Review Article

慢性阻塞性肺疾病呼出气冷凝物和血浆/血清的代谢组学分析

卷 29, 期 14, 2022

发表于: 10 January, 2022

页: [2385 - 2398] 页: 14

弟呕挨: 10.2174/0929867328666210810122350

价格: $65

摘要

慢性阻塞性肺病 (COPD) 是全球发病率和死亡率不断增加的原因,长期预后不佳和慢性残疾。 COPD 是一种具有广泛临床表现的疾病,即使在气流受限程度相当的患者中也可以识别出不同的表型。考虑到 COPD 在社会和经济成本方面的负担,近年来人们越来越关注需要更个性化的方法和为患者量身定制的康复计划。在这方面,对生物基质中代谢物的系统分析,即代谢组学,可能成为疾病表型分析的重要工具。通过识别和量化生物过程中产生的小分子,因此提出了生物样品的代谢组学分析作为识别疾病结果和治疗反应的新生物标志物的机会。呼出气冷凝液 (EBC) 和血浆/血清是流体池,可以轻松提取和分析。在这篇综述中,我们讨论了 EBC 和血浆/血清代谢组学分析在 COPD 中的潜在临床应用。

关键词: 慢性阻塞性肺病、代谢组学、残疾、生物标志物、康复、结果、慢性病。

[1]
Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med., 2006, 3(11) ,e442.
[http://dx.doi.org/10.1371/journal.pmed.0030442] [PMID: 17132052]
[2]
Rahman, I. The role of oxidative stress in the pathogenesis of COPD: implications for therapy. Treat. Respir. Med., 2005, 4(3), 175-200.
[http://dx.doi.org/10.2165/00151829-200504030-00003] [PMID: 15987234]
[3]
Bianco, A.; Mazzarella, G.; Turchiarelli, V.; Nigro, E.; Corbi, G.; Scudiero, O.; Sofia, M.; Daniele, A. Adiponectin: an attractive marker for metabolic disorders in chronic obstructive pulmonary disease (COPD). Nutrients, 2013, 5(10), 4115-4125.
[http://dx.doi.org/10.3390/nu5104115] [PMID: 24128974]
[4]
Nussbaumer-Ochsner, Y.; Rabe, K.F. Systemic manifestations of COPD. Chest, 2011, 139(1), 165-173.
[http://dx.doi.org/10.1378/chest.10-1252] [PMID: 21208876]
[5]
Gong, B.; Shang, S.; Wu, C. Association between cognitive declines and disability in activities of daily living in older adults with COPD: evidence from the China health and retirement longitudinal study. BMJ Open, 2020, 10(10) ,e040098.
[http://dx.doi.org/10.1136/bmjopen-2020-040098] [PMID: 33115903]
[6]
Make, B.J.; Yawn, B.P. Breathing life into COPD management: Ongoing monitoring, pulmonary rehabilitation, and individualized care. Chest, 2018, 154(4), 980-981.
[http://dx.doi.org/10.1016/j.chest.2018.08.1023] [PMID: 30290931]
[7]
Agusti, A. The path to personalised medicine in COPD. Thorax, 2014, 69(9), 857-864.
[http://dx.doi.org/10.1136/thoraxjnl-2014-205507] [PMID: 24781218]
[8]
Bush, A.; Fleming, L. Phenotypes of refractory/severe asthma. Paediatr. Respir. Rev., 2011, 12(3), 177-181.
[http://dx.doi.org/10.1016/j.prrv.2011.01.003] [PMID: 21722846]
[9]
Woodruff, P.G.; Agusti, A.; Roche, N.; Singh, D.; Martinez, F.J. Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy: making progress towards personalised management. Lancet, 2015, 385(9979), 1789-1798.
[http://dx.doi.org/10.1016/S0140-6736(15)60693-6] [PMID: 25943943]
[10]
Burgel, P.R.; Paillasseur, J.L.; Caillaud, D.; Tillie-Leblond, I.; Chanez, P.; Escamilla, R.; Court-Fortune, I.; Perez, T.; Carré, P.; Roche, N.; Initiatives, B.S.C. Clinical COPD phenotypes: a novel approach using principal component and cluster analyses. Eur. Respir. J., 2010, 36(3), 531-539.
[http://dx.doi.org/10.1183/09031936.00175109] [PMID: 20075045]
[11]
Manian, P. Chronic obstructive pulmonary disease classification, phenotypes and risk assessment. J. Thorac. Dis., 2019, 11(Suppl. 14), S1761-S1766.
[http://dx.doi.org/10.21037/jtd.2019.05.10] [PMID: 31632753]
[12]
Rochester, C.L.; Holland, A.E. Pulmonary rehabilitation and improved survival for patients with COPD. JAMA, 2020, 323(18), 1783-1785.
[http://dx.doi.org/10.1001/jama.2020.4436] [PMID: 32396172]
[13]
Li, C.X.; Wheelock, C.E.; Sköld, C.M.; Wheelock, A.M. Integration of multi-omics datasets enables molecular classification of COPD. Eur. Respir. J., 2018, 51(5) ,1701930.
[http://dx.doi.org/10.1183/13993003.01930-2017] [PMID: 29545283]
[14]
Arakaki, A.K.; Skolnick, J.; McDonald, J.F. Marker metabolites can be therapeutic targets as well. Nature, 2008, 456(7221), 443.
[http://dx.doi.org/10.1038/456443c] [PMID: 19037294]
[15]
Bollard, M.E.; Stanley, E.G.; Lindon, J.C.; Nicholson, J.K.; Holmes, E. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed., 2005, 18(3), 143-162.
[http://dx.doi.org/10.1002/nbm.935] [PMID: 15627238]
[16]
Clayton, T.A.; Lindon, J.C.; Cloarec, O.; Antti, H.; Charuel, C.; Hanton, G.; Provost, J.P.; Le Net, J.L.; Baker, D.; Walley, R.J.; Everett, J.R.; Nicholson, J.K. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature, 2006, 440(7087), 1073-1077.
[http://dx.doi.org/10.1038/nature04648] [PMID: 16625200]
[17]
Nicholson, J.K.; Lindon, J.C. Systems biology: metabonomics. Nature, 2008, 455(7216), 1054-1056.
[http://dx.doi.org/10.1038/4551054a] [PMID: 18948945]
[18]
Urbanczyk-Wochniak, E.; Luedemann, A.; Kopka, J.; Selbig, J.; Roessner-Tunali, U.; Willmitzer, L.; Fernie, A.R. Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep., 2003, 4(10), 989-993.
[http://dx.doi.org/10.1038/sj.embor.embor944] [PMID: 12973302]
[19]
Paris, D.; Maniscalco, M.; Motta, A. Nuclear magnetic resonance-based metabolomics in respiratory medicine. Eur. Respir. J., 2018, 52(4) ,1801107.
[http://dx.doi.org/10.1183/13993003.01107-2018] [PMID: 30115612]
[20]
Maniscalco, M.; Fuschillo, S.; Paris, D.; Cutignano, A.; Sanduzzi, A.; Motta, A. Clinical metabolomics of exhaled breath condensate in chronic respiratory diseases. Adv. Clin. Chem., 2019, 88, 121-149.
[http://dx.doi.org/10.1016/bs.acc.2018.10.002] [PMID: 30612604]
[21]
Maniscalco, M.; Cutignano, A.; Paris, D.; Melck, D.J.; Molino, A.; Fuschillo, S.; Motta, A. Metabolomics of exhaled breath condensate by nuclear magnetic resonance spectroscopy and mass spectrometry: a methodological approach. Curr. Med. Chem., 2020, 27(14), 2381-2399.
[http://dx.doi.org/10.2174/0929867325666181008122749] [PMID: 30295185]
[22]
Maniscalco, M.; Motta, A. Metabolomics of exhaled breath condensate: a means for phenotyping respiratory diseases? Biomarkers Med., 2017, 11(6), 405-407.
[http://dx.doi.org/10.2217/bmm-2017-0068] [PMID: 28617073]
[23]
Horváth, I.; Barnes, P.J.; Loukides, S.; Sterk, P.J.; Högman, M.; Olin, A.C.; Amann, A.; Antus, B.; Baraldi, E.; Bikov, A.; Boots, A.W.; Bos, L.D.; Brinkman, P.; Bucca, C.; Carpagnano, G.E.; Corradi, M.; Cristescu, S.; de Jongste, J.C.; Dinh-Xuan, A.T.; Dompeling, E.; Fens, N.; Fowler, S.; Hohlfeld, J.M.; Holz, O.; Jöbsis, Q.; Van De Kant, K.; Knobel, H.H.; Kostikas, K.; Lehtimäki, L.; Lundberg, J.; Montuschi, P.; Van Muylem, A.; Pennazza, G.; Reinhold, P.; Ricciardolo, F.L.M.; Rosias, P.; Santonico, M.; van der Schee, M.P.; van Schooten, F.J.; Spanevello, A.; Tonia, T.; Vink, T.J. A european respiratory society technical standard: exhaled biomarkers in lung disease. Eur. Respir. J., 2017, 49(4) ,1600965.
[http://dx.doi.org/10.1183/13993003.00965-2016] [PMID: 28446552]
[24]
Horváth, I.; Hunt, J.; Barnes, P.J.; Alving, K.; Antczak, A.; Baraldi, E.; Becher, G.; van Beurden, W.J.; Corradi, M.; Dekhuijzen, R.; Dweik, R.A.; Dwyer, T.; Effros, R.; Erzurum, S.; Gaston, B.; Gessner, C.; Greening, A.; Ho, L.P.; Hohlfeld, J.; Jöbsis, Q.; Laskowski, D.; Loukides, S.; Marlin, D.; Montuschi, P.; Olin, A.C.; Redington, A.E.; Reinhold, P.; van Rensen, E.L.; Rubinstein, I.; Silkoff, P.; Toren, K.; Vass, G.; Vogelberg, C.; Wirtz, H. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur. Respir. J., 2005, 26(3), 523-548.
[http://dx.doi.org/10.1183/09031936.05.00029705] [PMID: 16135737]
[25]
Sofia, M.; Maniscalco, M.; de Laurentiis, G.; Paris, D.; Melck, D.; Motta, A. Exploring airway diseases by NMR-based metabonomics: a review of application to exhaled breath condensate. J. Biomed. Biotechnol., 2011, 2011 ,403260.
[http://dx.doi.org/10.1155/2011/403260] [PMID: 21437214]
[26]
Rahimpour, E.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Jouyban, A. Non-volatile compounds in exhaled breath condensate: review of methodological aspects. Anal. Bioanal. Chem., 2018, 410(25), 6411-6440.
[http://dx.doi.org/10.1007/s00216-018-1259-4] [PMID: 30046867]
[27]
Peralbo-Molina, A.; Calderón-Santiago, M.; Jurado-Gámez, B.; Luque de Castro, M.D.; Priego-Capote, F. Exhaled breath condensate to discriminate individuals with different smoking habits by GC-TOF/MS. Sci. Rep., 2017, 7(1), 1421.
[http://dx.doi.org/10.1038/s41598-017-01564-z] [PMID: 28469199]
[28]
de Laurentiis, G.; Paris, D.; Melck, D.; Maniscalco, M.; Marsico, S.; Corso, G.; Motta, A.; Sofia, M. Metabonomic analysis of exhaled breath condensate in adults by nuclear magnetic resonance spectroscopy. Eur. Respir. J., 2008, 32(5), 1175-1183.
[http://dx.doi.org/10.1183/09031936.00072408] [PMID: 18653649]
[29]
Motta, A.; Paris, D.; Melck, D.; de Laurentiis, G.; Maniscalco, M.; Sofia, M.; Montuschi, P. Nuclear magnetic resonance-based metabolomics of exhaled breath condensate: methodological aspects. Eur. Respir. J., 2012, 39(2), 498-500.
[http://dx.doi.org/10.1183/09031936.00036411] [PMID: 22298616]
[30]
Bertini, I.; Luchinat, C.; Miniati, M.; Monti, S.; Tenori, L. Phenotyping COPD by H-1 NMR metabolomics of exhaled breath condensate. Metabolomics, 2014, 10, 302-311.
[http://dx.doi.org/10.1007/s11306-013-0572-3]
[31]
de Laurentiis, G.; Paris, D.; Melck, D.; Montuschi, P.; Maniscalco, M.; Bianco, A.; Sofia, M.; Motta, A. Separating smoking-related diseases using NMR-based metabolomics of exhaled breath condensate. J. Proteome Res., 2013, 12(3), 1502-1511.
[http://dx.doi.org/10.1021/pr301171p] [PMID: 23360153]
[32]
Maniscalco, M.; Paris, D.; Melck, D.J.; Molino, A.; Carone, M.; Ruggeri, P.; Caramori, G.; Motta, A. Differential diagnosis between newly diagnosed asthma and COPD using exhaled breath condensate metabolomics: a pilot study. Eur. Respir. J., 2018, 51(3) ,1701825.
[http://dx.doi.org/10.1183/13993003.01825-2017] [PMID: 29348154]
[33]
Fens, N.; Roldaan, A.C.; van der Schee, M.P.; Boksem, R.J.; Zwinderman, A.H.; Bel, E.H.; Sterk, P.J. External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with fixed airways obstruction and chronic obstructive pulmonary disease. Clin. Exp. Allergy, 2011, 41(10), 1371-1378.
[http://dx.doi.org/10.1111/j.1365-2222.2011.03800.x] [PMID: 21732998]
[34]
Ghebre, M.A.; Desai, D.; Singapuri, A.; Woods, J.; Rapley, L.; Cohen, S.; Herath, A.; Wardlaw, A.J.; Pashley, C.H.; May, R.; Brightling, C.E. Sputum inflammatory mediators are increased in Aspergillus fumigatus culture-positive asthmatics. Allergy Asthma Immunol. Res., 2017, 9(2), 177-181.
[http://dx.doi.org/10.4168/aair.2017.9.2.177] [PMID: 28102063]
[35]
Airoldi, C.; Ciaramelli, C.; Fumagalli, M.; Bussei, R.; Mazzoni, V.; Viglio, S.; Iadarola, P.; Stolk, J. 1H NMR to explore the metabolome of exhaled breath condensate in α1-antitrypsin deficient patients: a pilot study. J. Proteome Res., 2016, 15(12), 4569-4578.
[http://dx.doi.org/10.1021/acs.jproteome.6b00648] [PMID: 27646345]
[36]
Maniscalco, M.; Motta, A. Clinical and inflammatory phenotyping: can electronic nose and NMR-based metabolomics work at the bedside? Arch. Med. Res., 2018, 49(1), 74-76.
[http://dx.doi.org/10.1016/j.arcmed.2018.04.001] [PMID: 29678351]
[37]
Ząbek, A.; Stanimirova, I.; Deja, S.; Barg, W.; Kowal, A.; Korzeniewska, A.; Orczyk-Pawiłowicz, M.; Baranowski, D.; Gdaniec, Z.; Jankowska, R.; Młynarz, P. Fusion of the 1H NMR data of serum, urine and exhaled breath condensate in order to discriminate chronic obstructive pulmonary disease and obstructive sleep apnea syndrome. Metabolomics, 2015, 11(6), 1563-1574.
[http://dx.doi.org/10.1007/s11306-015-0808-5] [PMID: 26491417]
[38]
Maniscalco, M.; Motta, A. Metabolomics of chronic obstructive pulmonary disease and obstructive sleep apnea syndrome: a comment. Metabolomics, 2016, 12, 29.
[http://dx.doi.org/10.1007/s11306-015-0920-6]
[39]
Beheshti, I.; Wessels, L.M.; Eckfeldt, J.H. EDTA-plasma vs serum differences in cholesterol, high-density-lipoprotein cholesterol, and triglyceride as measured by several methods. Clin. Chem., 1994, 40(11 Pt 1), 2088-2092.
[http://dx.doi.org/10.1093/clinchem/40.11.2088] [PMID: 7955384]
[40]
Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; Young, N.; Xia, J.; Knox, C.; Dong, E.; Huang, P.; Hollander, Z.; Pedersen, T.L.; Smith, S.R.; Bamforth, F.; Greiner, R.; McManus, B.; Newman, J.W.; Goodfriend, T.; Wishart, D.S. The human serum metabolome. PLoS One, 2011, 6(2) ,e16957.
[http://dx.doi.org/10.1371/journal.pone.0016957] [PMID: 21359215]
[41]
Cruickshank-Quinn, C.I.; Mahaffey, S.; Justice, M.J.; Hughes, G.; Armstrong, M.; Bowler, R.P.; Reisdorph, R.; Petrache, I.; Reisdorph, N. Transient and persistent metabolomic changes in plasma following chronic cigarette smoke exposure in a mouse model. PLoS One, 2014, 9(7) ,e101855.
[http://dx.doi.org/10.1371/journal.pone.0101855] [PMID: 25007263]
[42]
Celli, B.R.; Locantore, N.; Yates, J.; Tal-Singer, R.; Miller, B.E.; Bakke, P.; Calverley, P.; Coxson, H.; Crim, C.; Edwards, L.D.; Lomas, D.A.; Duvoix, A.; MacNee, W.; Rennard, S.; Silverman, E.; Vestbo, J.; Wouters, E.; Agustí, A. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2012, 185(10), 1065-1072.
[http://dx.doi.org/10.1164/rccm.201110-1792OC] [PMID: 22427534]
[43]
Liang, Y.; Gai, X.Y.; Chang, C.; Zhang, X.; Wang, J.; Li, T.T. Metabolomic profiling differences among asthma, COPD, and healthy subjects: A LC-MS-based metabolomic analysis. Biomed. Environ. Sci., 2019, 32(9), 659-672.
[PMID: 31635682]
[44]
Paige, M.; Burdick, M.D.; Kim, S.; Xu, J.; Lee, J.K.; Shim, Y.M. Pilot analysis of the plasma metabolite profiles associated with emphysematous chronic obstructive pulmonary disease phenotype. Biochem. Biophys. Res. Commun., 2011, 413(4), 588-593.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.006] [PMID: 21925153]
[45]
Tan, L.C.; Yang, W.J.; Fu, W.P.; Su, P.; Shu, J.K.; Dai, L.M. 1H-NMR-based metabolic profiling of healthy individuals and high-resolution CT-classified phenotypes of COPD with treatment of tiotropium bromide. Int. J. Chron. Obstruct. Pulmon. Dis., 2018, 13, 2985-2997.
[http://dx.doi.org/10.2147/COPD.S173264] [PMID: 30310274]
[46]
Wang, C.; Li, J.X.; Tang, D.; Zhang, J.Q.; Fang, L.Z.; Fu, W.P.; Liu, L.; Dai, L.M. Metabolic changes of different high-resolution computed tomography phenotypes of COPD after budesonide-formoterol treatment. Int. J. Chron. Obstruct. Pulmon. Dis., 2017, 12, 3511-3521.
[http://dx.doi.org/10.2147/COPD.S152134] [PMID: 29255358]
[47]
Chen, Q.; Deeb, R.S.; Ma, Y.; Staudt, M.R.; Crystal, R.G.; Gross, S.S. Serum metabolite biomarkers discriminate healthy smokers from COPD smokers. PLoS One, 2015, 10(12) ,e0143937.
[http://dx.doi.org/10.1371/journal.pone.0143937] [PMID: 26674646]
[48]
Kettunen, J.; Ritchie, S.C.; Anufrieva, O.; Lyytikäinen, L.P.; Hernesniemi, J.; Karhunen, P.J.; Kuukasjärvi, P.; Laurikka, J.; Kähönen, M.; Lehtimäki, T.; Havulinna, A.S.; Salomaa, V.; Männistö, S.; Ala-Korpela, M.; Perola, M.; Inouye, M.; Würtz, P. Biomarker glycoprotein acetyls is associated with the risk of a wide spectrum of incident diseases and stratifies mortality risk in angiography patients. Circ. Genom. Precis. Med., 2018, 11(11) ,e002234.
[http://dx.doi.org/10.1161/CIRCGEN.118.002234] [PMID: 30571186]
[49]
Prokić, I.; Lahousse, L.; de Vries, M.; Liu, J.; Kalaoja, M.; Vonk, J.M.; van der Plaat, D.A.; van Diemen, C.C.; van der Spek, A.; Zhernakova, A.; Fu, J.; Ghanbari, M.; Ala-Korpela, M.; Kettunen, J.; Havulinna, A.S.; Perola, M.; Salomaa, V.; Lind, L.; Ärnlöv, J.; Stricker, B.H.C.; Brusselle, G.G.; Boezen, H.M.; van Duijn, C.M.; Amin, N. A cross-omics integrative study of metabolic signatures of chronic obstructive pulmonary disease. BMC Pulm. Med., 2020, 20(1), 193.
[http://dx.doi.org/10.1186/s12890-020-01222-7] [PMID: 32677943]
[50]
Fischer, K.; Kettunen, J.; Würtz, P.; Haller, T.; Havulinna, A.S.; Kangas, A.J.; Soininen, P.; Esko, T.; Tammesoo, M.L.; Mägi, R.; Smit, S.; Palotie, A.; Ripatti, S.; Salomaa, V.; Ala-Korpela, M.; Perola, M.; Metspalu, A. Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: an observational study of 17,345 persons. PLoS Med., 2014, 11(2) ,e1001606.
[http://dx.doi.org/10.1371/journal.pmed.1001606] [PMID: 24586121]
[51]
Wang, L.; Tang, Y.; Liu, S.; Mao, S.; Ling, Y.; Liu, D.; He, X.; Wang, X. Metabonomic profiling of serum and urine by (1)H NMR-based spectroscopy discriminates patients with chronic obstructive pulmonary disease and healthy individuals. PLoS One, 2013, 8(6) ,e65675.
[http://dx.doi.org/10.1371/journal.pone.0065675] [PMID: 23755267]
[52]
Ubhi, B.K.; Riley, J.H.; Shaw, P.A.; Lomas, D.A.; Tal-Singer, R.; MacNee, W.; Griffin, J.L.; Connor, S.C. Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur. Respir. J., 2012, 40(2), 345-355.
[http://dx.doi.org/10.1183/09031936.00112411] [PMID: 22183483]
[53]
Diao, W.; Labaki, W.W.; Han, M.K.; Yeomans, L.; Sun, Y.; Smiley, Z.; Kim, J.H.; McHugh, C.; Xiang, P.; Shen, N.; Sun, X.; Guo, C.; Lu, M.; Standiford, T.J.; He, B.; Stringer, K.A. Disruption of histidine and energy homeostasis in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis., 2019, 14, 2015-2025.
[http://dx.doi.org/10.2147/COPD.S210598] [PMID: 31564849]
[54]
Labaki, W.W.; Gu, T.; Murray, S.; Curtis, J.L.; Yeomans, L.; Bowler, R.P.; Barr, R.G.; Comellas, A.P.; Hansel, N.N.; Cooper, C.B.; Barjaktarevic, I.; Kanner, R.E.; Paine, R., III; McDonald, M.N.; Krishnan, J.A.; Peters, S.P.; Woodruff, P.G.; O’Neal, W.K.; Diao, W.; He, B.; Martinez, F.J.; Standiford, T.J.; Stringer, K.A.; Han, M.K. Serum amino acid concentrations and clinical outcomes in smokers: SPIROMICS metabolomics study. Sci. Rep., 2019, 9(1), 11367.
[http://dx.doi.org/10.1038/s41598-019-47761-w] [PMID: 31388056]
[55]
Cruickshank-Quinn, C.I.; Jacobson, S.; Hughes, G.; Powell, R.L.; Petrache, I.; Kechris, K.; Bowler, R.; Reisdorph, N. Metabolomics and transcriptomics pathway approach reveals outcome-specific perturbations in COPD. Sci. Rep., 2018, 8(1), 17132.
[http://dx.doi.org/10.1038/s41598-018-35372-w] [PMID: 30459441]
[56]
Kuo, W.K.; Liu, Y.C.; Chu, C.M.; Hua, C.C.; Huang, C.Y.; Liu, M.H.; Wang, C.H. Amino acid-based metabolic indexes identify patients with chronic obstructive pulmonary disease and further discriminates patients in advanced BODE stages. Int. J. Chron. Obstruct. Pulmon. Dis., 2019, 14, 2257-2266.
[http://dx.doi.org/10.2147/COPD.S220557] [PMID: 31631995]
[57]
Rodriguez, D.A.; Alcarraz-Vizan, G.; Diaz-Moralli, S.; Reed, M.; Gomez, F.P.; Falciani, F.; Gunther, U.; Roca, J.; Cascante, M. Plasma metabolic profile in COPD patients: effects of exercise and endurance training. Metabolomics, 2012, 8, 508-516.
[http://dx.doi.org/10.1007/s11306-011-0336-x]
[58]
Pinto-Plata, V.; Casanova, C.; Divo, M.; Tesfaigzi, Y.; Calhoun, V.; Sui, J.; Polverino, F.; Priolo, C.; Petersen, H.; de Torres, J.P.; Marin, J.M.; Owen, C.A.; Baz, R.; Cordova, E.; Celli, B. Plasma metabolomics and clinical predictors of survival differences in COPD patients. Respir. Res., 2019, 20(1), 219.
[http://dx.doi.org/10.1186/s12931-019-1167-y] [PMID: 31615518]
[59]
Bowler, R.P.; Jacobson, S.; Cruickshank, C.; Hughes, G.J.; Siska, C.; Ory, D.S.; Petrache, I.; Schaffer, J.E.; Reisdorph, N.; Kechris, K. Plasma sphingolipids associated with chronic obstructive pulmonary disease phenotypes. Am. J. Respir. Crit. Care Med., 2015, 191(3), 275-284.
[http://dx.doi.org/10.1164/rccm.201410-1771OC] [PMID: 25494452]
[60]
Zhou, J.; Li, Q.; Liu, C.; Pang, R.; Yin, Y. Plasma metabolomics and lipidomics reveal perturbed metabolites in different disease stages of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis., 2020, 15, 553-565.
[http://dx.doi.org/10.2147/COPD.S229505] [PMID: 32210549]
[61]
Fortis, S.; Lusczek, E.R.; Weinert, C.R.; Beilman, G.J. Metabolomics in COPD acute respiratory failure requiring noninvasive positive pressure ventilation. Can. Respir. J., 2017, 2017 ,9480346.
[http://dx.doi.org/10.1155/2017/9480346] [PMID: 29391845]
[62]
Gulcev, M.; Reilly, C.; Griffin, T.J.; Broeckling, C.D.; Sandri, B.J.; Witthuhn, B.A.; Hodgson, S.W.; Woodruff, P.G.; Wendt, C.H. Tryptophan catabolism in acute exacerbations of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis., 2016, 11, 2435-2446.
[http://dx.doi.org/10.2147/COPD.S107844] [PMID: 27729784]
[63]
Menezes, A.M.B.; Montes de Oca, M.; Pérez-Padilla, R.; Nadeau, G.; Wehrmeister, F.C.; Lopez-Varela, M.V.; Muiño, A.; Jardim, J.R.B.; Valdivia, G.; Tálamo, C.; Team, P. Increased risk of exacerbation and hospitalization in subjects with an overlap phenotype: COPD-asthma. Chest, 2014, 145(2), 297-304.
[http://dx.doi.org/10.1378/chest.13-0622] [PMID: 24114498]
[64]
Ghosh, N.; Choudhury, P.; Kaushik, S.R.; Arya, R.; Nanda, R.; Bhattacharyya, P.; Roychowdhury, S.; Banerjee, R.; Chaudhury, K. Metabolomic fingerprinting and systemic inflammatory profiling of asthma COPD overlap (ACO). Respir. Res., 2020, 21(1), 126.
[http://dx.doi.org/10.1186/s12931-020-01390-4] [PMID: 32448302]
[65]
Ghosh, N.; Choudhury, P.; Subramani, E.; Saha, D.; Sengupta, S.; Joshi, M.; Banerjee, R.; Roychowdhury, S.; Bhattacharyya, P.; Chaudhury, K. Metabolomic signatures of asthma-COPD overlap (ACO) are different from asthma and COPD. Metabolomics, 2019, 15(6), 87.
[http://dx.doi.org/10.1007/s11306-019-1552-z] [PMID: 31165288]
[66]
Cai, C.; Bian, X.; Xue, M.; Liu, X.; Hu, H.; Wang, J.; Zheng, S.G.; Sun, B.; Wu, J.L. Eicosanoids metabolized through LOX distinguish asthma-COPD overlap from COPD by metabolomics study. Int. J. Chron. Obstruct. Pulmon. Dis., 2019, 14, 1769-1778.
[http://dx.doi.org/10.2147/COPD.S207023] [PMID: 31496676]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy