Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Strategic Approaches to Target the Enzymes using Natural Compounds for the Management of Alzheimer’s Disease: A Review

Author(s): Syed Sayeed Ahmad, Kaiser Younis, Jeandet Philippe, Michael Aschner and Haroon Khan*

Volume 21, Issue 7, 2022

Published on: 11 August, 2021

Page: [610 - 620] Pages: 11

DOI: 10.2174/1871527320666210811160007

Price: $65

Abstract

Alzheimer's Disease (AD) is a chronic neurodegenerative disease. It is clinically characterized by memory loss and intellectual decrease, among other neurological deficits. The etiology of AD is not completely understood but includes amyloid plaques and intracellular helical filaments as well as neurofibrillary tangles with hyperphosphorylated tau protein. AD is also associated with alterations in amyloid processing genes, such as PSEN1 or PSEN2 and APP. The modulation of the immune system, cholesterol metabolism, and synaptic vesicle endocytosis have all been shown to remediate AD. In this review, enzymes such as AChE, BuChE, β-secretase, γ-secretase, MAO, and RAGE are discussed as potential targets for AD treatment. The aim of this review was to address the molecular mechanisms as well as various genetic factors in AD etiology. The use of natural compounds against these targets might be beneficial for the management of AD.

Keywords: Alzheimer disease, AchE, BuChE, MAO, γ-Secretase, string database.

Graphical Abstract

[1]
Ahmad SS, Khalid M, Kamal MA, Younis K. Study of nutraceuticals and phytochemicals for the management of alzheimer’s disease: a review. Curr Neuropharmacol 2021. [Epub a head of Print].
[http://dx.doi.org/10.2174/1570159X19666210215122333] [PMID: 33588732]
[2]
Scheltens P, Blennow K, Breteler MM, et al. Alzheimer’s disease. Lancet 2016; 388(10043): 505-17.
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[3]
Bettens K, Sleegers K, Van Broeckhoven C. Current status on Alzheimer disease molecular genetics: from past, to present, to future. Hum Mol Genet 2010; 19(R1): R4-R11.
[http://dx.doi.org/10.1093/hmg/ddq142] [PMID: 20388643]
[4]
Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 2006; 368(9533): 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[5]
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 2021; 17(3): 157-72.
[PMID: 33318676]
[6]
Taylor JP, Hardy J, Fischbeck KH. Toxic proteins in neurodegenerative disease. Science 2002; 296(5575): 1991-5.
[http://dx.doi.org/10.1126/science.1067122] [PMID: 12065827]
[7]
Maccioni RB, Muñoz JP, Barbeito L. The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res 2001; 32(5): 367-81.
[http://dx.doi.org/10.1016/S0188-4409(01)00316-2] [PMID: 11578751]
[8]
Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 2006; 75: 333-66.
[http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901] [PMID: 16756495]
[9]
Andreeva TV, Lukiw WJ, Rogaev EI. Biological basis for amyloidogenesis in Alzheimer’s disease. Biochemistry (Mosc) 2017; 82(2): 122-39.
[http://dx.doi.org/10.1134/S0006297917020043] [PMID: 28320296]
[10]
Medway C, Morgan K. Review: The genetics of Alzheimer’s disease; putting flesh on the bones. Neuropathol Appl Neurobiol 2014; 40(2): 97-105.
[http://dx.doi.org/10.1111/nan.12101] [PMID: 24443964]
[11]
Jones L, Holmans PA, Hamshere ML, et al. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS One 2010; 5(11): e13950.
[http://dx.doi.org/10.1371/journal.pone.0013950] [PMID: 21085570]
[12]
Morgan K. The three new pathways leading to Alzheimer’s disease. Neuropathol Appl Neurobiol 2011; 37(4): 353-7.
[http://dx.doi.org/10.1111/j.1365-2990.2011.01181.x] [PMID: 21486313]
[13]
Lambert JC, Amouyel P. Genetics of Alzheimer’s disease: new evidences for an old hypothesis? Curr Opin Genet Dev 2011; 21(3): 295-301.
[http://dx.doi.org/10.1016/j.gde.2011.02.002] [PMID: 21371880]
[14]
Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron 2010; 68(2): 270-81.
[http://dx.doi.org/10.1016/j.neuron.2010.10.013] [PMID: 20955934]
[15]
Craig LA, Hong NS, McDonald RJ. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev 2011; 35(6): 1397-409.
[http://dx.doi.org/10.1016/j.neubiorev.2011.03.001] [PMID: 21392524]
[16]
Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10(9): 698-712.
[http://dx.doi.org/10.1038/nrd3505] [PMID: 21852788]
[17]
Maccioni RB, Farías G, Morales I, Navarrete L. The revitalized tau hypothesis on Alzheimer’s disease. Arch Med Res 2010; 41(3): 226-31.
[http://dx.doi.org/10.1016/j.arcmed.2010.03.007] [PMID: 20682182]
[18]
Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 1997; 23(1): 134-47.
[http://dx.doi.org/10.1016/S0891-5849(96)00629-6] [PMID: 9165306]
[19]
Craddock TJ, Tuszynski JA, Chopra D, et al. The zinc dyshomeostasis hypothesis of Alzheimer’s disease. PLoS One 2012; 7(3): e33552.
[http://dx.doi.org/10.1371/journal.pone.0033552] [PMID: 22457776]
[20]
Yamashima T. Reconsider Alzheimer’s disease by the ‘calpain- cathepsin hypothesis’-a perspective review. Prog Neurobiol 2013; 105: 1-23.
[http://dx.doi.org/10.1016/j.pneurobio.2013.02.004] [PMID: 23499711]
[21]
Uddin MS, Al Mamun A, Kabir MT, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Multi-target drug candidates for multifactorial alzheimer’s disease: ache and nmdar as molecular targets. Mol Neurobiol 2021; 58(1): 281-303.
[http://dx.doi.org/10.1007/s12035-020-02116-9] [PMID: 32935230]
[22]
Noori T, Dehpour AR, Sureda A, Sobarzo-Sanchez E, Shirooie S. Role of natural products for the treatment of Alzheimer’s disease. Eur J Pharmacol 2021; 898: 173974.
[http://dx.doi.org/10.1016/j.ejphar.2021.173974] [PMID: 33652057]
[23]
Sussman JL, Harel M, Frolow F, et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 1991; 253(5022): 872-9.
[http://dx.doi.org/10.1126/science.1678899] [PMID: 1678899]
[24]
Kraut D, Goff H, Pai RK, et al. Inactivation studies of acetylcholinesterase with phenylmethylsulfonyl fluoride. Mol Pharmacol 2000; 57(6): 1243-8.
[PMID: 10825396]
[25]
Inestrosa NC, Alvarez A, Pérez CA, et al. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 1996; 16(4): 881-91.
[http://dx.doi.org/10.1016/S0896-6273(00)80108-7] [PMID: 8608006]
[26]
Citron M. Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov 2010; 9(5): 387-98.
[http://dx.doi.org/10.1038/nrd2896] [PMID: 20431570]
[27]
Sabbagh MN. Drug development for Alzheimer’s disease: where are we now and where are we headed? Am J Geriatr Pharmacother 2009; 7(3): 167-85.
[http://dx.doi.org/10.1016/j.amjopharm.2009.06.003] [PMID: 19616185]
[28]
Arendt T, Brückner MK, Lange M, Bigl V. Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development-a study of molecular forms. Neurochem Int 1992; 21(3): 381-96.
[http://dx.doi.org/10.1016/0197-0186(92)90189-X] [PMID: 1303164]
[29]
Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother 2008; 8(11): 1703-18.
[http://dx.doi.org/10.1586/14737175.8.11.1703] [PMID: 18986241]
[30]
Zimmermann M. Neuronal AChE splice variants and their non-hydrolytic functions: redefining a target of AChE inhibitors? Br J Pharmacol 2013; 170(5): 953-67.
[http://dx.doi.org/10.1111/bph.12359] [PMID: 23991627]
[31]
Murray AP, Faraoni MB, Castro MJ, Alza NP, Cavallaro V. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr Neuropharmacol 2013; 11(4): 388-413.
[http://dx.doi.org/10.2174/1570159X11311040004] [PMID: 24381530]
[32]
Alvarez A, Opazo C, Alarcón R, Garrido J, Inestrosa NC. Acetylcholinesterase promotes the aggregation of amyloid-β-peptide fragments by forming a complex with the growing fibrils. J Mol Biol 1997; 272(3): 348-61.
[http://dx.doi.org/10.1006/jmbi.1997.1245] [PMID: 9325095]
[33]
Ahmad SS, Khan MB, Ahmad K, et al. Biocomputational screening of natural compounds against acetylcholinesterase. Molecules 2021; 26(9): 2641.
[http://dx.doi.org/10.3390/molecules26092641] [PMID: 33946559]
[34]
Yao H, Uras G, Zhang P, et al. Discovery of novel tacrine-pyrimidone hybrids as potent dual ache/gsk-3 inhibitors for the treatment of alzheimer’s disease. J Med Chem 2021; 64(11): 7483-506.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00160] [PMID: 34024109]
[35]
Silver A. The biology of cholinesterases. USA: Elsever 1947.
[36]
Chatonnet A, Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 1989; 260(3): 625-34.
[http://dx.doi.org/10.1042/bj2600625] [PMID: 2669736]
[37]
Dave KR, Syal AR, Katyare SS. Tissue cholinesterases. A comparative study of their kinetic properties. Z Naturforsch C J Biosci 2000; 55(1-2): 100-8.
[http://dx.doi.org/10.1515/znc-2000-1-219] [PMID: 10739108]
[38]
Prody CA, Zevin-Sonkin D, Gnatt A, Goldberg O, Soreq H. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues. Proc Natl Acad Sci USA 1987; 84(11): 3555-9.
[http://dx.doi.org/10.1073/pnas.84.11.3555] [PMID: 3035536]
[39]
Raveh L, Grauer E, Grunwald J, Cohen E, Ashani Y. The stoichiometry of protection against soman and VX toxicity in monkeys pretreated with human butyrylcholinesterase. Toxicol Appl Pharmacol 1997; 145(1): 43-53.
[http://dx.doi.org/10.1006/taap.1997.8160] [PMID: 9221822]
[40]
Darvesh S, Grantham DL, Hopkins DA. Distribution of butyrylcholinesterase in the human amygdala and hippocampal formation. J Comp Neurol 1998; 393(3): 374-90.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19980413)393:3<374::AID-CNE8>3.0.CO;2-Z] [PMID: 9548556]
[41]
Darvesh S, Hopkins DA, Geula C. Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 2003; 4(2): 131-8.
[http://dx.doi.org/10.1038/nrn1035] [PMID: 12563284]
[42]
Darvesh S, Hopkins DA. Differential distribution of butyrylcholinesterase and acetylcholinesterase in the human thalamus. J Comp Neurol 2003; 463(1): 25-43.
[http://dx.doi.org/10.1002/cne.10751] [PMID: 12811800]
[43]
Macdonald IR, Maxwell SP, Reid GA, Cash MK, DeBay DR, Darvesh S. Quantification of butyrylcholinesterase activity as a sensitive and specific biomarker of Alzheimer’s disease. J Alzheimers Dis 2017; 58(2): 491-505.
[http://dx.doi.org/10.3233/JAD-170164] [PMID: 28453492]
[44]
Inestrosa NC, Dinamarca MC, Alvarez A. Amyloid-cholinesterase interactions. Implications for Alzheimer’s disease. FEBS J 2008; 275(4): 625-32.
[http://dx.doi.org/10.1111/j.1742-4658.2007.06238.x] [PMID: 18205831]
[45]
Darvesh S, Reid GA. Reduced fibrillar β-amyloid in subcortical structures in a butyrylcholinesterase-knockout Alzheimer disease mouse model. Chem Biol Interact 2016; 259(Pt B): 307-12.
[http://dx.doi.org/10.1016/j.cbi.2016.04.022] [PMID: 27091549]
[46]
Reid GA, Darvesh S. Butyrylcholinesterase-knockout reduces brain deposition of fibrillar β-amyloid in an Alzheimer mouse model. Neuroscience 2015; 298: 424-35.
[http://dx.doi.org/10.1016/j.neuroscience.2015.04.039] [PMID: 25931333]
[47]
Jia Q, Deng Y, Qing H. Potential therapeutic strategies for Alzheimer’s disease targeting or beyond β-amyloid: insights from clinical trials. BioMed Res Int 2014; 2014: 837157.
[http://dx.doi.org/10.1155/2014/837157] [PMID: 25136630]
[48]
Ahmad SS, Akhtar S, Danish Rizvi SM, et al. Screening and elucidation of selected natural compounds for anti-Alzheimer’s potential targeting BACE-1 enzyme: A case computational study. Curr Computeraided Drug Des 2017; 13(4): 311-8.
[PMID: 28413992]
[49]
Yang G, Zhou R, Guo X, Yan C, Lei J, Shi Y. Structural basis of γ-secretase inhibition and modulation by small molecule drugs. Cell 2021; 184(2): 521-533.e14.
[http://dx.doi.org/10.1016/j.cell.2020.11.049] [PMID: 33373587]
[50]
Vassar R. β-secretase (BACE) as a drug target for Alzheimer’s disease. Adv Drug Deliv Rev 2002; 54(12): 1589-602.
[http://dx.doi.org/10.1016/S0169-409X(02)00157-6] [PMID: 12453676]
[51]
Oikawa N, Walter J. Presenilins and γ-secretase in membrane proteostasis. Cells 2019; 8(3): 209.
[http://dx.doi.org/10.3390/cells8030209] [PMID: 30823664]
[52]
Sambamurti K, Greig NH, Lahiri DK. Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer’s disease. Neuromolecular Med 2002; 1(1): 1-31.
[http://dx.doi.org/10.1385/NMM:1:1:1] [PMID: 12025813]
[53]
Swerdlow RH. Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2007; 2(3): 347-59.
[PMID: 18044185]
[54]
Yan R, Bienkowski MJ, Shuck ME, et al. Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature 1999; 402(6761): 533-7.
[http://dx.doi.org/10.1038/990107] [PMID: 10591213]
[55]
Buxbaum JD, Liu KN, Luo Y, et al. Evidence that tumor necrosis factor α converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 1998; 273(43): 27765-7.
[http://dx.doi.org/10.1074/jbc.273.43.27765] [PMID: 9774383]
[56]
Koike H, Tomioka S, Sorimachi H, et al. Membrane-anchored metalloprotease MDC9 has an α-secretase activity responsible for processing the amyloid precursor protein. Biochem J 1999; 343(Pt 2): 371-5.
[http://dx.doi.org/10.1042/bj3430371] [PMID: 10510302]
[57]
Lammich S, Kojro E, Postina R, et al. Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA 1999; 96(7): 3922-7.
[http://dx.doi.org/10.1073/pnas.96.7.3922] [PMID: 10097139]
[58]
Furukawa K, Sopher BL, Rydel RE, et al. Increased activity-regulating and neuroprotective efficacy of α-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J Neurochem 1996; 67(5): 1882-96.
[http://dx.doi.org/10.1046/j.1471-4159.1996.67051882.x] [PMID: 8863493]
[59]
Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem 2008; 283(44): 29615-9.
[http://dx.doi.org/10.1074/jbc.R800019200] [PMID: 18650430]
[60]
Tian Y, Crump CJ, Li YM. Dual role of α-secretase cleavage in the regulation of γ-secretase activity for amyloid production. J Biol Chem 2010; 285(42): 32549-56.
[http://dx.doi.org/10.1074/jbc.M110.128439] [PMID: 20675367]
[61]
Bolea I, Gella A, Unzeta M. Propargylamine-derived multitarget-directed ligands: fighting Alzheimer’s disease with monoamine oxidase inhibitors. J Neural Transm (Vienna) 2013; 120(6): 893-902.
[http://dx.doi.org/10.1007/s00702-012-0948-y] [PMID: 23238976]
[62]
Gulyás B, Pavlova E, Kása P, et al. Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int 2011; 58(1): 60-8.
[http://dx.doi.org/10.1016/j.neuint.2010.10.013] [PMID: 21075154]
[63]
Kumar B, Gupta VP, Kumar V. A perspective on monoamine oxidase enzyme as drug target: challenges and opportunities. Curr Drug Targets 2017; 18(1): 87-97.
[http://dx.doi.org/10.2174/1389450117666151209123402] [PMID: 26648064]
[64]
Cai Z, Liu N, Wang C, et al. Role of RAGE in Alzheimer’s disease. Cell Mol Neurobiol 2016; 36(4): 483-95.
[http://dx.doi.org/10.1007/s10571-015-0233-3] [PMID: 26175217]
[65]
Obrenovich ME, Monnier VM. Glycation stimulates amyloid formation. Sci SAGE KE 2004; 2004(2): pe3.
[http://dx.doi.org/10.1126/sageke.2004.2.pe3] [PMID: 14724325]
[66]
Münch G, Schicktanz D, Behme A, et al. Amino acid specificity of glycation and protein-AGE crosslinking reactivities determined with a dipeptide SPOT library. Nat Biotechnol 1999; 17(10): 1006-10.
[http://dx.doi.org/10.1038/13704] [PMID: 10504703]
[67]
Wong A, Lüth HJ, Deuther-Conrad W, et al. Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res 2001; 920(1-2): 32-40.
[http://dx.doi.org/10.1016/S0006-8993(01)02872-4] [PMID: 11716809]
[68]
Reddy VP, Obrenovich ME, Atwood CS, Perry G, Smith MA. Involvement of Maillard reactions in Alzheimer disease. Neurotox Res 2002; 4(3): 191-209.
[http://dx.doi.org/10.1080/1029840290007321] [PMID: 12829400]
[69]
Mattson MP, Carney JW, Butterfield DA. A tombstone in Alzheimer’s? Nature 1995; 373(6514): 481.
[http://dx.doi.org/10.1038/373481a0] [PMID: 7845457]
[70]
Smith MA, Sayre LM, Vitek MP, Monnier VM, Perry G. Early AGEing and Alzheimer’s. Nature 1995; 374(6520): 316.
[http://dx.doi.org/10.1038/374316b0] [PMID: 7885469]
[71]
Li JJ, Dickson D, Hof PR, Vlassara H. Receptors for advanced glycosylation endproducts in human brain: role in brain homeostasis. Mol Med 1998; 4(1): 46-60.
[http://dx.doi.org/10.1007/BF03401729] [PMID: 9513189]
[72]
Sasaki N, Toki S, Chowei H, et al. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease. Brain Res 2001; 888(2): 256-62.
[http://dx.doi.org/10.1016/S0006-8993(00)03075-4] [PMID: 11150482]
[73]
Ramalingam M, Kim SJ. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J Neural Transm (Vienna) 2012; 119(8): 891-910.
[http://dx.doi.org/10.1007/s00702-011-0758-7] [PMID: 22212484]
[74]
Brieger K, Schiavone S, Miller FJ Jr, Krause KH. Reactive oxygen species: from health to disease. Swiss Med Wkly 2012; 142: w13659.
[http://dx.doi.org/10.4414/smw.2012.13659] [PMID: 22903797]
[75]
Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 2010; 345(1-2): 91-104.
[http://dx.doi.org/10.1007/s11010-010-0563-x] [PMID: 20730621]
[76]
Shulman RG, Rothman DL, Behar KL, Hyder F. Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 2004; 27(8): 489-95.
[http://dx.doi.org/10.1016/j.tins.2004.06.005] [PMID: 15271497]
[77]
Su B, Wang X, Nunomura A, et al. Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res 2008; 5(6): 525-32.
[http://dx.doi.org/10.2174/156720508786898451] [PMID: 19075578]
[78]
Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 2011; 51(7): 1302-19.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.027] [PMID: 21782935]
[79]
Morrison DA. Phylogenetic tree-building. Int J Parasitol 1996; 26(6): 589-617.
[http://dx.doi.org/10.1016/0020-7519(96)00044-6] [PMID: 8875305]
[80]
Tosto G, Reitz C. Genome-wide association studies in Alzheimer’s disease: a review. Curr Neurol Neurosci Rep 2013; 13(10): 381.
[http://dx.doi.org/10.1007/s11910-013-0381-0] [PMID: 23954969]
[81]
Sparks DL. Coronary artery disease, hypertension, ApoE, and cholesterol: a link to Alzheimer’s disease? Ann N Y Acad Sci 1997; 826(1): 128-46.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb48466.x] [PMID: 9329686]
[82]
Yu L, Chibnik LB, Srivastava GP, et al. Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA Neurol 2015; 72(1): 15-24.
[http://dx.doi.org/10.1001/jamaneurol.2014.3049] [PMID: 25365775]
[83]
Jun G, Naj AC, Beecham GW, et al. Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 2010; 67(12): 1473-84.
[http://dx.doi.org/10.1001/archneurol.2010.201] [PMID: 20697030]
[84]
Robinson M, Lee BY, Hane FT. Recent progress in Alzheimer’s disease research, part 2: genetics and epidemiology. J Alzheimers Dis 2017; 57(2): 317-30.
[http://dx.doi.org/10.3233/JAD-161149] [PMID: 28211812]
[85]
Rogaev EI, Sherrington R, Rogaeva EA, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 1995; 376(6543): 775-8.
[http://dx.doi.org/10.1038/376775a0] [PMID: 7651536]
[86]
Rovelet-Lecrux A, Hannequin D, Raux G, et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 2006; 38(1): 24-6.
[http://dx.doi.org/10.1038/ng1718] [PMID: 16369530]
[87]
Shi Y, Holtzman DM. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 2018; 18(12): 759-72.
[http://dx.doi.org/10.1038/s41577-018-0051-1] [PMID: 30140051]
[88]
Guerreiro R, Wojtas A, Bras J, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med 2013; 368(2): 117-27.
[http://dx.doi.org/10.1056/NEJMoa1211851] [PMID: 23150934]
[89]
Jonsson T, Stefansson H, Steinberg S, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 2013; 368(2): 107-16.
[http://dx.doi.org/10.1056/NEJMoa1211103] [PMID: 23150908]
[90]
Paloneva J, Manninen T, Christman G, et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 2002; 71(3): 656-62.
[http://dx.doi.org/10.1086/342259] [PMID: 12080485]
[91]
Chouery E, Delague V, Bergougnoux A, Koussa S, Serre JL, Mégarbané A. Mutations in TREM2 lead to pure early-onset dementia without bone cysts. Hum Mutat 2008; 29(9): E194-204.
[http://dx.doi.org/10.1002/humu.20836] [PMID: 18546367]
[92]
Guerreiro RJ, Lohmann E, Brás JM, et al. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol 2013; 70(1): 78-84.
[http://dx.doi.org/10.1001/jamaneurol.2013.579] [PMID: 23318515]
[93]
Ciccone L, Tonali N, Nencetti S, Orlandini E. Natural compounds as inhibitors of transthyretin amyloidosis and neuroprotective agents: analysis of structural data for future drug design. J Enzyme Inhib Med Chem 2020; 35(1): 1145-62.
[http://dx.doi.org/10.1080/14756366.2020.1760262] [PMID: 32419519]
[94]
Singh RK. Recent trends in the management of alzheimer’s disease: current therapeutic options and drug repurposing approaches. Curr Neuropharmacol 2020; 18(9): 868-82.
[http://dx.doi.org/10.2174/1570159X18666200128121920] [PMID: 31989900]
[95]
Ghosh S, Durgvanshi S, Agarwal S, Raghunath M, Sinha JK. Current status of drug targets and emerging therapeutic strategies in the management of alzheimer’s disease. Curr Neuropharmacol 2020; 18(9): 883-903.
[http://dx.doi.org/10.2174/1570159X18666200429011823] [PMID: 32348223]
[96]
Turkseven CH, Buyukakilli B, Balli E, et al. Effects of Huperzin-A on the Beta-amyloid accumulation in the brain and skeletal muscle cells of a rat model for Alzheimer’s disease. Life Sci 2017; 184: 47-57.
[http://dx.doi.org/10.1016/j.lfs.2017.07.012] [PMID: 28709849]
[97]
Ahmad SS, Sinha M, Ahmad K, Khalid M, Choi I. Study of Caspase 8 inhibition for the management of Alzheimer’s disease: a molecular docking and dynamics simulation. Molecules 2020; 25(9): 2071.
[http://dx.doi.org/10.3390/molecules25092071] [PMID: 32365525]
[98]
Liu S, Dang M, Lei Y, et al. Ajmalicine and its analogues against ache and buche for the management of alzheimer’s disease: an in-silico study. Curr Pharm Des 2020; 26(37): 4808-14.
[http://dx.doi.org/10.2174/1381612826666200407161842] [PMID: 32264807]
[99]
Ahmad SS, Khan H. et al. Computational study of natural compounds for the clearance of amyloid-beta: a potential therapeutic management strategy for alzheimer’s disease. Molecules 2019; 24(18): 3233.
[http://dx.doi.org/10.3390/molecules24183233] [PMID: 31491967]
[100]
Fernando WM, Martins IJ, Goozee KG, Brennan CS, Jayasena V, Martins RN. The role of dietary coconut for the prevention and treatment of Alzheimer’s disease: potential mechanisms of action. Br J Nutr 2015; 114(1): 1-14.
[http://dx.doi.org/10.1017/S0007114515001452] [PMID: 25997382]
[101]
Jabir NR, Khan FR, Tabrez S. Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer’s disease. CNS Neurosci Ther 2018; 24(9): 753-62.
[http://dx.doi.org/10.1111/cns.12971] [PMID: 29770579]
[102]
Rao YL, Ganaraja B, Joy T, Pai MM, Ullal SD, Murlimanju BV. Neuroprotective effects of resveratrol in Alzheimer’s disease. Front Biosci (Elite Ed) 2020; 12: 139-49.
[http://dx.doi.org/10.2741/e863] [PMID: 31585875]
[103]
Sharifi-Rad M, Lankatillake C, Dias DA, et al. Impact of natural compounds on neurodegenerative disorders: from preclinical to pharmacotherapeutics. J Clin Med 2020; 9(4): 1061.
[http://dx.doi.org/10.3390/jcm9041061] [PMID: 32276438]
[104]
Jamal QMS, Siddiqui MU, Alharbi AH, et al. A computational study of natural compounds from bacopa monnieri in the treatment of alzheimer’s disease. Curr Pharm Des 2020; 26(7): 790-800.
[http://dx.doi.org/10.2174/1381612826666200102142257] [PMID: 31894743]
[105]
Karim N, Khan H, Khan I, et al. An increasing role of polyphenols as novel therapeutics for Alzheimer’s: A review. Med Chem 2020; 16(8): 1007-21.
[http://dx.doi.org/10.2174/1573406415666191105154407] [PMID: 31702507]
[106]
Alzheimer’s Association. 2021.
[107]
Licata L, Lo Surdo P, Iannuccelli M, et al. SIGNOR 2.0, the SIGnaling network open resource 2.0: 2019 update. Nucleic Acids Res 2020; 48(D1): D504-10.
[PMID: 31665520]
[108]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[109]
Kuhn M, Szklarczyk D, Franceschini A, et al. STITCH 2: an interaction network database for small molecules and proteins. Nucleic Acids Res 2010; 38(Database issue)(Suppl. 1): D552-6.
[http://dx.doi.org/10.1093/nar/gkp937] [PMID: 19897548]
[110]
Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 2008; 36(Database issue)(Suppl. 1): D684-8.
[PMID: 18084021]
[111]
Okada T, Suzuki H, Travis ZD, Zhang JH. The stroke-induced blood-brain barrier disruption: current progress of inspection technique, mechanism, and therapeutic target. Curr Neuropharmacol 2020; 18(12): 1187-212.
[http://dx.doi.org/10.2174/1570159X18666200528143301] [PMID: 32484111]
[112]
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14: 5541-54.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[113]
Leszek J, Md Ashraf G, Tse WH, et al. Nanotechnology for Alzheimer Disease. Curr Alzheimer Res 2017; 14(11): 1182-9.
[http://dx.doi.org/10.2174/1567205014666170203125008] [PMID: 28164767]
[114]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology based theranostic approaches in alzheimer’s disease management: current status and future perspective. Curr Alzheimer Res 2017; 14(11): 1164-81.
[http://dx.doi.org/10.2174/1567205014666170508121031] [PMID: 28482786]
[115]
Ruozi B, Belletti D, Pederzoli F, et al. Nanotechnology and Alzheimer’s disease: what has been done and what to do. Curr Med Chem 2014; 21(36): 4169-85.
[http://dx.doi.org/10.2174/0929867321666140716100056] [PMID: 25039777]
[116]
Fonseca-Santos B, Gremião MP, Chorilli M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 2015; 10: 4981-5003.
[http://dx.doi.org/10.2147/IJN.S87148] [PMID: 26345528]
[117]
Vadlamudi HC, Narendran H, Nagaswaram T, Yaga G, Thanniru J, Yalavarthi PR. Microemulsions based transdermal drug delivery systems. Curr Drug Discov Technol 2014; 11(3): 169-80.
[http://dx.doi.org/10.2174/157016381103141128113034] [PMID: 25466399]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy