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 2019, 35(6), 1067-1069.
[http://dx.doi.org/10.1093/bioinformatics/bty707] [PMID: 30165565]
[20]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a]
[21]
Kuriata, A.; Gierut, A.M.; Oleniecki, T.; Ciemny, M.P.; Kolinski, A.; Kurcinski, M.; Kmiecik, S. CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures. Nucleic Acids Res., 2018, 46(W1), W338-W343.
[http://dx.doi.org/10.1093/nar/gky356] [PMID: 29762700]
[22]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[23]
Zhao, X.Z.; Jiang, T.; Wang, L.; Yang, H.; Zhang, S.; Zhou, P. Interaction of Curcumin with Zn(II) and Cu(II) Ions Based on Experiment and Theoretical Calculation. J. Mol. Struct., 2010, 984(1–3), 316-325.
[http://dx.doi.org/10.1016/j.molstruc.2010.09.049]
[24]
Nurfina, A.N.; Reksohadiprodjo, M.S.; Timmerman, H.; Jenie, U.A.; Sugiyanto, D.; Van Der Goot, H. Synthesis of some symmetrical curcumin derivatives and their antiinflammatory activity. Eur. J. Med. Chem., 1997, 32(4), 321-328.
[http://dx.doi.org/10.1016/S0223-5234(97)89084-8]
[25]
Taylor, P.; Kumar, A.; Srivastava, S.; Tripathi, S.; Singh, S.K. Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4’benzyloxyphenyl)-3-hydroxy-chromen-4-one through docking and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2016, 34(6), 1252-1263.
[http://dx.doi.org/10.1080/07391102.2015.1074943]
[26]
Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J., 2011, 101(10), 2525-2534.
[http://dx.doi.org/10.1016/j.bpj.2011.10.024] [PMID: 22098752]
[27]
Dolinsky, T.J.; Czodrowski, P.; Li, H.; Nielsen, J.E.; Jensen, J.H.; Klebe, G.; Baker, N.A. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res., 2007, 35(Web Server issue), (Suppl. 2)W522-5.
[http://dx.doi.org/10.1093/nar/gkm276] [PMID: 17488841]
[28]
Dolinsky, T.J.; Nielsen, J.E.; McCammon, J.A.; Baker, N.A. PDB2PQR: An automated pipeline for the setup of poisson-boltzmann electrostatics calculations. Nucleic Acids Res., 2004, 32, 665-667.
[http://dx.doi.org/10.1093/nar/gkh381]
[29]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software news and updates autodock4 and autodocktools4: Automated docking with selective receptor flexibility. 2009. Available at: https://www.researchwithrutgers.com/en/publications/ software-news-and-updates-autodock4-and-autodocktools4- automated-
[30]
Patel, S.; Vuillard, L.; Cleasby, A.; Murray, C.W.; Yon, J.; Technology, A. Apo and inhibitor complex structures of BACE (b-secretase). J. Mol. Biol., 2004, 343(2), 407-416.
[http://dx.doi.org/10.1016/j.jmb.2004.08.018]
[31]
Douguet, D.; Munier-Lehmann, H.; Labesse, G.; Pochet, S. LEA3D: A computer-aided ligand design for structure-based drug design. J. Med. Chem., 2005, 48(7), 2457-2468.
[http://dx.doi.org/10.1021/jm0492296] [PMID: 15801836]
[32]
Awasthi, M.; Singh, S.; Pandey, V.P.; Dwivedi, U.N. Modulation in the conformational and stability attributes of the Alzheimer’s disease associated amyloid-beta mutants and their favorable stabilization by curcumin: molecular dynamics simulation analysis. J. Biomol. Struct. Dyn., 2018, 36(2), 407-422.
[http://dx.doi.org/10.1080/07391102.2017.1279078] [PMID: 28054501]
[33]
Jalkute, C.B.; Barage, S.H.; Dhanavade, M.J.; Sonawane, K.D. Molecular dynamics simulation and molecular docking studies of Angiotensin converting enzyme with inhibitor lisinopril and amyloid Beta Peptide. Protein J., 2013, 32(5), 356-364.
[http://dx.doi.org/10.1007/s10930-013-9492-3] [PMID: 23660814]
[34]
Bajda, M.; Filipek, S. Computational approach for the assessment of inhibitory potency against beta-amyloid aggregation. Bioorg. Med. Chem. Lett., 2017, 27(2), 212-216.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.072] [PMID: 27914799]
[35]
Razzaghi-Asl, N.; Ebadi, A. In silico design of peptide inhibitors of tubulin: amyloid-β as a lead compound. J. Biomol. Struct. Dyn., 2021, 39(6), 1-10.
[http://dx.doi.org/10.1080/07391102.2020.1745691] [PMID: 32189582]
[36]
Hernández-Rodríguez, M.; Correa-Basurto, J.; Martínez-Ramos, F.; Padilla-Martínez, I.I.; Benítez-Cardoza, C.G.; Mera-Jiménez, E.; Rosales-Hernández, M.C. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies. J. Alzheimers Dis., 2014, 41(4), 1073-1085.
[http://dx.doi.org/10.3233/JAD-140471] [PMID: 24762947]
[37]
Urbanc, B.; Cruz, L.; Ding, F.; Sammond, D.; Khare, S.; Buldyrev, S.V.; Stanley, H.E.; Dokholyan, N.V. Molecular dynamics simulation of amyloid β dimer formation. Biophys. J., 2004, 87(4), 2310-2321.
[http://dx.doi.org/10.1529/biophysj.104.040980] [PMID: 15454432]
[38]
Safarizadeh, H.; Garkani-Nejad, Z. Molecular docking, molecular dynamics simulations and QSAR studies on some of 2-arylethenylquinoline derivatives for inhibition of Alzheimer’s amyloid-beta aggregation: Insight into mechanism of interactions and parameters for design of new inhibitors. J. Mol. Graph. Model., 2019, 87, 129-143.
[http://dx.doi.org/10.1016/j.jmgm.2018.11.019] [PMID: 30537643]
[39]
Asadbegi, M.; Shamloo, A. Identification of a novel multifunctional ligand for simultaneous inhibition of amyloid-beta (Aβ42) and chelation of zinc metal ion. ACS Chem. Neurosci., 2019, 10(11), 4619-4632.
[http://dx.doi.org/10.1021/acschemneuro.9b00468] [PMID: 31566950]
[40]
Alonso, H.; Bliznyuk, A.A.; Gready, J.E. Combining docking and molecular dynamic simulations in drug design. Med. Res. Rev., 2006, 26(5), 531-568.
[http://dx.doi.org/10.1002/med.20067] [PMID: 16758486]
[41]
Kumalo, H.M.; Bhakat, S.; Soliman, M.E. Investigation of flap flexibility of β-secretase using molecular dynamic simulations. J. Biomol. Struct. Dyn., 2016, 34(5), 1008-1019.
[http://dx.doi.org/10.1080/07391102.2015.1064831] [PMID: 26208540]
[42]
Kumalo, H.M.; Soliman, M.E. A comparative molecular dynamics study on BACE1 and BACE2 flap flexibility. J. Recept. Signal Transduct., 2016, 36(5), 505-514.
[http://dx.doi.org/10.3109/10799893.2015.1130058] [PMID: 26804314]
[43]
Kapadia, A.; Patel, A.; Sharma, K.K.; Maurya, I.K.; Singh, V.; Khullar, M.; Jain, R. Effect of C-terminus amidation of Aβ39–42 fragment derived peptides as potential inhibitors of Aβ aggregation. RSC Advances, 2020, 10(45), 27137-27151.
[http://dx.doi.org/10.1039/D0RA04788K]
[44]
Shimizu, H.; Tosaki, A.; Kaneko, K.; Hisano, T.; Sakurai, T.; Nukina, N. Crystal structure of an active form of BACE1, an enzyme responsible for amyloid β protein production. Mol. Cell. Biol., 2008, 28(11), 3663-3671.
[http://dx.doi.org/10.1128/MCB.02185-07] [PMID: 18378702]
[45]
Khajeh Dangolani, S.; Panahi, F.; Khalafi-Nezhad, A. Synthesis of new curcumin-based aminocarbonitrile derivatives incorporating 4H-pyran and 1,4-dihydropyridine heterocycles. Mol. Divers., 2021, 25, 2123-2135.
[http://dx.doi.org/10.1007/s11030-020-10104-3] [PMID: 32419085]
[46]
Di Martino, R.M.C.; De Simone, A.; Andrisano, V.; Bisignano, P.; Bisi, A.; Gobbi, S.; Rampa, A.; Fato, R.; Bergamini, C.; Perez, D.I.; Martinez, A.; Bottegoni, G.; Cavalli, A.; Belluti, F. Versatility of the curcumin scaffold: Discovery of potent and balanced dual BACE-1 and GSK-3β Inhibitors. J. Med. Chem., 2016, 59(2), 531-544.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00894] [PMID: 26696252]
[47]
Noureddin, S.A.; El-Shishtawy, R.M.; Al-Footy, K.O. Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur. J. Med. Chem., 2019, 182111631
[http://dx.doi.org/10.1016/j.ejmech.2019.111631] [PMID: 31479974]
[48]
Rao, P.P.N.; Mohamed, T.; Teckwani, K.; Tin, G. Curcumin binding to beta amyloid: A computational study. Chem. Biol. Drug Des., 2015, 86(4), 813-820.
[http://dx.doi.org/10.1111/cbdd.12552] [PMID: 25776887]
[49]
Kumar Singh, A.; Lohani, M.; Parthsarthy, R. Synthesis, characterization and anti-inflammatory activity of some 1, 3,4 -oxadiazole derivatives. Iran. J. Pharm. Res., 2013, 12(2), 319-323.
[PMID: 24250606]
[50]
Singh, D.B.; Gupta, M.K.; Kesharwani, R.K.; Misra, K. Comparative docking and ADMET study of some curcumin derivatives and herbal congeners targeting β-Amyloid. Netw. Model. Anal. Health Inform. Bioinform., 2013, 2(1), 13-27.
[http://dx.doi.org/10.1007/s13721-012-0021-7]
[51]
Changtam, C.; Hongmanee, P.; Suksamrarn, A. Isoxazole analogs of curcuminoids with highly potent multidrug-resistant antimycobacterial activity. Eur. J. Med. Chem., 2010, 45(10), 4446-4457.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.003] [PMID: 20691508]
[52]
Hsieh, C.J.; Xu, K.; Lee, I.; Graham, T.J.A.; Tu, Z.; Dhavale, D.; Kotzbauer, P.; Mach, R.H. Chalcones and five-membered heterocyclic isosteres bind to alpha synuclein fibrils in vitro. ACS Omega, 2018, 3(4), 4486-4493.
[http://dx.doi.org/10.1021/acsomega.7b01897] [PMID: 30221226]
[53]
Wu, Y.J.; Guernon, J.; Yang, F.; Snyder, L.; Shi, J.; Mcclure, A.; Rajamani, R.; Park, H.; Ng, A.; Lewis, H.; Chang, C.; Camac, D.; Toyn, J.H.; Ahlijanian, M.K.; Albright, C.F.; Macor, J.E.; Thompson, L.A. Targeting the BACE1 active site flap leads to a potent inhibitor that elicits robust brain Aβ reduction in rodents. ACS Med. Chem. Lett., 2016, 7(3), 271-276.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00432] [PMID: 26985314]
[54]
Saeedi, M.; Rastegari, A.; Hariri, R.; Mirfazli, S.S.; Mahdavi, M.; Edraki, N.; Firuzi, O.; Akbarzadeh, T. Design and synthesis of novel arylisoxazole-chromenone carboxamides: Investigation of biological activities associated with Alzheimer’s disease. Chem. Biodivers., 2020, 17(5)e1900746
[http://dx.doi.org/10.1002/cbdv.201900746] [PMID: 32154628]

© 2025 Bentham Science Publishers | Privacy Policy